

Landscape of freely acting orbifolds

Corfu, September 4, 2024

2403.05650 - Chris Hull, George Gkountoumis, S.V. (HGV)

2302.09112 - Chris Hull, George Gkountoumis, Koen Stemerdink, S.V. (HGSV)

Intro & Motivation

New corners in the string theory landscape arising from asymmetric orbifolds:

- They are non-geometric, but stilll a CFT description.
- Asymmetric orbifolds typically have few moduli!

Example (N=2, D=5 & 4)

M-theory/Type IIB on CY_3:

- D=5: $n_V = h_{1,1} 1$, $n_H = h_{1,2} + 1$
- D=4 IIB: $n_v = h_{1,2}$, $n_H = h_{1,1} + 1$
- $n_H = 0$ is in the geometric swampland
- Asymmetric orbifolds: $n_H = 0$ is possible! [Dolivet, Julia & Kounnas '97, HGSV '23, Vafa et al '23]
- There are more surprises like this!

String Theory

- We consider orbifolds on $\mathbb{R}^{1,4}\times S^1\times T^4$:
- A T^4/\mathbb{Z}_p combined with a shift over $2\pi R/p\;$ on the S^1
- Because of the shift, there are no fixed points (but still twisted sectors)
- Susy is spontaneously broken instead of explicitly: gravitini become massive instead of being projected out

Orbifold action

 $W_L^1 \rightarrow e^{i(m_1+m_3)} W_L^1$, $W_L^2 \rightarrow e^{i(m_1-m_3)} W_L^2$, $W_R^1 \rightarrow e^{i(m_2+m_4)} W_R^1$ $W_R^2 \rightarrow e^{i(m_2 - m_4)} W_R^2$

Action on torus:

Action on the circle: $Z \rightarrow Z + 2\pi \mathscr{R}/p$,

Symmetric orbifolds: $m_1 = m_2$, $m_3 = m_4$

Need to be at point in moduli space of T^4 where the action is a symmetry. This implies quantization of the mass parameters.

Orbifolds

- Symmetric orbifolds: $\mathbb{Z}_p \in GL(4; \mathbb{Z})$. This requires *p* = 2,3,4,5,6,8,10,12,24
- $p = 5,8,10,12,24$ break all susy, so susy requires $p = 2,3,4,6$
- Asymmetric orbifolds: $\mathbb{Z}_p \in Spin(4,4;\mathbb{Z})$; the twist matrix being element of the T-duality group. R-symmetry $\textrm{twists: } \mathbb{Z}_p \in Spin(4) \times Spin(4).$ Complete list for p not known!

Orbifold landscape

See also Andrianopoli, Ferrara, Lledo, '04

Modular invariance

- For symmetric orbifolds, it is quite straightforward to construct modular invariant partition functions.
- For asymmetric orbifolds, it can lead to new constraints. E.g. for the $N=6$ \mathbb{Z}_p orbifold, only p =2,3,4 lead to modular invariant partition function with integer coefficients in the $q\bar{q}$ expansion. For p =6 this integrality condition is not satisfied and this theory is (probably) in the swampland (Bianchi et al. '22). Similar issues arise in other asymmetric orbifolds.

Example 1 : N=6

- $m_1 = m_2 = m_3 = 0, m_4 = \pi$. This is the N=6 \mathbb{Z}_2 asymmetric orbifold:
- $X_L^a \to -X_L^a$; $a = 1,2,3,4$ $Z \to Z + \pi R$

$$
\bullet \quad \text{Moduli space} \quad \frac{SU*(6)}{USp(6)}
$$

- Only D1-D5 BPS bound state with equal $N_1 = N_5$ (Bianchi '08)
- Generates an R^2F^2 term (cf. Bianchi, Bossard, Consoli '22)

Example 2: N=4

VM Moduli space: $\mathscr{M}_{\mathscr{N}=4} = \mathsf{SO}(1,1) \times$ [Awada&Townsend, '85] SO(5,*n*) $SO(5) \times SO(n)$

But we find only odd values for $n = 1,3,5,7$

Pure N=4 supergravity in D=5 is/seems to be in the swampland.

For asymmetric ($m_2 = m_4 = 0$) orbifolds: no massless R-R states, all D-branes projected out. No S-duality. No BPS black holes from D-branes.

Example 3: N=2

Only asymmetric orbifolds. We find some of the magic N=2 supergravities (Gunaydin, Sierra, Townsend), but not all. Dilaton sits in vector multiplet.

Example: \mathbb{Z}_{12} orbifold:

$$
m_1 = 2\pi/3
$$
 $m_2 = \pi/2$ $m_3 = \pi/3$

No hypermultiplet, only two vector multiplets, with two real scalars, dilaton and radius. All RR-fields become massive. No D-branes.

Example 3: N=2 \mathbb{Z}_{12}

In D=5 The (classical) moduli space is

 $\mathbb{R}^+ \times \mathbb{R}^+$

Upon reducing to D=4 it becomes an STU model

$$
F = i(X^{0})^{2}[STU + h_{1}(T, U) + h_{np}]
$$

This all looks similar to Heterotic on $K3 \times S^1$ and $K3 \times T^2$ (Antoniadis et al **'95,…) but it is not!**

Example 3: $N=2$ \mathbb{Z}_1 ,

Sen-Vafa duality '95 gives a strong/weak dual pair, based on $m^{}_1 \leftrightarrow m^{}_4$. This theory has again classical model in D=5

 $\mathbb{R}^+ \times \mathbb{R}^+$

This implies the absence of quantum corrections. E.g. no 1-loop corrections to the Chern-Simons terms in D=5. We analyzed this in detail in HGV'24.

No jumps in the d_{ABC} symbols. No gauge symmetry enhancement. Charged hypers (twisted sectors) can become massless at finite radius.

Example 3: N=2 \mathbb{Z}_{12}

In D=4 there can be instant corrections in the STU model.

 $F = i(X^0)^2[STU + h_1(T, U) + h_{np}]$

instanton *e*2*πiS* : NS5 − brane

: Worldsheet instanton *e*2*πiT*

: KK instanton *e*2*πiU*

Sen-Vafa triality: $S \leftrightarrow T \leftrightarrow U$ symmetry (work in progress HGV + Guoen Nian)

Example 4: N=0

• When all mass parameters are switched on, susy is completely broken, spontaneously. An example is

 $m_1 = m_2 = m_3 = m_4 = \pi$

- At string theory level, the \mathbb{Z}_2 orbifold is $(-)^{F(T^4)}$ (similar to type 0B), combined with a shift over the circle. $F(T^4)$
- These N=0 theories are tachyon free above the Planck radius.
- One loop cosmological constant

$$
\Lambda = -\operatorname{Str} \mathcal{M}^8 = -\frac{40320}{R^8} (m_1 m_2 m_3 m_4)^2
$$

Outlook & Future work

- Suprising new results for such an old and well-studied topic.
- Landscape of non-geometric string theories much larger than geometric? (For torus: yes!).
- Study moduli spaces and quantum corrections
- Some new tachyon free (heterotic) string theories (Vafa et al '24,...)
- Study further D-branes in these orbifolds
- Make black holes in string theories with broken susy
- Fate of e.g. the D1-D5 system? $(4,4)$ CFT broken to $(2,4)$, $(0,4)$, $(2,2)$, $(0,2)$ or maybe (0,0)?