

Reviewing Anamolies in BAO: 2D vs 3D BAO

Ruchika INFN, Rome

Corfu Summer Institute

lating School and Wattshaps on Elementary Particle Physics and Grav

Ruchika (INFN, Rome)

2D vs 3D BAO: Hint for new physics?

Outline of the Talk

- Planck 2018 Cosmology using CMB, BAO, Sne Ia
- Tensions in ACDM cosmology
- BAO data suggests the need for introducing Early Dark Energy
- 2D vs 3D BAO data
- DESI BAO Analysis
- Final Take away!

Observations \diamond

Planck results 2018

CPL Parameterisation: $w = w_0 + w_a(1 - a)$

P.Ade et al. A&A, 2018

Ruchika (INFN, Rome)

2D vs 3D BAO: Hint for new physics?

ruchika.ruchika@roma1.infn.it

3

Result of Planck Observations \diamond

Cosmological Constant is **Consistent** with *CMB+Bao+ Snla*

Then, Why beyond Λ ?

Ruchika (INFN, Rome)

2D vs 3D BAO: Hint for new physics?

Tensions in $\land CDM \diamond$

- ♦ Hubble Tension : Riess et al. vs Planck Collaboration
- \diamond S₈ (growth rate) Tension : KiDS, DES, Planck Collaboration
- ♦ Cosmic Dipole Tension : Various Teams including Geraint Lewis team
- \diamond CMB anomalies : Planck Collaboration, SPT and ACT
- ♦ ISW (Integrated Sachs-Wolfe) Tension : Various Teams including A. Kovacs team
- ♦ Lithium Problem : Primodial Nucleosynthesis

э

< ロ > < 同 > < 回 > < 回 > < 回 > <

Tensions in $\land CDM \diamond$

- ♦ Hubble Tension : Riess et al. vs Planck Collaboration
- \diamond S₈ (growth rate) Tension : KiDS, DES, Planck Collaboration
- ♦ Cosmic Dipole Tension : Various Teams including Geraint Lewis team
- \diamond CMB anomalies : Planck Collaboration, SPT and ACT
- ♦ ISW (Integrated Sachs-Wolfe) Tension : Various Teams including A. Kovacs team
- ♦ Lithium Problem : Primodial Nucleosynthesis
- ♦ BAO Anomalies : ...

3

イロト イヨト イヨト ・

Present situation \diamond

> 5 sigma

Standard Objects: CMB Baryon Acoustc Cepheids Oscillations +SN Type Ia

Ruchika (INFN, Rome)

2D vs 3D BAO: Hint for new physics?

What and how BAO adds to the present situation?

Reminder:

 r_d and H_0 provide absolute scales for distance measurements (anchors) at opposite ends of the observable Universe.

Let us ask ourselves these questions.

• Is H_0 tension correlated to any other Cosmological Parameter? \rightarrow Answer is: Yes, Since BAO measures the combination of $r_d H_0$.

- Can we break this degenracy of $r_d H_0$ and how?
 - \rightarrow Answer is: Yes, If we can measure H_0 independently, then one can estimate r_d .

Data Used and Results \diamond

Data used :

BAO from 6dF, MGS, eBOSS, BOSS DR12 including Lyman-alpha forest sample. Time-delay distance measurement through Strong Lensing by H0LiCOW measurements. Angular Diameter Distances for galaxies UGC3789, NGC6264 and NGC5765b. Taking value of $H_0 = 73.24 \pm 1.24$ Km/s/Mpc from Riess et al. (2016)

Results :

Maximum Likelihood values and 1D marginalised 68% confidence interval

	$\Omega_m 0$	r _d	w ₀	Wa
∧ CDM	$\textbf{0.295} \pm \textbf{0.019}$	139.2 ± 3.2	N/A	N/A
wCDM	$\textbf{0.277} \pm \textbf{0.027}$	135.3 ± 3.8	-0.76 ± 0.14	N/A
CPL	0.241 ± 0.084	136.4 ± 3.9	-0.77 ± 0.17	$\textbf{0.44} \pm \textbf{0.53}$

Also, $r_d = 136.41 \pm 3.82$ Mpc confirmed in a cosmology model independent way. Reference: Jarah Evslin, A.A.Sen, **Ruchika**, Phys. Rev. D 97,103511(2018) Reference: Salvatore Capozziello, **Ruchika**, A.A. Sen, MNRAS 484 (2019) 4484 $\langle z \rangle \langle z \rangle \langle z \rangle \langle z \rangle$

Ruchika (INFN, Rome)

2D vs 3D BAO: Hint for new physics?

 $r_d = 147.26 \pm 0.29 Mpc$ (Planck)

- ΛCDM : 2.52 σ away from Planck
- wCDM : 3.14 σ away from Planck
- CPL : 2.79 σ away from Planck

So, our results are quite model independent. So, The Price of shift in Hubble constant is the shift in r_d .

Planck

Local Measurements

H_0 67.37 \pm 0.54 Km/sec/Mpc \Rightarrow 73.24 \pm 1.24 Km/s/M pc.

Ruchika (INFN, Rome)

2D vs 3D BAO: Hint for new physics?

ruchika.ruchika@roma1.infn.it

э

イロト 不得下 イヨト イヨト

Planck Local Measurements

 H_0 67.37 \pm 0.54 Km/sec/Mpc \Rightarrow 73.24 \pm 1.24 Km/s/M pc.

 $r_d = 147.26 \pm 0.29 Mpc$ $\Leftarrow = 139.2 \pm 3.2 Mpc$

• To find Early Universe solutions to Hubble Tension or to increase H_0 at high redshift, we need to decrease r_d around recombination.

Ruchika (INFN, Rome)

2D vs 3D BAO: Hint for new physics?

ruchika.ruchika@roma1.infn.it

э

- 4 回 ト 4 ヨ ト 4 ヨ ト

Interpretation \diamond

$$r_d = \int_0^{t(zd)} c_s(1+z) dt$$

Physics: sound waves in early Universe propagate until radiation and matter decouple.

Lower r_d as compared to Planck suggets:

changing z_d
 modifying the speed of sound
 changing primodial fluctuations
 changing the age of universe at drag epoch

Credit: Blake & Moorfield

Interpretation \diamond

$$r_d = \int_0^{t(zd)} c_s(1+z) dt$$

Physics: sound waves in early Universe propagate until radiation and matter decouple.

Lower r_d as compared to Planck suggets:

 \diamond changing z_d

- ◊ modifying the speed of sound
- changing primodial fluctuations
- changing the age of universe at drag epoch

$$r_d = \int_{z\star}^{\infty} dz \frac{c_s(z)}{H(z)}$$

Credit: Blake & Moorfield

Conclusion \diamond

- ◊ Along with Hubble Tension, there is a similar tension involving sound horizon at drag epoch from low-redshift and Planck measurements.
- \diamond It does not depend on dark energy behaviour.
- \diamond Since r_d is governed by early universe physics, to reduce r_d or to increase H_0 around recombination, One needs to modify the early universe cosmology.
- ♦ Solution : Early Dark Energy was proposed.

(人間) とうきょうきょう

Similar studies

Same is also seen by Bernal, Verde, Riess, JCAP 2016

ruchika.ruchika@roma1.infn.it

- 4 回 ト - 4 三 ト

Similar studies \diamond

Knox et al. 2019

< (THE >

Late Universe suggests : Price of shift in H0 is the shift in rd Increase in H0 require decreased rd

Ruchika (INFN, Rome)

2D vs 3D BAO: Hint for new physics?

Reviewing anomalies in 2D and 3D BAO Datasets Including DESI Release

(Trouble with Standard Cosmological Model?)

Arxiv: 2406.05453 Ruchika

Ruchika (INFN, Rome)

2D vs 3D BAO: Hint for new physics?

Data and Observables \diamond

Observables Used

- Luminosity Distance measured $M = m - 5 \log_{10} \frac{D_L}{10 \text{ pc}}$
- Angular Diameter Distance & Volumetric Distance inferred $D_L = (1 + z)^2 D_A \cdot D_H \otimes D_M(z).$ $D_V(z) = [(1 + z)^2 D_A^2(z) z D_H]^{1/3}.$
- 2D BAO measurements from angular separation of pairs of galaxies measured

 $\theta_{BAO}(z)[^{\circ}]$

Data Used

Supernoave Type-la

Pantheon Plus Sample which comprises 1701 SNe data points ranging in the redshift interval $0.01 \le z \le 2.3$

 3D BAO data including DESI Anisotropic: BOSS DR12 Isotropic: 6dF, MGS, eBOSS

2D BAO data / Thin redshift slice

 $11\,\theta$ _BAO (z) measurements obtained from public data of the Sloan Digital Sky Survey (SDSS), namely DR10, DR11, and DR12

・ 何 ト ・ ヨ ト ・ ヨ ト

Where is the fiducial cosmology incorporated? \diamond

Measured Quantities Data Used Flux/Apparent Magnitude measured Supernoave Type-Ia MB used from both high and low redshift $M = m - 5 \log_{10} \frac{D_L}{10 \, \mathrm{pc}}$ experiments. Ratio of Distances/ rd measured 3D BAO data $\alpha_{\perp} = \frac{D_M(z)r_{d,fid}}{D_{id}^{fid}(z)r_d}; \quad \alpha_{\parallel} = \frac{H^{fid}(z)r_{d,fid}}{H(z)r_d}$ Measures shift from fiducial cosmology parameters. Theta measurements measured 2D BAO data / Thin redshift slice Model Used: $\theta_{BAO}(z)[^{\circ}]$ Utilises fiducial cosmology to extract true $= \frac{r_d}{(1+z)D_A(z)} \qquad \qquad \frac{H^2(z)}{H_0^2} = \Omega_{m0}(1+z)^3 + (1-\Omega_{m0}),$ bump theta.

Ruchika (INFN, Rome)

2D vs 3D BAO: Hint for new physics?

2D vs 3D BAO: Hint for new physics?

Results in comparison with DESI \diamond

* Left: (w0,wa : -1.0,0) is at the two sigma boundary for BAO+CMB+Pantheon Plus sample.

* **Right:** r_d obtained from 2D BAO is compatible with Planck r_d (higher value) and higher H₀. It is an artifact solely due to the relatively higher product H₀ r_d measured by 2D BAO than 3D.

2D vs 3D BAO: Hint for new physics?

< ロ > < 同 > < 回 > < 回 >

Concluding: What not to conclude? \diamond

Reminder: 2D BAO measures higher H₀r_{d.}

Result:

 $r_{\rm d}$ obtained from 2D BAO is compatible with Planck $r_{\rm d}$ (higher value) and higher $H_{\rm o}$

Conclusion:

A D N A B N A B N A B N

That is why, we should be very careful when we propose new cosmological models to solve cosmological tension such as Hubble tension while using 2D BAO Dataset.

э

Final Take-away \diamond

- \bullet 2D BAO measures $H_0 r_d$ higher than 3D BAO and DESI analyses under standard ΛCDM cosmology
- Using 2D BAO, a higher H_0 compatible with SH0ES and a higher sound horizon r_d (compatible with Planck) can be achieved even within Λ CDM framework
- Caution must be taken while concluding about cosmological tensions specially while using 2D BAO dataset.
- Interpreting $\Omega_{m0} hr_d$ plane may require physics beyond ACDM not just while using observational BAO data but also while observing and interpreting it.

э

イロト イヨト イヨト ・

Future Directions! \diamond

- Analysing 2D and 3D measurements from upcoming surveys such as DESI, Euclid, J-PAS may provide a better picture.
- One can benefit from less model dependent approaches (fiducical comology away from ACDM) while taking observations of BAO datasets.

THANK YOU!

Ruchika (INFN, Rome)

2D vs 3D BAO: Hint for new physics?

ruchika.ruchika@roma1.infn.it

ж

イロト イヨト イヨト イヨト

Ruchika (INFN, Rome)

2D vs 3D BAO: Hint for new physics?

ruchika.ruchika@roma1.infn.it

< 行

ruchika.ruchika@roma1.infn.it

э

イロト イボト イヨト イヨト