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Introduction

Introduction

Carroll field theory = ultralocal (c→ 0) limit of relativistic field theory. Invariant under
Carroll algebra = c→ 0 contraction of Poincaré algebra. (Lévy-Leblond, Gupta)

Relevant for e.g.:
• Flat space/celestial holography (Duval, Gibbons, Horvathy; Bagchi, Grumiller et al.; Ciambelli, Marteau,

Petkou, Petropoulos, Siampos; Donnay, Fiorucci, Herfray, Ruzziconi;...)

• Physics on null hypersurfaces, black hole horizon (Donnay, Marteau; Bagchi, Banerjee, Hartong,

Have, Kolekar, Mandlik)

• Tensionless limit of strings (Bagchi et al.), new decoupling limits of string theory (Bidussi,

Harmark, Hartong, Obers, Oling; Blair, Lahnsteiner, Obers, Yan)

• Dark energy and inflation (de Boer, Hartong, Obers, Sybesma, Vandoren), fluid dynamics (de Boer,

Hartong, Obers, Sybesma, Vandoren), ...

This talk: Carroll gravity. At two-∂ level, usually studied by carefully defining c→ 0
limit of General Relativity. (Henneaux; Dautcourt; Bergshoeff, Gomis, Rollier, JR, ter Veldhuis; Campoleoni,

Henneaux, Pekar, Perez, Salgado-Rebolledo)

Can be subtle. More complete understanding and generalizations require intrinsic
constructions.

Here: conformal approach.
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Einstein gravity from the conformal approach

Einstein gravity from the conformal approach

Einstein gravity is not invariant under local dilatations. Can be reintroduced using a
compensating scalar φ:

Eµ
Â → φ1/wEµ

Â .

Invariant under

δφ = wΛD(x)φ , δEµ
Â = −ΛD(x)Eµ

Â .

This replacement gives the Lagrangian of a conformally coupled scalar:

ER → E

(
(D − 1)(D − 2)

w2
∂Âφ∂

Âφ+Rφ2

)
.

φ = 1 dilatation gauge fixing gives Einstein-Hilbert.

Strategy: use this to construct gravity theories by reversing the logic.

1 Construct action of conformally coupled scalar intrinsically, by coupling φ to
appropriate gauge fields of the conformal algebra.

2 Retrieve gravity by gauge-fixing superfluous conformal symmetries.

Jan Rosseel, Ruder Bošković Institute Carroll gravity from the conformal approach 04-09-2024 4 / 14



Einstein gravity from the conformal approach

Einstein gravity from the conformal approach

Step 1: obtain “minimal” representation of gauge fields of relativistic conformal algebra.

Introduce gauge fields of relativistic conformal algebra

PÂ → Eµ
Â , MÂB̂ → Ωµ

ÂB̂ , KÂ → Fµ
Â , D → Bµ ,

with corresponding field strengths Rµν(P Â), Rµν(M ÂB̂), Rµν(KÂ), Rµν(D).

“Reducible” representation, realized by too many independent gauge fields.
To get a minimal representation, impose so-called conventional constraints:

Rµν(P Â) ≡ 2 ∂[µEν]
Â + 2 Ω[µ

ÂB̂ Eν]B̂ + 2B[µ Eν]
Â = 0 ,

EB̂
νRµν(M ÂB̂) ≡ EB̂

ν
(

2 ∂[µΩν]
ÂB̂ + 2 Ω[µ

[Â
|Ĉ| Ων]

|Ĉ|B̂] + 8F[µ
[Â Eν]

B̂]
)

= 0 .

Allows to solve Ωµ
ÂB̂ and FµÂ in terms of EµÂ and Bµ. E.g.:

Ωµ
ÂB̂(E,B) = Ωµ

ÂB̂(E) + 2Eµ
[ÂEB̂]νBν , FÂ

Â = −
1

4(D − 1)
R′
ÂB̂

(M ÂB̂) .

where Ωµ
ÂB̂(E) is the usual Levi-Civita spin-connection and

R′µν(M ÂB̂) = 2 ∂[µΩν]
ÂB̂(E,B) + 2 Ω[µ

[Â
|Ĉ|(E,B) Ων]

|Ĉ|B̂](E,B) .
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Einstein gravity from the conformal approach

Einstein gravity from the conformal approach

Step 2: Construct action of a conformally coupled compensating scalar field φ with
dilatation weight w

δφ = wΛD φ ⇒ DÂφ ≡ EÂ
µ (∂µ − wBµ)φ .

Under KÂ, BÂ transforms with a shift:

δBÂ = 2 ΛKÂ ⇒ δDÂφ = −2wΛKÂφ .

The proper definition of a covariant conformal box operator on φ is then

2Cφ ≡ EÂµ
[
∂µ
(
DÂφ

)
+ ΩµÂ

B̂(E,B)DB̂φ− (w + 1)BµDÂφ+ 2wFµ
Â(E,B)φ

]
For w = (D − 2)/2, the following action is conformally invariant:

Lconf = −
1

2
E φ2Cφ ,

Bµ does not appear!
⇒ Lconf describes the conformally coupled scalar and is thus gauge-equivalent to
Einstein-Hilbert.
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Carroll gravity

Carroll gravity

Carroll gravity = c→ 0 limit of General Relativity. Taken by reintroducing c as

Â → {0, A = 1, · · · , D − 1}

Eµ
0 = c τµ , Eµ

A = eµ
A , E0

µ = c−1τµ , EA
µ = eA

µ .

Redefining also the local Lorentz transformation parameters ΛÂB̂ as

Λ0A = c λ0A , ΛAB = λAB ,

one finds

δEµ
Â = −ΛÂB̂Eµ

B̂ c→0
===⇒

{
δτµ = −λ0AeµA ,

δeµA = −λABeµB
.

τµ, eµA are Vielbeine for a Carrollian geometry. Give along with their dual “inverse”
Vielbeine τµ, eAµ a degenerate Carroll metric structure

τµν = τµτν , hµν ≡ eµAδABeνB .

τµ, eAµ used to turn curved into flat indices:

X0 ≡ τµXµ , XA ≡ eAµXµ , X0A ≡ τµeAνXµν , XAB ≡ eAµeBνXµν .
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Carroll gravity

Carroll gravity

Einstein-Hilbert action can be expanded as (e = det(τµ, eµ
a))

LEH = c−2 L(0) + L(1) + c2L(2) +O(c4) .

c→ 0 limit can then be taken in two ways.

First way: retain leading order term L(0) = “electric Carroll gravity”:

Lel = L(0) ∝ e
(
T ′0(A,B)T

′
0
(A,B) − T ′0A

AT ′0B
B
)
,

with “intrinsic torsion” T ′0(A,B) ≡ 2τµe(A
ν∂[µeν]B).

Second way: first rewrite the expansion of LEH in the classically equivalent form

LEH ∼ L(0) + e
(
λABT ′0(AB) − λT

′
0A
A
)

+ c2
(
L(2) −

1

4
eλABλAB +

1

4
eλ2

)
+O(c4) .

Retaining the leading order term gives “magnetic Carroll gravity”:

Lmagn ∝ L(0) + e
(
λABT ′0(AB) − λT

′
0A
A
)
.

λAB , λ are Lagrange multipliers for geometric constraints.
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Carroll gravity from the conformal approach

Carroll gravity from the conformal approach

Can the two Carroll gravity theories be obtained via a conformal approach?

Starting point: conformal Carroll algebra = c→ 0 contraction of relativistic conformal
algebra (A = 1, · · · , D − 1)

H → τµ , PA → eµ
A , JAB → ωµ

AB , J0A → ωµ
0A ,

K → fµ , KA → gµ
A , D → bµ ,

Field strengths: Rµν(H), Rµν(PA), Rµν(JAB), Rµν(J0A), Rµν(KA), Rµν(K), Rµν(D).

Reducible representation. Impose conventional constraints:

Rµν(H) = RBC(PA) = RµB(JAB) = RµA(J0A) = 0 .

Can be used to express

ωµ
AB , ω0

0A , ω[A|,0|B] , b0 , gµ
A , fµ ,

in terms of the remaining independent gauge fields τµ, eµA, bA and ω(A|,0|B).
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Carroll gravity from the conformal approach

Carroll gravity from the conformal approach

There exist two kinds of free massless Carroll scalars. Start from the Lagrangian of a
massless relativistic scalar in Hamiltonian form:

L = ΠΦ∂tΦ−
c2

2
Π2

Φ −
1

2
∂AΦ∂AΦ .

c→ 0 limit can be taken in two ways.

First way: rescale

ΠΦ = c−1 π , Φ = c φ ,

and then take c→ 0. This gives an electric Carroll scalar:

L = π∂tφ−
1

2
π2 ⇔ L =

1

2
∂tφ∂tφ .

Second way: rename

ΠΦ = π , Φ = φ ,

and then take c→ 0. This gives a magnetic Carroll scalar:

L = π∂tφ−
1

2
∂Aφ∂Aφ .
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Carroll gravity from the conformal approach

Carroll gravity from the conformal approach

First case: construct conformally invariant generalization of electric Carroll scalar

L = −
1

2
φ∂t∂tφ .

Take φ with dilatation weight w. The correct generalizations of ∂tφ and ∂t∂tφ and L are

D0φ ≡ τµ (∂µ − wbµ)φ , D0D0φ ≡ τµ [∂µ (D0φ)− (w + 1)bµD0φ] ,

L = −
1

2
eφD0D0φ .

Only dilatations act non-trivially. Conformally invariant for w = (D − 2)/2.

Gauge-fixing dilatations by setting φ = 1 gives ‘electric Carroll gravity’:

L =
w2

2
eb20 =

w2

2(D − 1)2
eT ′0A

AT ′0B
B with T ′0A

A = 2τµeA
ν∂[µeν]

A .

Not the most general electric Carroll gravity possible. Other possibility:

L′ ∝ eT ′0{A,B}T ′0{A,B} with T ′0{A,B} = 2τµe{A
ν∂[µeν]B} .

Not reproduced from a dynamic scalar Lagrangian, since it transforms homogeneously
under dilatations.
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Carroll gravity from the conformal approach

Carroll gravity from the conformal approach

Second case: construct conformally invariant generalization of electric Carroll scalar

L = π∂tφ−
1

2
∂Aφ∂Aφ .

First attempt to make this conformally invariant: assume φ has dilatation weight w and
generalize L to

L0 = πD0φ−
1

2
DAφDAφ ,

with D0φ = τµ (∂µ − wbµ)φ , DAφ = eA
µ (∂µ − wbµ)φ .

Invariant under dilatations and boosts for w = (D − 2)/2 and

δπ = λ0ADAφ+
1

2
DλDπ .

Not invariant under KA however:

δL0 = 2weλK
AφDAφ .
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Carroll gravity from the conformal approach

Carroll gravity from the conformal approach

This can be cancelled by adding a boost invariant combination of gAAφ2 and f0φ
2:

L = πD0φ−
1

2
DAφDAφ+ wegA

Aφ2 + wef0φ
2 .

Invariance under K requires assigning a K-transformation to π:

δKπ = (D − 2)λKφ .

Fix dilatations, KA and K transformations by:

φ = 1 , bA = 0 , π = 0 ,

Lfixed = we
(
gA

A + f0

)
.

gA
A + f0 depends on τµ, eµa, but also the independent spin connection components

ω(A|,0|B). Can be identified with Lagrange multipliers for the constraint

T ′0(A,B) ≡ 2τµe(A
ν∂[µeν]B) = 0 .

Lfixed then agrees with magnetic Carroll gravity Lagrangian.
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Conclusions

Conclusions

Carroll gravity comes in 2 guises: electric and magnetic. Both can be constructed from
the conformal approach.

Starts from a single conformal Carroll algebra, but two different “electric” and
“magnetic” massless compensating scalar field theories.

Difference with relativistic conformal approach: some invariants involving intrinsic
torsion can not be reproduced by coupling to dynamic matter.

Extra difference with relativistic conformal approach: extra independent spin connection
components. Match with Lagrange multipliers in magnetic Carroll gravity.

Outlook:
• Including matter couplings.
• Carroll supergravity.
• Aristotelian gravity, coupled to fracton matter?
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