Carroll gravity from the conformal approach "Quantum Gravity, String Theory and the Swampland" workshop, Corfu

Jan Rosseel, Ruđer Bošković Institute Based on work with E. Bergshoeff, P. Concha, O. Fierro, E. Rodriguez.

04-09-2024

イロト イポト イヨト イヨト

Introduction

Introduction

- Carroll field theory = ultralocal $(c \rightarrow 0)$ limit of relativistic field theory. Invariant under Carroll algebra = $c \rightarrow 0$ contraction of Poincaré algebra. (Lévy-Leblond, Gupta)
- Relevant for e.g.:
 - Flat space/celestial holography (Duval, Gibbons, Horvathy; Bagchi, Grumiller et al.; Ciambelli, Marteau, Petkou, Petropoulos, Siampos; Donnay, Fiorucci, Herfray, Ruzziconi;...)
 - Physics on null hypersurfaces, black hole horizon (Donnay, Marteau; Bagchi, Banerjee, Hartong, Have, Kolekar, Mandlik)
 - Tensionless limit of strings (Bagchi et al.), new decoupling limits of string theory (Bidussi, Harmark, Hartong, Obers, Oling; Blair, Lahnsteiner, Obers, Yan)
 - Dark energy and inflation (de Boer, Hartong, Obers, Sybesma, Vandoren), fluid dynamics (de Boer, Hartong, Obers, Sybesma, Vandoren), ...
- This talk: Carroll gravity. At two- ∂ level, usually studied by carefully defining $c \rightarrow 0$ limit of General Relativity. (Henneaux; Dautcourt; Bergshoeff, Gomis, Rollier, JR, ter Veldhuis; Campoleoni, Henneaux, Pekar, Perez, Salgado-Rebolledo)
- Can be subtle. More complete understanding and generalizations require intrinsic constructions.
- Here: conformal approach.

ヘロト 人間 ト 人 ヨ ト 人 ヨ ト

Outline

- Einstein gravity from the conformal approach
- Carroll gravity from the $c \rightarrow 0$ limit of General Relativity
- Carroll gravity from the conformal approach
- Conclusions

ヘロト ヘアト ヘビト ヘビト

Einstein gravity from the conformal approach

Einstein gravity is not invariant under local dilatations. Can be reintroduced using a compensating scalar φ:

$$E_{\mu}{}^{\hat{A}} \to \phi^{1/w} E_{\mu}{}^{\hat{A}}$$

Invariant under

$$\delta \phi = w \Lambda_D(x) \phi$$
, $\delta E_\mu{}^{\hat{A}} = -\Lambda_D(x) E_\mu{}^{\hat{A}}$.

• This replacement gives the Lagrangian of a conformally coupled scalar:

$$ER \longrightarrow E\left(\frac{(D-1)(D-2)}{w^2}\partial_{\hat{A}}\phi\partial^{\hat{A}}\phi + R\phi^2\right).$$

 $\phi = 1$ dilatation gauge fixing gives Einstein-Hilbert.

- Strategy: use this to construct gravity theories by reversing the logic.
 - Construct action of conformally coupled scalar intrinsically, by coupling ϕ to appropriate gauge fields of the conformal algebra.
 - **②** Retrieve gravity by gauge-fixing superfluous conformal symmetries.

イロン イボン イヨン イヨン

Einstein gravity from the conformal approach

- Step 1: obtain "minimal" representation of gauge fields of relativistic conformal algebra.
- Introduce gauge fields of relativistic conformal algebra

$$\begin{split} P_{\hat{A}} \ \to \ E_{\mu}{}^{\hat{A}} \ , \qquad M_{\hat{A}\hat{B}} \ \to \ \Omega_{\mu}{}^{\hat{A}\hat{B}} \ , \qquad K_{\hat{A}} \ \to \ F_{\mu}{}^{\hat{A}} \ , \qquad D \ \to \ B_{\mu} \ , \end{split}$$
 with corresponding field strengths $R_{\mu\nu}(P^{\hat{A}}), \ R_{\mu\nu}(M^{\hat{A}\hat{B}}), \ R_{\mu\nu}(K^{\hat{A}}), \ R_{\mu\nu}(D).$

• "Reducible" representation, realized by too many *independent* gauge fields. To get a minimal representation, impose so-called conventional constraints:

$$\begin{split} R_{\mu\nu}(P^{\hat{A}}) &\equiv 2 \,\partial_{[\mu} E_{\nu]}{}^{\hat{A}} + 2 \,\Omega_{[\mu}{}^{\hat{A}\hat{B}} \,E_{\nu]\hat{B}} + 2 \,B_{[\mu} \,E_{\nu]}{}^{\hat{A}} = 0 \,, \\ E_{\hat{B}}{}^{\nu} R_{\mu\nu}(M^{\hat{A}\hat{B}}) &\equiv E_{\hat{B}}{}^{\nu} \left(2 \,\partial_{[\mu} \Omega_{\nu]}{}^{\hat{A}\hat{B}} + 2 \,\Omega_{[\mu}{}^{[\hat{A}}{}_{|\hat{C}|} \,\Omega_{\nu]}{}^{|\hat{C}|\hat{B}]} + 8 \,F_{[\mu}{}^{[\hat{A}} \,E_{\nu]}{}^{\hat{B}]} \right) = 0 \,. \\ \text{llows to solve } \Omega_{\mu}{}^{\hat{A}\hat{B}} \text{ and } F_{\mu}{}^{\hat{A}} \text{ in terms of } E_{\mu}{}^{\hat{A}} \text{ and } B_{\mu}. \text{ E.g.:} \end{split}$$

$$\Omega_{\mu}{}^{\hat{A}\hat{B}}(E,B) = \Omega_{\mu}{}^{\hat{A}\hat{B}}(E) + 2 E_{\mu}{}^{[\hat{A}}E^{\hat{B}]\nu}B_{\nu}, \qquad F_{\hat{A}}{}^{\hat{A}} = -\frac{1}{4(D-1)}R'_{\hat{A}\hat{B}}(M^{\hat{A}\hat{B}}).$$

where $\Omega_{\mu}{}^{\hat{A}\hat{B}}(E)$ is the usual Levi-Civita spin-connection and

$$R'_{\mu\nu}(M^{\hat{A}\hat{B}}) = 2\,\partial_{[\mu}\Omega_{\nu]}{}^{\hat{A}\hat{B}}(E,B) + 2\,\Omega_{[\mu}{}^{[\hat{A}}{}_{|\hat{C}|}(E,B)\,\Omega_{\nu}]{}^{[\hat{C}|\hat{B}]}(E,B)\,.$$

Jan Rosseel, Ruđer Bošković Institute

А

Einstein gravity from the conformal approach

• Step 2: Construct action of a conformally coupled compensating scalar field ϕ with dilatation weight w

$$\delta\phi = w \Lambda_D \phi \qquad \Rightarrow \qquad D_{\hat{A}} \phi \equiv E_{\hat{A}}^{\ \mu} \left(\partial_\mu - w B_\mu\right) \phi \,.$$

• Under $K_{\hat{A}}$, $B_{\hat{A}}$ transforms with a shift:

$$\delta B_{\hat{A}} = 2\,\Lambda_{K\hat{A}} \qquad \Rightarrow \qquad \delta D_{\hat{A}}\phi = -2w\,\Lambda_{K\hat{A}}\phi\,.$$

The proper definition of a covariant conformal box operator on ϕ is then

$$\Box^{C}\phi \equiv E^{\hat{A}\mu} \left[\partial_{\mu} \left(D_{\hat{A}}\phi \right) + \Omega_{\mu\hat{A}}{}^{\hat{B}}(E,B) \, D_{\hat{B}}\phi - (w+1) \, B_{\mu} \, D_{\hat{A}}\phi + 2 \, w \, F_{\mu}{}^{\hat{A}}(E,B) \, \phi \right]$$

• For w = (D-2)/2, the following action is conformally invariant:

$$\mathcal{L}_{\rm conf} = -\frac{1}{2} E \phi \,\Box^C \phi \,,$$

 B_{μ} does not appear!

 $\Rightarrow \mathcal{L}_{conf} \text{ describes the conformally coupled scalar and is thus gauge-equivalent to}$ Einstein-Hilbert.

Jan Rosseel, Ruđer Bošković Institute

04-09-2024 6/14

Carroll gravity

Carroll gravity

• Carroll gravity = $c \rightarrow 0$ limit of General Relativity. Taken by reintroducing c as

$$\hat{A} \to \{0, A = 1, \cdots, D - 1\}$$

 $E_{\mu}{}^{0} = c \tau_{\mu}, \qquad E_{\mu}{}^{A} = e_{\mu}{}^{A}, \qquad E_{0}{}^{\mu} = c^{-1} \tau^{\mu}, \qquad E_{A}{}^{\mu} = e_{A}{}^{\mu}$

Redefining also the local Lorentz transformation parameters $\Lambda^{\hat{A}\hat{B}}$ as

$$\Lambda^{0A} = c\,\lambda^{0A}\,, \qquad \qquad \Lambda^{AB} = \lambda^{AB}\,,$$

one finds

$$\delta E_{\mu}{}^{\hat{A}} = -\Lambda^{\hat{A}}{}_{\hat{B}}E_{\mu}{}^{\hat{B}} \qquad \xrightarrow{c \to 0} \qquad \begin{cases} \delta \tau_{\mu} = -\lambda^{0A}e_{\mu A} \,, \\ \delta e_{\mu}{}^{A} = -\lambda^{A}{}_{B}e_{\mu}{}^{B} \end{cases}$$

• τ_{μ} , e_{μ}^{A} are Vielbeine for a Carrollian geometry. Give along with their dual "inverse" Vielbeine τ^{μ} , e_{A}^{μ} a degenerate Carroll metric structure

$$\tau^{\mu\nu} = \tau^{\mu}\tau^{\nu} , \qquad \qquad h_{\mu\nu} \equiv e_{\mu}{}^{A}\delta_{AB}e_{\nu}{}^{B} .$$

 τ^{μ} , $e_{A}{}^{\mu}$ used to turn curved into flat indices:

$$X_0 \equiv \tau^{\mu} X_{\mu} , \qquad X_A \equiv e_A{}^{\mu} X_{\mu} , \qquad X_{0A} \equiv \tau^{\mu} e_A{}^{\nu} X_{\mu\nu} , \qquad X_{AB} \equiv e_A{}^{\mu} e_B{}^{\nu} X_{\mu\nu} .$$

イロン イボン イヨン イヨン

Carroll gravity

Carroll gravity

• Einstein-Hilbert action can be expanded as $(e = \det(\tau_{\mu}, e_{\mu}{}^{a}))$

$$\mathcal{L}_{\rm EH} = c^{-2} \, \mathcal{L}^{(0)} + \mathcal{L}^{(1)} + c^2 \mathcal{L}^{(2)} + \mathcal{O}(c^4) \,.$$

 $c \rightarrow 0$ limit can then be taken in two ways.

• First way: retain leading order term $\mathcal{L}^{(0)}$ = "electric Carroll gravity":

$$\mathcal{L}_{\rm el} = \mathcal{L}^{(0)} \propto e \left(T'_{0(A,B)} T'_0{}^{(A,B)} - T'_{0A}{}^A T'_{0B}{}^B \right) \,,$$

with "intrinsic torsion" $T'_{0(A,B)} \equiv 2\tau^{\mu} e_{(A}{}^{\nu} \partial_{[\mu} e_{\nu]B)}$.

• Second way: first rewrite the expansion of $\mathcal{L}_{\rm EH}$ in the classically equivalent form

$$\mathcal{L}_{\rm EH} \sim \mathcal{L}^{(0)} + e\left(\lambda^{AB} T'_{0(AB)} - \lambda T'_{0A}{}^{A}\right) + c^2 \left(\mathcal{L}^{(2)} - \frac{1}{4}e\lambda^{AB}\lambda_{AB} + \frac{1}{4}e\lambda^2\right) + \mathcal{O}(c^4) \,.$$

Retaining the leading order term gives "magnetic Carroll gravity":

$$\mathcal{L}_{\mathrm{magn}} \propto \mathcal{L}^{(0)} + e \left(\lambda^{AB} T_{0(AB)}' - \lambda T_{0A}'^{A} \right) \,. \label{eq:lagrange}$$

 λ^{AB} , λ are Lagrange multipliers for geometric constraints.

- Can the two Carroll gravity theories be obtained via a conformal approach?
- Starting point: conformal Carroll algebra = $c \to 0$ contraction of relativistic conformal algebra ($A = 1, \dots, D-1$)

$$\begin{split} H &\to \tau_{\mu} \,, \qquad P_A \to e_{\mu}{}^A \,, \qquad J_{AB} \to \omega_{\mu}{}^{AB} \,, \qquad J_{0A} \to \omega_{\mu}{}^{0A} \,, \\ K \to f_{\mu} \,, \qquad K_A \to g_{\mu}{}^A \,, \qquad D \to b_{\mu} \,, \end{split}$$

Field strengths: $R_{\mu\nu}(H)$, $R_{\mu\nu}(P_A)$, $R_{\mu\nu}(J_{AB})$, $R_{\mu\nu}(J_{0A})$, $R_{\mu\nu}(K_A)$, $R_{\mu\nu}(K)$, $R_{\mu\nu}(D)$.

• Reducible representation. Impose conventional constraints:

$$R_{\mu\nu}(H) = R_{BC}(P^A) = R_{\mu B}(J^{AB}) = R_{\mu A}(J^{0A}) = 0.$$

Can be used to express

$$\omega_{\mu}{}^{AB}\,,\qquad \omega_{0}{}^{0A}\,,\qquad \omega^{[A|,0|B]}\,,\qquad b_{0}\,,\qquad g_{\mu}{}^{A}\,,\qquad f_{\mu}\,,$$

in terms of the remaining independent gauge fields τ_{μ} , $e_{\mu}{}^{A}$, b_{A} and $\omega^{(A|,0|B)}$.

Jan Rosseel, Ruđer Bošković Institute

イロト 不得 トイヨト イヨト

• There exist two kinds of free massless Carroll scalars. Start from the Lagrangian of a massless relativistic scalar in Hamiltonian form:

$$\mathcal{L} = \Pi_{\Phi} \partial_t \Phi - \frac{c^2}{2} \Pi_{\Phi}^2 - \frac{1}{2} \partial^A \Phi \partial_A \Phi \,.$$

 $c \rightarrow 0$ limit can be taken in two ways.

• First way: rescale

$$\Pi_{\Phi} = c^{-1} \pi \,, \qquad \Phi = c \,\phi \,,$$

and then take $c \rightarrow 0$. This gives an electric Carroll scalar:

$$\mathcal{L} = \pi \partial_t \phi - \frac{1}{2} \pi^2 \qquad \Leftrightarrow \qquad \mathcal{L} = \frac{1}{2} \partial_t \phi \partial_t \phi \,.$$

Second way: rename

$$\Pi_{\Phi} = \pi \,, \qquad \Phi = \phi \,,$$

and then take $c \rightarrow 0$. This gives a magnetic Carroll scalar:

$$\mathcal{L} = \pi \partial_t \phi - \frac{1}{2} \partial^A \phi \partial_A \phi \,.$$

Jan Rosseel, Ruđer Bošković Institute

Carroll gravity from the conformal approach

04-09-2024 10/14

• First case: construct conformally invariant generalization of electric Carroll scalar

$$\mathcal{L} = -\frac{1}{2}\phi \partial_t \partial_t \phi$$
.

• Take ϕ with dilatation weight w. The correct generalizations of $\partial_t \phi$ and $\partial_t \partial_t \phi$ and \mathcal{L} are

$$D_0\phi \equiv \tau^{\mu} \left(\partial_{\mu} - wb_{\mu}\right)\phi, \qquad D_0D_0\phi \equiv \tau^{\mu} \left[\partial_{\mu} \left(D_0\phi\right) - (w+1)b_{\mu}D_0\phi\right],$$
$$\mathcal{L} = -\frac{1}{2}e\phi D_0D_0\phi.$$

Only dilatations act non-trivially. Conformally invariant for w = (D - 2)/2.

• Gauge-fixing dilatations by setting $\phi = 1$ gives 'electric Carroll gravity':

$$\mathcal{L} = \frac{w^2}{2} e b_0^2 = \frac{w^2}{2(D-1)^2} e T_{0A}^{\prime A} T_{0B}^{\prime B} \qquad \text{with } T_{0A}^{\prime A} = 2\tau^{\mu} e_A{}^{\nu} \partial_{[\mu} e_{\nu]}{}^A \,.$$

• Not the most general electric Carroll gravity possible. Other possibility:

$$\mathcal{L}' \propto e T_0^{\prime \{A,B\}} T_{0\{A,B\}}' \qquad \text{with } T_{0\{A,B\}}' = 2\tau^{\mu} e_{\{A}{}^{\nu} \partial_{[\mu} e_{\nu]B\}} \,.$$

Not reproduced from a dynamic scalar Lagrangian, since it transforms homogeneously under dilatations.

Jan Rosseel, Ruđer Bošković Institute

• Second case: construct conformally invariant generalization of electric Carroll scalar

$$\mathcal{L} = \pi \partial_t \phi - \frac{1}{2} \partial^A \phi \partial_A \phi \,.$$

• First attempt to make this conformally invariant: assume ϕ has dilatation weight w and generalize \mathcal{L} to

$$\mathcal{L}_{0} = \pi D_{0}\phi - \frac{1}{2}D^{A}\phi D_{A}\phi ,$$
with $D_{0}\phi = \tau^{\mu} \left(\partial_{\mu} - wb_{\mu}\right)\phi , \qquad D_{A}\phi = e_{A}^{\mu} \left(\partial_{\mu} - wb_{\mu}\right)\phi .$

Invariant under dilatations and boosts for w = (D-2)/2 and

$$\delta \pi = \lambda^{0A} D_A \phi + \frac{1}{2} D \lambda_D \pi \,.$$

• Not invariant under K_A however:

$$\delta \mathcal{L}_0 = 2we\lambda_K{}^A\phi D_A\phi.$$

Jan Rosseel, Ruđer Bošković Institute

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

• This can be cancelled by adding a boost invariant combination of $g_A{}^A\phi^2$ and $f_0\phi^2$:

$$\mathcal{L} = \pi D_0 \phi - \frac{1}{2} D^A \phi D_A \phi + w e g_A{}^A \phi^2 + w e f_0 \phi^2 \,.$$

Invariance under K requires assigning a K-transformation to π :

$$\delta_K \pi = (D-2)\lambda_K \phi \,.$$

• Fix dilatations, K_A and K transformations by:

$$egin{aligned} \phi = 1 \,, & b_A = 0 \,, & \pi = 0 \,, \ & \mathcal{L}_{ ext{fixed}} = we \left(g_A{}^A + f_0
ight) \,. \end{aligned}$$

• $g_A^A + f_0$ depends on τ_{μ} , e_{μ}^a , but also the independent spin connection components $\omega^{(A|,0|B)}$. Can be identified with Lagrange multipliers for the constraint

$$T'_{0(A,B)} \equiv 2\tau^{\mu} e_{(A}{}^{\nu} \partial_{[\mu} e_{\nu]B)} = 0.$$

 \mathcal{L}_{fixed} then agrees with magnetic Carroll gravity Lagrangian.

Jan Rosseel, Ruđer Bošković Institute

Conclusions

Conclusions

- Carroll gravity comes in 2 guises: electric and magnetic. Both can be constructed from the conformal approach.
- Starts from a single conformal Carroll algebra, but two different "electric" and "magnetic" massless compensating scalar field theories.
- Difference with relativistic conformal approach: some invariants involving intrinsic torsion can not be reproduced by coupling to dynamic matter.
- Extra difference with relativistic conformal approach: extra independent spin connection components. Match with Lagrange multipliers in magnetic Carroll gravity.
- Outlook:
 - Including matter couplings.
 - Carroll supergravity.
 - Aristotelian gravity, coupled to fracton matter?

イロン イボン イヨン イヨン