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COST Action CaLISTA Events 2024-2025

July 1-5, 2024. Training School ”Integrable System”, Lisbon (PO).

Sept 2-5, 2024. Training School ”Geometry Informed Machine Learning”,
Paris (FR).

Sept 25-26, 2024. Worshop on ”Quantum Groups and Lie Groups”, Zagreb
(HR).

October 4, 2024. Workshop ”Women and Nonbinary Researchers of
CaLISTA”, Bratislava (SK).

June 2-5, 2025. Workshop ”Integrable Systems”, Leeds (UK)

June 17, 2025. Workshop ”Geometry and Machine Learning”, Toulouse
(FR).

June 30-July 1, 2025. Workshop ”Quantum Groups”, Cambridge (UK).

September 2025. General Meeting of CaLISTA, Corfu’ (GR).
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Joint work with Latini and Pagani:

Reduction of Quantum Principal Bundles over non affine bases,
https://arxiv.org/abs/2403.06830
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0. Motivation
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Motivation

Quantum Groups: are born to encode quantum symmetries.
We treat physical geometric objects as homogeneous spaces.

Quantum Cartan Geometry. We go towards a quantum theory of
Cartan connections and (bi)covariant objects (e.g. covariant
hamiltonian).

Non commutative (super)gravity. The language of (quantum)
differential geometry is natural for any geometric theory like
(super)gravity.
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Quantum space and Quantum Groups

Classical space: xµxν = xνxµ

Action of a classical group: xµ 7→ aµν xν

Quantum space: xµxν = qxνxµ, µ > ν, q = eh ∈ C
Coaction of a quantum group: xµ 7→ aµν ⊗ xν

The quantum deformation of the space imposes a quantum deformation of
the group coacting on the space (Manin).
Manin commutation relations and quantum SL2(C). Assume:

yx = qxy

(
x
y

)
7→

(
a b
c d

)
⊗
(
x
y

)
=⇒

ab = q−1ba, ac = q−1ca, bd = q−1db,

cd = q−1dc bc = cb ad − da = (q−1 − q)bc
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1. Principal Bundles
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Principal bundles: Classical definition

Definition

(E ,M, ℘,P) is a P-principal bundle if

1 ℘ : E −→ M is surjective.

2 P acts freely from the right on E.

3 P acts transitively on the fiber ℘−1(m), m ∈ M.

4 (E is locally trivial over M).

Example

E = SL2(C) −→ P1 ∼= SL2(C)/B, B =

(
∗ ∗
0 ∗

)
This is a principal bundle with fiber B.
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Principal Bundles: Sheaf theoretic definition

Definition ((Pflaum))

p : E −→ M is a P-principal bundle if and only if

F = C∞
E is a sheaf of H = O(P) comodule algebras;

There exists an open covering {U i} of M such that:
1 F(Ui )

coinvH ≃ OM(U i )
2 F(Ui ) ≃ F(Ui )

coinvH ⊗ H, as left F(Ui )
coinvH -modules and right

H-comodules for all i ,

F(Ui )
coinvH := {f ∈ F(Ui ) | δH(f ) = f ⊗ 1}

δH : F(Ui ) → F(Ui )⊗ H the H-coaction.
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2. Quantum Principal Bundles
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Quantum Principal bundles

Definition

(M,OM) is a quantum ringed space if

M: classical topological space

OM : sheaf over M of non commutative algebras.

Definition

The sheaf F on M is a H-quantum principal bundle over the quantum
ringed space (M,OM) if:

F is a sheaf of H comodule algebras;

There exists an open covering {Ui} of M such that:
1 F(Ui )

coinvH = OM(Ui ),
2 F is locally cleft, i.e. F(Ui ) ∼= F(Ui )

coinvH ⊗ H.
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Example of a classical principal bundle

℘ : E = SL2(C) −→ M = SL2(C)/P ≃ P1(C)

On the coordinate algebras:

π : C[SL2] = C[a, b, c , d ]/(ad − bc − 1) −→ C[SL2]/(c) = C[t, p, t−1]

V1 =

{(
a b
c d

)
a ̸= 0

}
, V2 =

{(
a b
c d

)
c ̸= 0

}
open cover of SL2(C).

Let Ui = ℘(Vi ). Define the sheaf F of O(P)-comodule algebras

F(U1) := C[SL2][a
−1], F(U2) := C[SL2][c

−1]

F(U12) := C[SL2][[a
−1, c−1] F(P1(C)) = C.

F is a (quantum) principal bundle on P1(C).
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The Manin bialgebra

Define the quantum special linear group:

Cq[SL2] = Cq⟨a, b, c, d⟩/IM + (ad − q−1bc − 1) .

IM is the ideal of the Manin relations

ab = q−1ba, ac = q−1ca, bd = q−1db, cd = q−1dc ,

bc = cb ad − da = (q−1 − q)bc
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Examples of a Quantum Ringed space and a Quantum
Principal Bundle
Ui cover of X = SL2(C)/P as above.

Define the quantum ringed space:

Oq,P1(C)(U1) = Cq[a
−1c] ≃ Cq[u], Oq,P1(C)(U2) = Cq[c

−1a] ≃ Cq[v ]

On the quantum ringed space (P1(C),Oq ,P1(C)) define the quantum
principal bundle F , with respect to the covering U1, U2:

F(U1) := Cq[SL2][a
−1] F(U1) := Cq[SL2][a

−1]

F(U12) := Cq[SL2][a
−1, c−1]

This is a sheaf of Oq(P)-comodule algebras on P1(C).
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3. Reduction of Principal Bundles
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Reduction of Principal Bundles

Definition

Let ξ = (E , π,M) be a principal P-bundle K ⊂ P a subgroup.
Let ξ0 = (E0, π0,M) be a principal K-bundle.
ξ0 is a reduction of ξ if there is a K-equivariant homeomorphism

φ : E0 → ϕ(E0) ⊂ E , φ(xk) = φ(x)k, x ∈ E0, k ∈ K ,

Proposition

A principal P–bundle ξ = (E , π,M) is reducible to a principal K–bundle
ξ0 = (E0, π0,M) if and only if the bundle ξK := (E \ K , πK ,M), with πK
being the projection induced by π on E \ K, admits a global section.
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Example of a reduction

Consider:
π : SL2(C) → P1(C) = SL2(C)/B
B is the subgroup of upper triangular matrices.
π0 : SL2(C)/N −→ P1(C)
N ⊂ B is the unipotent subgroup.

E = SL2(C) , P = B , K = T ⊂ B , E0 = SL2(C)/N

where T = B/N is the torus of diagonal matrices.

(SL2(C)/N, π0,P1(C)) is a reduction of (SL2(C)/B, π,P1(C))

Key point: SL2(C)/N ∼= C2 \ {(0, 0)} is not an affine/projective
algebraic variety, there is no algebra associated with it.
We need a sheaf theoretic approach to quantize it!
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4. Reduction of Quantum Principal Bundles
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Affine Reductions of Quantum Principal Bundles

Definition

Let H be a Hopf algebra. An H-comodule algebra A is principal if:

1 AcoH ⊂ A is H-Galois,

2 A is a faithfully flat AcoH -module.

Definition

Let A be a principal H-comodule algebra with B := AcoH and J be a
Hopf ideal of H such that H is a principal left H0-comodule algebra for
H0 := H/J.
Let A0 be a principal H0-comodule algebra with B0 := AcoH0

0 .
We say that A0 is a reduction of A if

1 B ∼= B0 as algebras;

2 there exists a surjective H0-comodule morphism, ϕ : A −→ A0,
ϕ(B) = B0, where A carries the induced H0-coaction.
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Sheaf Reduction of Quantum Principal Bundles

Definition

Let F and F0 be quantum principal bundles over the quantum ringed
space (M,OM) for Hopf algebras H and H0 = H/J, respectively. We say
that F0 is a reduction (resp. algebraic reduction) of F if there exists an
open covering {Ui} of M such that:

1 F and F0 are quantum principal bundles with respect to such cover,

2 there exists an H0-comodule (resp. H0-comodule algebra) morphism
φ : F −→ F0 such that φ(F(Ui )

coH) = F(Ui )
coH0 for the induced

coaction of H0 = H/J on the F(Ui ).
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4. Example of Sheaf Reduction of Quantum
Principal Bundles
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The Takhtajan-Sudbery algebra Õq(GL(n))

It is generated by elements aij , i , j = 1, . . . , n, with commutation relations

aikail = q−1 ailaik ; aikajk = q ajkaik

ailajk = q2 ajkail ; aikajl = ajlaik , i < j , k < l
(1)

with D−1, the inverse of the quantum determinant D,

aikD = q2(k−i)Daik , aikD
−1 = q−2(k−i)D−1aik . (2)

Õq(GL(2)) it has generators a, b, c, d and D−1:

ab = q−1 ba , ac = q ca , cd = q−1 dc , bd = q db , bc = q2 cb , ad = da
(3)

together with

aD±1 = D±1a , bD±1 = q±2D±1b , cD±1 = q∓2D±1c , dD±1 = D±1d

for D = ad − q−1bc the quantum determinant.
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QPBs on the projective line P1(C) and sheaf reductions

Let U1, U2 be the usual cover of the complex projective line.
We define two sheaves F0, F0 over P1(C):

F0(U1) := Cq[a, c , a
−1,D±1] ⊂ F(U1) := Õq(GL(2))[a−1]

F0(U2) := Cq[a, c , c
−1,D±1] ⊂ F(U2) := Õq(GL(2))[c−1]

F0(U1 ∩ U2) := Cq[a, c, a
−1, c−1,D±1] ⊂ F(U1 ∩ U2)

F(U1 ∩ U2) := Õq(GL(2))[a−1, c−1]

F is a sheaf of H-comodule algebras, H = Õq(GL(2))[a−1]/(b).

F0 is a sheaf of H0-comodule algebras, H0 = Õq(GL(2))[a−1]/(b, c).

Proposition

F and F0 are QPB and F0 is a reduction of F .
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6. Existence of Reductions
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Result on the existence of Reductions

Let {Ui} be a finite cover of a quantum space and consider the topology
induced by it.

Theorem

Let F be a quantum H-principal bundle over the quantum ringed space
(M,OM) with respect to a finite open covering {Ui}. Let H0 = H/J.
Assume {fi : coH0H −→ ZF(Ui )

(
OM(Ui )

)
} is a family of H-module and

H-comodule algebra maps such that the following diagram commutes

coH0H

fj
��

fi // ZF(Ui )

(
OM(Ui )

)
⊆ F(Ui )

ρi,ij

��
ZF(Uj )

(
OM(Uj)

)
⊆ F(Uj)

ρj,ij // F(Ui ∩ Uj)

(4)

Then F admits an algebraic reduction F0 to H0.
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Examples: The Taktajan-Sudbery algebra
Define A = Õq(GL(n)) and:

H = A/(as1, s ̸= 1), J = (a1s , s = 2, . . . , n), H0 = H/J

H is a left H0-comodule algebra

ρ : H → H0 ⊗ H, h 7→ π(h1)⊗ h2, (π : H −→ H0 = H/J)

Define:

fℓ :
coH0H → Aℓ := A[a−1

1,ℓ ], βs 7→ a−1
ℓ1 aℓs , s = 2, . . . , n.

fℓ satisfy the hypotheses of the previous theorem, hence we have a
quantum reduction corresponding to the classical reduction:

GLn(C) −→ GLn(C)/N −→ GLn(C)/P

Remark: The Manin deformation does not satisfy the hypotheses of the
theorem and we cannot construct a similar reduction.
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