Infinite distances, the scalar potential and Ricci flow

[Saskia Demulder, Dieter Lüst, **TR** 2312.07674 & ongoing]

Thomas Raml

24TH HELLENIC SCHOOL AND WORKSHOPS ON ELEMENTARY PARTICLE PHYSICS AND GRAVITY Quantum Gravity, Strings and the Swampland Corfu, 5.09.2024

Quantum Gravity and the Swampland

Quantum field theories that emerge **in the low energy limit** of a **quantum gravity theory** are **very special**

Quantum Gravity and the Swampland

MAX PLANCK INSTITUTE

Quantum Gravity and the Swampland

AdS Distance Conjecture Quantum field theories that emerge **in the low energy limit** of a **quantum gravity theory** are **very special Weak Gravity Conjecture Distance Conjecture (DC) No Global Symmetries Cobordism Conjecture Ricci flow Conjecture Swampland program: formulate criteria** that identify consistent quantum gravity theories by defining a set of constraining **conjectures**

Thomas Raml Infinite distances, the scalar potential and Ricci flow

In any consistent theory of quantum gravity: [Ooguri, Vafa '06]

 when going to **large distances in its moduli space**, we encounter an **infinite tower of states** which **become light** exponentially

 $M(Q) \sim M(P)e^{-\lambda \Delta \phi}$ when $\Delta \phi \to \infty$, $\Delta \phi \equiv d(P, Q)$

It describes the parameters of the internal space

Recap: Distance Conjecture & *S*¹

 when going to **large distances in its moduli space**, we encounter an **infinite tower of states** which **become light** exponentially

 $M(Q) \sim M(P)e^{-\lambda \Delta \phi}$ when $\Delta \phi \rightarrow \infty$, $\Delta \phi \equiv d(P, Q)$

In any consistent theory of quantum gravity: [Ooguri, Vafa '06]

Example: Circle compactification

Recap: Distance Conjecture & *S*¹

$$
E(g) - \frac{c}{R^2} (\partial R)^2
$$

& For $R \to \infty$ **Infinite tower** of massless **KK**-modes m_{KK}^2 \sim 1 *R*2

Infinite tower of massless **winding**-modes

For
$$
R \to 0
$$

$$
m_{\rm w}^2 \sim R^2
$$

It describes the parameters of the internal space

 when going to **large distances in its moduli space**, we encounter an **infinite tower of states** which **become light** exponentially

 $M(Q) \sim M(P)e^{-\lambda \Delta \phi}$ when $\Delta \phi \rightarrow \infty$, $\Delta \phi \equiv d(P, Q)$

In any consistent theory of quantum gravity: [Ooguri, Vafa '06]

Example: Circle compactification

Recap: Distance Conjecture & *S*¹

$$
E(g) - \frac{c}{R^2} (\partial R)^2
$$

7

It describes the parameters of the internal space

$$
m_w^2 \sim R^2
$$

A much more challenging question…

External space internal space

External space internal space

A much more challenging question…

[▷] Backgrounds display **curvature and/or fluxes**: sources a **scalar potential** *V*(*φ*) ⊃ ℛ, *H*,…

External space internal space

External space internal space

A much more challenging question…

[▷] Backgrounds display **curvature and/or fluxes**: sources a **scalar potential**

[▷] Under **T-duality** the backgrounds may display **changes in topology**

Thomas Raml Infinite distances, the scalar potential and Ricci flow

External space internal space

 $V(\varphi) \supset \mathcal{R}, H, ...$

A much more challenging question…

[▷] Backgrounds display **curvature and/or fluxes**: sources a **scalar potential**

[▷] Under **T-duality** the backgrounds may display **changes in topology**

[▷] **Non-geometric backgrounds**

Thomas Raml Infinite distances, the scalar potential and Ricci flow

External space internal space

 $V(\varphi) \supset \mathscr{R}, H, \ldots$

A much more challenging question…

[▷] Backgrounds display **curvature and/or fluxes**: sources a **scalar potential**

[▷] Under **T-duality** the backgrounds may display **changes in topology**

[▷] **Non-geometric backgrounds**

Thomas Raml Infinite distances, the scalar potential and Ricci flow

External space internal space

 $V(\varphi) \supset \mathscr{R}, H, \ldots$

Do these properties modify the Swampland Distance Conjecture?

Generic setup & reduction

$$
S = \frac{1}{2\kappa_0^2} \int d^D X \sqrt{-G} e^{-2\Phi} \bigg(.
$$

 $\left(\mathcal{R}(G)-\frac{1}{12}\right)$ 12 $H_{IJK}H^{IJK}+4\partial_I\Phi\partial^I\Phi\Bigg)$

External space internal space

 $dim = n$

Generic setup & reduction

$$
S = \frac{1}{2\kappa_0^2} \int d^D X \sqrt{-G} e^{-2\Phi} \bigg(.
$$

$$
S \sim \int d^{D-n}x \sqrt{-g} \left(\mathcal{R}(g) - \gamma_{ab}\partial_{\mu}\varphi^{a}\partial^{\mu}\varphi^{b} - \frac{V(\varphi^{a})}{V(\varphi^{a})} \right)
$$

 $\left(\mathcal{R}(G)-\frac{1}{12}\right)$ 12 $H_{IJK}H^{IJK}+4\partial_I\Phi\partial^I\Phi\Bigg)$

External space internal space

 $dim = n$

Low-energy EFT on "External manifold"

Generic setup & reduction

$$
S = \frac{1}{2\kappa_0^2} \int d^D X \sqrt{-G} e^{-2\Phi} \bigg(.
$$

$$
S \sim \int d^{D-n}x \sqrt{-g} \left(\mathcal{R}(g) - \gamma_{ab} \partial_{\mu} \varphi^a \partial^{\mu} \varphi^b - V(\varphi^a) \right)
$$

$$
G(x, y) = g(x) \oplus h(y, \varphi^{a}(x))
$$

$$
\gamma_{ab} \sim \int d^n y \sqrt{h} \Big(tr \big(h^{-1} \partial_{\varphi_a} h \ h^{-1} \partial_{\varphi_b} h \big) - tr \big(h^{-1} \partial_{\varphi_a} B \ h^{-1} \partial_{\varphi_b} B \big) \Big)
$$

$$
V(\varphi^i) \sim \int \mathrm{d}^n y \sqrt{h} \left(\mathcal{R}(h) - \frac{1}{12} H_{ijk} H^{ijk} + 4 \partial_i \Phi \partial^i \Phi \right)
$$

 $\left(\mathcal{R}(G)-\frac{1}{12}\right)$ 12 $H_{IJK}H^{IJK}+4\partial_I\Phi\partial^I\Phi\Bigg)$

External space internal space

 $dim = n$

Low-energy EFT on "External manifold"

Thomas Raml Thomas Raml Infinite distances, the scalar potential and Ricci flow

Example: S^3 with H -flux

 $S_{\text{EH}} \sim \int d^d x \sqrt{-g} \left(\mathcal{R}(g) - \gamma_{ab} \partial_\mu \varphi^a \partial^\mu \varphi^b - V(\varphi^a) \right)$)

$$
\gamma_{RR} = \frac{3}{R^2}
$$

$$
V(R; k) = -\frac{3}{2R^2} + \frac{k^2}{R^6}
$$

 $ds^2 = R^2(\mathrm{d}\eta^2 + \mathrm{d}\xi_1^2 + \mathrm{d}\xi_2^2 + 2\cos(\eta)\mathrm{d}\xi_1^2\mathrm{d}\xi_2^2)$ $H = k \sin(\eta) d\eta \wedge d\xi_1 \wedge d\xi_2$

Example: S^3 with H -flux

 $ds^2 = R^2$ $S_{\text{EH}} \sim \int d^d x \sqrt{-g} \left(\mathcal{R}(g) - \gamma_{ab} \partial_\mu \varphi^a \partial^\mu \varphi^b - V(\varphi^a) \right)$)

 $H = k$ s

$$
R^{2}(\mathrm{d}\eta^{2} + \mathrm{d}\xi_{1}^{2} + \mathrm{d}\xi_{2}^{2} + 2\cos(\eta)\mathrm{d}\xi_{1}^{2}\mathrm{d}\xi_{2}^{2})
$$

sin(\eta) d\eta \wedge d\xi_{1} \wedge d\xi_{2}

How is **absence of winding modes** compatible with **T-duality**?

$$
\gamma_{RR} = \frac{3}{R^2}
$$

$$
V(R; k) = -\frac{3}{2R^2} + \frac{k^2}{R^6}
$$

What does this mean for the **Swampland Distance Conjecture**?

Thomas Raml Infinite distances, the scalar potential and Ricci flow

MAX PLANCK INSTITUTE 74007

$$
\gamma_{RR} = \frac{3}{R^2}
$$

$$
V(R; k) = -\frac{3}{2R^2} +
$$

Apparent inconsistency: S^3 with appropriately tuned H-flux is valid string background and therefore should be in the **Landscape**

However there is **no tower of light states** for $R \rightarrow 0$ which is an infinite distance limit

‣Distance Conjecture:

Apparent inconsistency: S^3 with appropriately tuned H-flux is valid string background and therefore should be in the **Landscape**

> However there is **no tower of light states** for $R \rightarrow 0$ which is an infinite distance limit

> > …need to **take into account scalar potential**

‣Distance Conjecture:

In **effective field theories** that **can be lifted to a theory of quantum gravity** in the UV, a **divergence in the scalar potential** emerges when approaching an **infinite locus point** for which the target space geometry **cannot give rise to a light tower of states**.

Apparent inconsistency: S^3 with appropriately tuned H-flux is valid string background and therefore should be in the **Landscape**

> However there is **no tower of light states** for $R \rightarrow 0$ which is an infinite distance limit

That is, the **potential signals pathological infinite distance loci** in the scalar field space.

[Demulder, Lüst, TR '23]

‣Distance Conjecture:

…need to **take into account scalar potential**

Apparent inconsistency: S^3 with appropriately tuned H-flux is valid string background and therefore should be in the **Landscape** However there is **no tower of light states** for $R \rightarrow 0$ which is an infinite distance limit

…need to **take into account scalar potential**

In **effective field theories** that **can be lifted to a theory of quantum gravity** in the UV, a divergence in the scalar potential emerges when approaching an infinite locus point for which the target space geometry **cannot give rise to a light tower of states**.

That is, the **potential signals pathological infinite distance loci** in the scalar field space.

[Demulder, Lüst, TR '23]

‣Distance Conjecture:

$$
\gamma_{ab} \sim \int d^n y \sqrt{h} \left(\text{tr} \left(h^{-1} \partial_{\varphi_a} h h^{-1} \partial_{\varphi_b} h \right) - \text{tr} \left(h^{-1} \partial_{\varphi_a} B h^{-1} \partial_{\varphi_b} B \right) \right)
$$

=
$$
\frac{1}{2} \text{tr} \left[(\mathcal{H}^{-1} \partial_{\varphi_a} \mathcal{H})^2 \right]
$$

$$
O(d, d) \ni \mathcal{H} = \begin{pmatrix} h - Bh^{-1}B & I \\ -h^{-1}B & I \end{pmatrix}
$$

So by $O(d, d)$ invariance γ_{ab} is invariant under (abelian) **T-duality**.

Metric on moduli space given by

‣Invariance of metric & flux variations:

[Demulder, Lüst, TR '23]

Thomas Raml Infinite distances, the scalar potential and Ricci flow

Metric on moduli space given by

$$
\gamma_{ab} \sim \int d^n y \sqrt{h} \left(\text{tr} \left(h^{-1} \partial_{\varphi_a} h h^{-1} \partial_{\varphi_b} h \right) - \text{tr} \left(h^{-1} \partial_{\varphi_a} B h^{-1} \partial_{\varphi_b} B \right) \right)
$$

=
$$
\frac{1}{2} \text{tr} \left[\left(\mathcal{H}^{-1} \partial_{\varphi_a} \mathcal{H} \right)^2 \right]
$$
 $O(d, d) \ni \mathcal{H} = \begin{pmatrix} h - Bh^{-1}B & Bh^{-1} \\ -h^{-1}B & h^{-1} \end{pmatrix}$

So by $O(d, d)$ invariance γ_{ab} is invariant under (abelian) **T-duality. J** [Demulder, Lüst, TR '23]

E˜ …modulus only in spacetime metric h

 γ_{RR} obtained in standard way from "deWitt" metric

Thomas Raml Thomas Raml Infinite distances, the scalar potential and Ricci flow

Example:
$$
S^3
$$
 with $k(x)=R^2(x)$
Example: S^3 with $k(x)=R^2(x)$

‣Invariance of metric & flux variations:

Metric on moduli space given by

$$
\gamma_{ab} \sim \int d^n y \sqrt{h} \left(\text{tr} \left(h^{-1} \partial_{\varphi_a} h h^{-1} \partial_{\varphi_b} h \right) - \text{tr} \left(h^{-1} \partial_{\varphi_a} B h^{-1} \partial_{\varphi_b} B \right) \right)
$$

=
$$
\frac{1}{2} \text{tr} \left[\left(\mathcal{H}^{-1} \partial_{\varphi_a} \mathcal{H} \right)^2 \right]
$$
 $O(d, d) \ni \mathcal{H} = \begin{pmatrix} h - Bh^{-1}B & Bh^{-1} \\ -h^{-1}B & h^{-1} \end{pmatrix}$

So by $O(d, d)$ invariance γ_{ab} is invariant under (abelian) **T-duality. About all as [Demulder, Lüst, TR '23]**

 $\mathbf{S}_\mathbf{R}^3$ with $\tilde{\mathbf{E}}$ …modulus only in spacetime metric h \qquad \qquad also contribution $\text{tr}\big(h^{-1}\partial_{\varphi_a}B\;h^{-1}\partial_{\varphi_b}B\big)\neq 0\subset \gamma_{RR}$ …modulus in h **and B**

c.f also [Li,Palti,Petri '23][Palti,Petri '24]

Example:
$$
S^3
$$
 with $k(x)=R^2(x)$
Example: S^3 with $k(x)=R^2(x)$

*γ*_{RR} obtained in standard way from "deWitt" metric

 $\tilde{\gamma}_{RR} = \gamma_{RR}$ only if **flux variation** are taken into account

 $H = R^2 \sin(\eta) d\eta \wedge d\xi_1 \wedge d\xi_2$ $B = -R^2 \cos(\eta) d\xi_1 \wedge d\xi_2$

‣Invariance of metric & flux variations:

Non-geometric backgrounds

: non-geometric *Diff*(*M*) ∪ T-duality $\left\{ \right.$

Described locally by Riemannian geometry with fluxes. However, **transition functions** are allowed to be **T-dualities.**

[▷] **"Inevitable"** in string theory

[▷] **Moduli stabilisation**

[Becker, Becker, Blumenhagen, Lüst, Plauschinn, Shelton, Taylor, Vafa, Wecht, Walcher, …]

[Dabholkar, Hull '02&'05; Flournoy, Wecht, Williams '04…]

Non-geometric backgrounds

[▷] **"Inevitable"** in string theory

[▷] **Moduli stabilisation**

[Becker, Becker, Blumenhagen, Lüst, Plauschinn, Shelton, Taylor, Vafa, Wecht, Walcher, …]

In addition to standard fluxes, there are **non-geometric fluxes**, called *Q*- and *R*-fluxes.

$$
H_{ijk} \to f_{ij}^k \to Q_i^{jk} \to R^{ijk}
$$

Are these valid backgrounds for quantum gravity?

[Dabholkar, Hull '02&'05; Flournoy, Wecht, Williams '04…]

Basic example: T-duality chain of T^3 with H-flux

Described locally by Riemannian geometry with fluxes. However, **transition functions** are allowed to be **T-dualities.**

Generically the action of non-geometric backgrounds is **ill-defined** in standard **NSNS frame**

- [▷] How to obtain previous reduction procedure?
- [▷] How to obtain **metric & potential** on moduli space
	- [▷] Consistent picture under **T-duality**?

Non-geometric backgrounds

?

 $g_{\mu\nu}(\theta + 2\pi) \neq g_{\mu\nu}(\theta)$ $\theta \simeq \theta + 2\pi$

[▷] How to obtain previous reduction procedure?

$$
V(\varphi^a) \sim \int d^n y \sqrt{h_0} \Big(\mathcal{R}(h) - \frac{1}{12} H^2 + 4(\partial \Phi_y)^2 \Big)
$$

\n
$$
\tilde{V}(\varphi^a) \sim \int d^n y \sqrt{\tilde{h}_0} \Big(\mathcal{R}(\tilde{h}) - \frac{1}{4} Q^2 + 4(\partial \tilde{\Phi}_y)^2 \Big)
$$

\n
$$
\tilde{V}(\varphi^a) \sim \int d^n y \sqrt{\tilde{h}_0} \Big(\mathcal{R}(\tilde{h}) - \frac{1}{4} Q^2 + 4(\partial \tilde{\Phi}_y)^2 \Big)
$$

\n
$$
\mathcal{L}_{\beta} = \mathcal{L}_{NSNS} + \partial(\dots) \qquad \dots \beta\text{-supergravity action}
$$

\n[Andriot, Larfors, Lüst, Patalong '11]

Thomas Raml Infinite distances, the scalar potential and Ricci flow

- [▷] How to obtain **metric & potential** on moduli space **?**
	- [▷] Consistent picture under **T-duality**?

 $g_{\mu\nu}(\theta + 2\pi) \neq g_{\mu\nu}(\theta)$ $\theta \simeq \theta + 2\pi$

Non-geometric backgrounds

Generically the action of non-geometric backgrounds is **ill-defined** in standard **NSNS frame**

Crucial to **use β-supergravity** for consitency of **non-geometry backgrounds & geometric duals:**

A **consistent picture** between a (globally) non-geometric space and its geometric dual - i.e. matching moduli spaces, potentials and towers of states -

$$
\mathcal{V}(\varphi^a) \sim \int d^n y \sqrt{h_0} \left(\mathcal{R}(h) - \frac{1}{12} H^2 + 4(\partial \Phi_y)^2 \right)
$$
\n
$$
\mathcal{V}(\varphi^a) \sim \int d^n y \sqrt{\tilde{h}_0} \left(\mathcal{R}(\tilde{h}) - \frac{1}{4} Q^2 + 4(\partial \Phi_y)^2 \right)
$$
\n
$$
\mathcal{V}(\varphi^a) \sim \int d^n y \sqrt{\tilde{h}_0} \left(\mathcal{R}(\tilde{h}) - \frac{1}{4} Q^2 + 4(\partial \Phi_y)^2 \right)
$$
\n
$$
\mathcal{L}_{\beta} = \mathcal{L}_{NSNS} + \partial (\dots) \qquad \dots \beta\text{-supergravity action}
$$
\n[Andriot, Larfors, Lüst, Patalong

can be established **only after moving to the** *β***-frame**, where the background is well-defined.

 $g_{\mu\nu}(\theta + 2\pi) \neq g_{\mu\nu}(\theta)$ $\theta \simeq \theta + 2\pi$

[Demulder, Lüst, TR '23]

MAX PLANCK INSTITUTE

Thomas Raml Infinite distances, the scalar potential and Ricci flow

[▷] How to obtain previous reduction procedure?

- **?** [▷] How to obtain **metric & potential** on moduli space
	- [▷] Consistent picture under **T-duality**?

Non-geometric backgrounds

Generically the action of non-geometric backgrounds is **ill-defined** in standard **NSNS frame**

Apparent inconsistency: S^3 with appropriately tuned H-flux is valid string background and therefore should be in the **Landscape** However there is **no tower of light states** for $R \rightarrow 0$ which is an infinite distance limit

…need to **take into account scalar potential**

In **effective field theories** that **can be lifted to a theory of quantum gravity** in the UV, a divergence in the scalar potential emerges when approaching an infinite locus point for which the target space geometry **cannot give rise to a light tower of states**.

That is, the **potential signals pathological infinite distance loci** in the scalar field space.

[Demulder, Lüst, TR '23]

‣Distance Conjecture:

A different perspective

? In which sense is *^R* ⁼ ⁰ **at infinite distance in the presence of ^a (divergent) scalar potential?**

[▷] Is the point **"reachable"** in the presence of a divergent **potential**?

[▷] What is a **"good"** notion of **distance**?

A different perspective

-
- - [▷] [Debusschere, Tonioni, van Riet '24]
	- [▷] [De Biasio '22]

There is a plethora of works, examining the notion of distance in various settings.

Very recently taking into account a scalar potential: ▷ [Mohseni, Montero, Vafa, Valenzuela '24]

-
-

? In which sense is *^R* ⁼ ⁰ **at infinite distance in the presence of ^a (divergent) scalar potential?**

[▷] Is the point **"reachable"** in the presence of a divergent **potential**?

[▷] What is a **"good"** notion of **distance**?

A different perspective

…another somewhat **alternative aporach**: **Ricci flow**

-
- - [▷] [Debusschere, Tonioni, van Riet '24]
	- [▷] [De Biasio '22]

There is a plethora of works, examining the notion of distance in various settings.

Very recently taking into account a scalar potential: ▷ [Mohseni, Montero, Vafa, Valenzuela '24]

- *In* **which sense is** $R = 0$ **at infinite distance in the presence of a (divergent) scalar potential?**
	-

[Kehagias, Lüst, Lüst '19]

36

[▷] Is the point **"reachable"** in the presence of a divergent **potential**?

[▷] What is a **"good"** notion of **distance**?

Ricci flow & Ricci flow Conjecture

Ricci flow & Ricci flow Conjecture

[Hamilton '82]

Ricci flow Conjecture: Take a family of metrics $g_{\mu\nu}(t)$ satisfying Ricci flow equation. There is a infinite tower of states becoming massless when **approaching a fixed point** $\partial_t g_{\mu\nu}(t)|_{t=t_0} = 0$ at infinite distance. = 0 at infinite distance. [Kehagias, Lüst, Lüst '19]

Ricci flow & Ricci flow Conjecture

Ricci flow Conjecture: Take a family of metrics $g_{\mu\nu}(t)$ satisfying Ricci flow equation. There is a infinite tower of states

AdS:
$$
\mathcal{R}_{\mu\nu}(0) = \Lambda_0 \hat{g}_{\mu\nu} \xrightarrow{\qquad} \Lambda(t) = \frac{\Lambda_0}{(1 - 2\Lambda_0 t)}
$$

\nfixed point with $\Lambda = 0$ as $t \to \infty$

becoming massless when **approaching a fixed point** $\partial_t g_{\mu\nu}(t)|_{t=t_0} = 0$ at infinite distance. = 0 at infinite distance. [Kehagias, Lüst, Lüst '19]

$$
\Delta_{g} \sim \int_{\tau_{i}}^{\tau_{f}} \left(\frac{1}{V_{M}} \int_{M} \sqrt{g} g^{mn} g^{op} \frac{\partial g_{mo}}{\partial \tau} \frac{\partial g_{np}}{\partial \tau} \right)^{1/2} d\tau
$$
\n
$$
\text{II: } \Delta_{g} \simeq \log \left(1 - 2\Lambda_{0} t\right) \to \infty
$$
\n
$$
\text{III: } \Delta_{R} \equiv \log \left(\frac{\mathcal{R}(0)}{\mathcal{R}(t)}\right) \sim \log(1 - 2\Lambda_{0} t) \to \infty
$$
\n[Kehagias, Lüst, Lüs]

Ricci flow Conjecture \Longrightarrow **AdS Distance Conjecture**

Thomas Raml Infinite distances, the scalar potential and Ricci flow

Distance from Entropy functionals

Including the dilation leads to **Perelmans combined flow** [Perelman '02]

Ricci flow equation: $\frac{d}{dt}g_{\mu\nu}(t) = -2\mathcal{R}_{\mu\nu}(t)$ [Hamilton '82]

$$
\partial_t g_{\mu\nu}(t) = -2\mathcal{R}_{\mu\nu}(t)
$$

$$
\partial_t \phi(t) = -\frac{1}{2}\mathcal{R}(t) - \Delta\phi(t) + 2(\nabla\phi(t))^2
$$

Distance from Entropy functionals

$$
\sqrt{-g}e^{-2\phi}\left(\mathcal{R} + 4(\nabla\phi)^2\right) \qquad \qquad \int_M d^d x \sqrt{-g}e^{-2\phi} = 1
$$

$$
\partial_t g_{\mu\nu}(t) = -2\mathcal{R}_{\mu\nu}(t)
$$

$$
\partial_t \phi(t) = -\frac{1}{2}\mathcal{R}(t) - \Delta\phi(t) + 2(\nabla\phi(t))^2
$$

…gradient with respect to "Entropy Functional"

 $\mathcal{F}(g, f) = \int_M d^d x \sqrt{-g} e^{-2\phi}$

 $\left| \right|$

Ricci flow equation: $\frac{d}{dt}g_{\mu\nu}(t) = -2\mathcal{R}_{\mu\nu}(t)$ [Hamilton '82]

Including the dilation leads to **Perelmans combined flow** [Perelman '02]

Distance from Entropy functionals

$$
\left\{ \begin{array}{c} \partial_t g_{\mu\nu}(t) \\ \partial_t \phi(t) \end{array} \right.
$$

$$
g_{\mu\nu}(t) = -2\mathcal{R}_{\mu\nu}(t)
$$

\n
$$
\partial_t \phi(t) = -\frac{1}{2}\mathcal{R}(t) - \Delta\phi(t) + 2(\nabla\phi(t))^2
$$

Conjecture: The distance in field space $\Delta_{\mathscr{F}}$ along the combined flow is determined by the entropy functional $\mathscr{F}(g,f)$. **lies at infinite distance** and is accompanied by an **infinite tower of massless states** and ℱ = 0

 $\Delta_{\mathscr{F}} \simeq$ log

Ricci flow equation: $\frac{d}{dt}g_{\mu\nu}(t) = -2\mathcal{R}_{\mu\nu}(t)$ [Hamilton '82]

…gradient with respect to "Entropy Functional"

$$
\mathcal{F}(g, f) = \int_M d^d x \sqrt{-g} e^{-2\phi} \left(\mathcal{R} + 4(\nabla \phi)^2 \right) \qquad \qquad \int_M d^d x \sqrt{-g} e^{-2\phi} = 1
$$

$$
g\left(\frac{\mathcal{F}_i}{\mathcal{F}_f}\right)
$$
 [Kehagias, Lüst, Lüst '19]

Including the dilation leads to **Perelmans combined flow** [Perelman '02]

Can we define notion of distance for generic internal manifold using generalized Ricci flow? What are the implications for the Swampland Distance Conjecture in presence of a potential?

Can we define notion of distance for generic internal manifold using generalized Ricci flow? What are the implications for the Swampland Distance Conjecture in presence of a potential?

[▷] Purely **NSNS internal background**: …can consider generalized Ricci flow [Oliynyk,Suneeta,Woolgar '05]

$$
\mathcal{F}^{H}(g,H,\phi) = \int_{M} dV \, e^{-2\phi} \left(\mathcal{R} - \frac{1}{12} |H|^{2} + 4| \nabla \phi|^{2} \right) \longrightarrow \begin{cases} \frac{\partial g_{ij}}{\partial t} = -\left(\mathcal{R}_{ij} + \nabla_{i} \nabla_{j} \phi - \frac{1}{4} H_{ikl} H_{j}^{kl} \right) \equiv -\beta_{ij}^{g} \\ \frac{\partial H_{ijk}}{\partial t} = \dots \end{cases}
$$

$$
\text{MAX PLANCK INSTITUTE} \sum_{\text{FOR PHYSICS}} \sum_{\text{A}_{\text{P}} \Delta_{\text{P}} \geq \text{f.f.}} \left\| \bigotimes_{\text{A}} \right\|
$$

Can we define notion of distance for generic internal manifold using generalized Ricci flow? What are the implications for the Swampland Distance Conjecture in presence of a potential?

[▷] Purely **NSNS internal background**: …can consider generalized Ricci flow [Oliynyk,Suneeta,Woolgar '05]

• what are the implications of defining **distance in presence of potential** according to **Metric & potential** on moduli space both derived from **background data** on internal space

$$
\mathcal{F}^{H}(g,H,\phi) = \int_{M} dV \, e^{-2\phi} \left(\mathcal{R} - \frac{1}{12} |H|^{2} + 4 | \nabla \phi |^{2} \right) \xrightarrow{\text{diag} \left(\frac{\partial g_{ij}}{\partial t} \right)} \qquad \qquad \sum_{\substack{\partial H_{ijk} \\ \partial t \\ \dots}} \left(\mathcal{R}_{ij} + \nabla_{i} \nabla_{j} \phi - \frac{1}{4} H_{ikl} H_{j}^{kl} \right) \equiv -\beta_{ij}^{g}
$$

$$
\Delta_{\mathcal{F}^H} \simeq \log \left(\frac{\mathcal{F}_i^H}{\mathcal{F}_f^H} \right)
$$

[Demulder, Lüst, TR; ongoing]

Can we define notion of distance for generic internal manifold using generalized Ricci flow? What are the implications for the Swampland Distance Conjecture in presence of a potential?

[▷] Purely **NSNS internal background**: …can consider generalized Ricci flow [Oliynyk,Suneeta,Woolgar '05]

what are the implications of defining distance in presence of potential according to $\Delta_{\mathscr{F}^H} \simeq \log(n)$ \mathscr{F}^{H}_{i} *i* \mathscr{F}^{H}_{f} *f*) **Metric & potential** on moduli space both derived from **background data** on internal space

$$
\mathcal{F}^{H}(g,H,\phi) = \int_{M} dV \, e^{-2\phi} \left(\mathcal{R} - \frac{1}{12} |H|^{2} + 4 | \nabla \phi |^{2} \right) \longrightarrow \begin{cases} \frac{\partial g_{ij}}{\partial t} = - \left(\mathcal{R}_{ij} + \nabla_{i} \nabla_{j} \phi - \frac{1}{4} H_{ikl} H_{j}^{kl} \right) \equiv -\beta_{ij}^{g} \\ \frac{\partial H_{ijk}}{\partial t} = \dots \end{cases}
$$

[Demulder, Lüst, TR; ongoing]

$$
S_{r}^{3} \text{ with H-flux [h]}
$$

$$
r(t) = -\frac{1}{2r(t)} + \frac{h^{2}}{2r(t)^{5}}
$$

Can we define notion of distance for generic internal manifold using generalized Ricci flow? What are the implications for the Swampland Distance Conjecture in presence of a potential?

[▷] Purely **NSNS internal background**: …can consider generalized Ricci flow [Oliynyk,Suneeta,Woolgar '05]

 $\Delta_{\mathscr{F}^H} \simeq \log$ \mathscr{F}_i^H $\overline{\mathscr{F}^{H}_{f}}$) **Metric & potential** on moduli space both derived from **background data** on internal space what are the implications of defining **distance in presence of potential** according to

$$
\mathcal{F}^{H}(g,H,\phi) = \int_{M} dV \, e^{-2\phi} \left(\mathcal{R} - \frac{1}{12} |H|^{2} + 4 | \nabla \phi |^{2} \right) \longrightarrow \begin{cases} \frac{\partial g_{ij}}{\partial t} = - \left(\mathcal{R}_{ij} + \nabla_{i} \nabla_{j} \phi - \frac{1}{4} H_{ikl} H_{j}^{kl} \right) \equiv -\beta_{ij}^{g} \\ \frac{\partial H_{ijk}}{\partial t} = \dots \end{cases}
$$

[Demulder, Lüst, TR; ongoing]

▷ **Non-geometric flow?**

▷ Adding **RR-fluxes? S with -flux [h] ³ S3 ^r ^r H** [Demulder, Lüst, TR; ongoing] ∂*t ^r*(*t*) ⁼ [−] ¹ 2*r*(*t*)

$$
S_{\mathbf{r}}^3 \text{ with H-flux [h]}
$$
\n
$$
\partial_t r(t) = -\frac{1}{2r(t)} + \frac{h^2}{2r(t)^5}
$$
\n
$$
\Theta
$$

Summary & Conclusions

- [▷] Studied **Distance Conjecture** for **curved compact spaces (with fluxes)**
- [▷] **Invariance** of the metric on moduli space **under (abelian) T-duality**
- [▷] Interplay of **scalar potential** and Distance Conjecture & **absence of tower of states**
- [▷] First step towards **non-geometric backgrounds** and associated distance on moduli space

Summary & Conclusions

- [▷] Studied **Distance Conjecture** for **curved compact spaces (with fluxes)**
- [▷] **Invariance** of the metric on moduli space **under (abelian) T-duality**
- [▷] Interplay of **scalar potential** and Distance Conjecture & **absence of tower of states**
- [▷] First step towards **non-geometric backgrounds** and associated distance on moduli space

- \triangleright More **realistic setups: full 10d backgrounds**, e.g. $AdS_5 \times S^5$, $AdS_4 \times T^6$ with fluxes,...
- [▷] Flux variations & potential: **on-shell vs off-shell** [Li,Palti,Petri '23][Palti,Petri '24]
- [▷] **Deformations** and **generalized T-duality** (Poisson-Lie T-duality)
- ▷ **Distance** in presence of **potential** and **generalized Ricci flow** [Kehagias, Lüst, Lüst '19] [Mohseni, Montero,Vafa, Valenzuela '24] [Debusschere, Tonioni, van Riet '24]
- ▷ **Truly non-geometric spaces** and the Swampland?

Summary & Conclusions

- [▷] Studied **Distance Conjecture** for **curved compact spaces (with fluxes)**
- [▷] **Invariance** of the metric on moduli space **under (abelian) T-duality**
- [▷] Interplay of **scalar potential** and Distance Conjecture & **absence of tower of states**
- [▷] First step towards **non-geometric backgrounds** and associated distance on moduli space

- \triangleright More **realistic setups: full 10d backgrounds**, e.g. $AdS_5 \times S^5$, $AdS_4 \times T^6$ with fluxes,...
- [▷] Flux variations & potential: **on-shell vs off-shell** [Li,Palti,Petri '23][Palti,Petri '24]
- [▷] **Deformations** and **generalized T-duality** (Poisson-Lie T-duality)
- \triangleright **Distance** in presence of **potential** and **generalized Ricci flow** [Kehagias, Lüst, Lüst '19] [Mohseni, Montero,Vafa, Valenzuela '24] [Debusschere, Tonioni, van Riet '24]
- ▷ **Truly non-geometric spaces** and the Swampland?

Thomas Raml Infinite distances, the scalar potential and Ricci flow

BACKUP SLIDES

T-duality and change in topology

T-duality does not only affect the geometry locally but **can also affect its global structure**

[Giveon, Kiritsis '94; Bouwknegt, Evslin, Mathai '04; Alvarez, Alvarez-Gaume, Lozano '05, ….]

fluxes : $i_k \mathcal{H} \longleftrightarrow \text{topology}: c_1(E_k)$

T-duality exchanges *H***-flux** and the **first Chern class**

Concrete example:

$S³$ in the Hopf fibration

 $\pi_1(S^3) = 1$, $[H] = 0$

Thomas Raml Infinite distances, the scalar potential and Ricci flow

T-duality chain

T-duality chain of T^3 with H -flux is not a proper string background. Careful analysis reveals a lack of towers of states for some infinite distance points and therefore:

Without a completion, e.g. additional fluxes, the backgrounds of the **T-duality chain** lie in the **Swampland**.

[Demulder, Lüst, TR '23]

Thomas Raml Thomas Raml Infinite distances, the scalar potential and Ricci flow

MAX PLANCK INSTITUTE

$$
S_{\text{DFT}} = \int dx d\tilde{x} e^{-2d} \left(\frac{1}{8} \mathcal{H}^{MN} \partial_{M} \mathcal{H}^{KL} \partial_{N} \mathcal{H}_{KL} - \frac{1}{2} \mathcal{H}^{MN} \partial_{M} d \partial_{N} d \right).
$$
\n
$$
\beta = \text{gravity}
$$
\n
$$
\beta = \
$$

Thomas Raml Infinite distances, the scalar potential and Ricci flow

MAX PLANCK INSTITUTE
FOR PHYSICS $\overbrace{A_{\Delta_{\bm{r}}\Delta_{\bm{r}}\geq \bm{f}}t}$