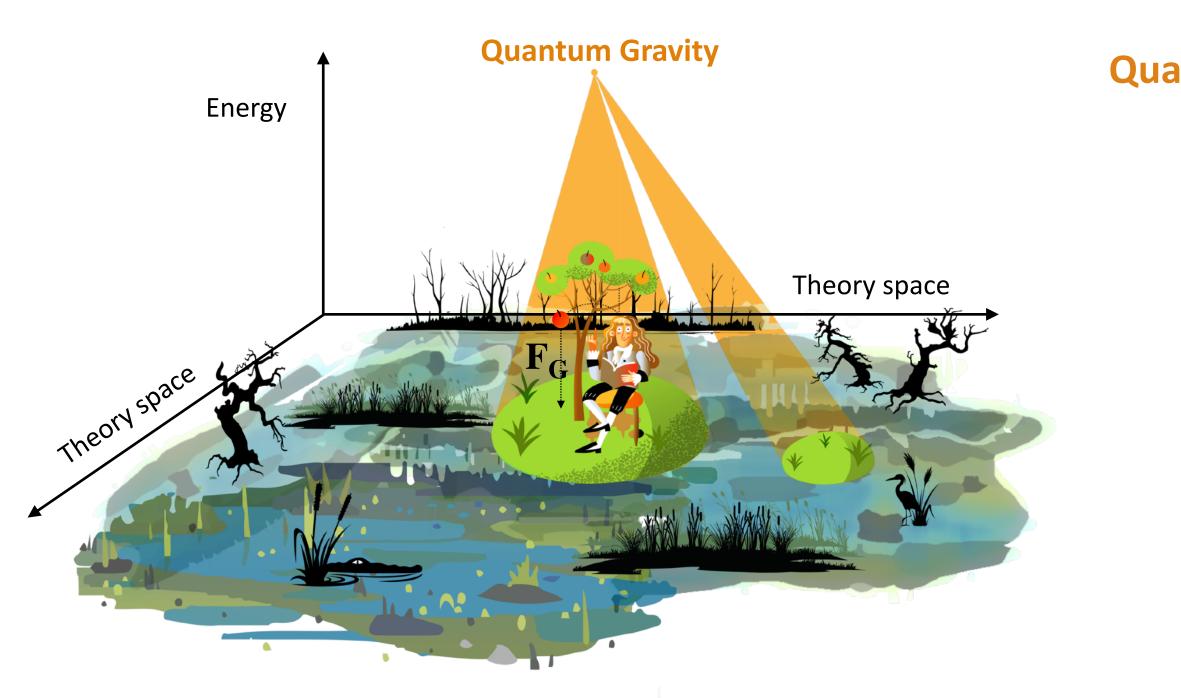
Infinite distances, the scalar potential and Ricci flow

[Saskia Demulder, Dieter Lüst, **TR** 2312.07674 & ongoing]

24TH HELLENIC SCHOOL AND WORKSHOPS ON ELEMENTARY PARTICLE PHYSICS AND GRAVITY Quantum Gravity, Strings and the Swampland Corfu, 5.09.2024

Thomas Raml

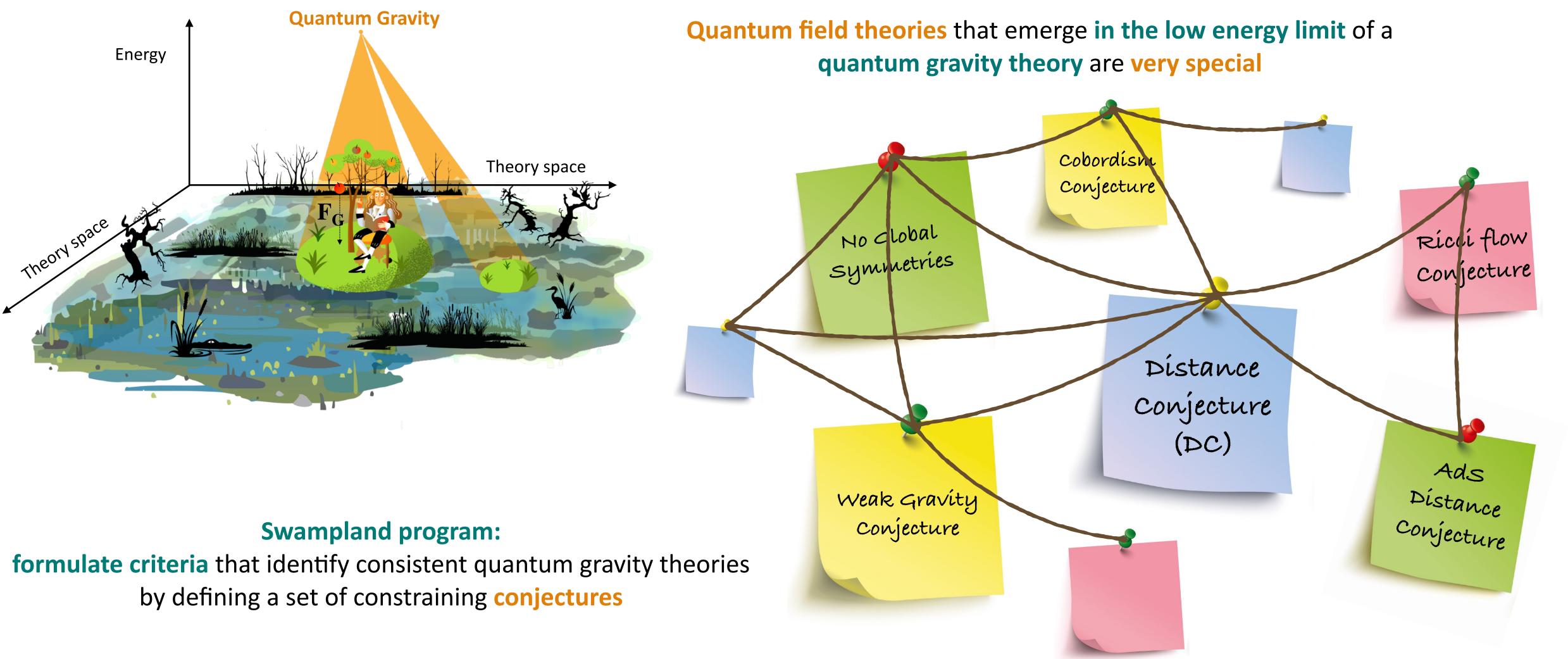
Quantum Gravity and the Swampland



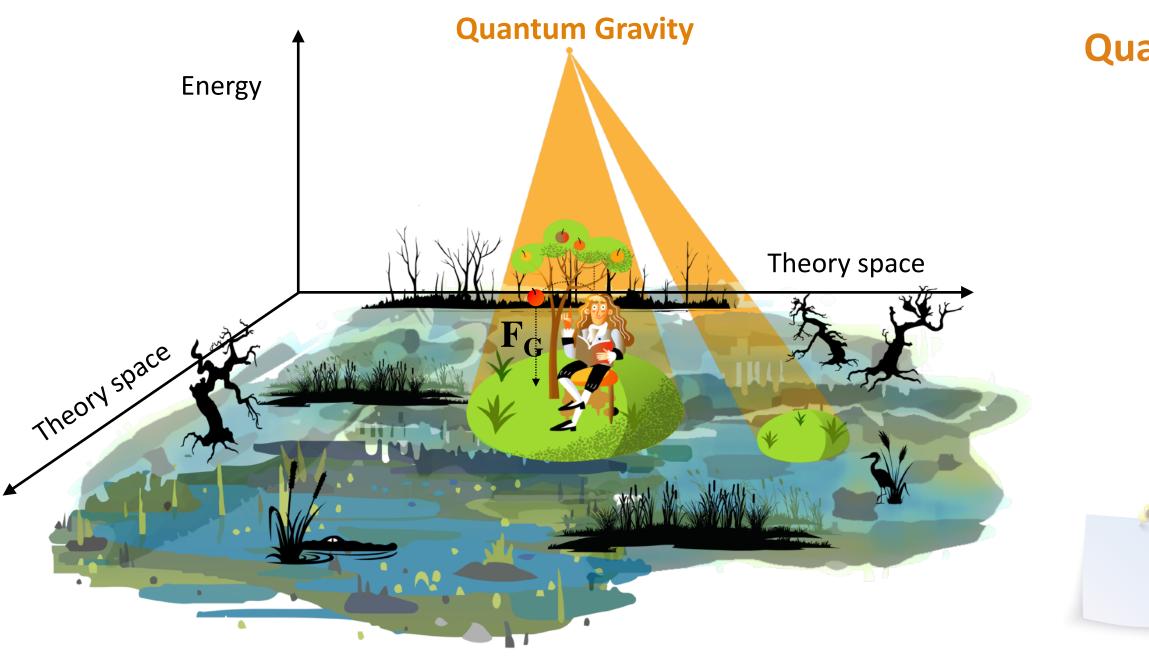
Thomas Raml

Quantum field theories that emerge in the low energy limit of a quantum gravity theory are very special

Quantum Gravity and the Swampland



Quantum Gravity and the Swampland



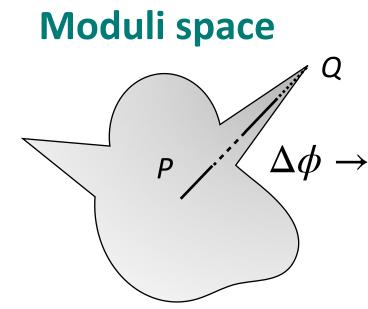
Quantum field theories that emerge in the low energy limit of a quantum gravity theory are very special Cobordism Conjecture No Global Ricci flow Symmetries Conjecture Distance Conjecture (DC)Ads Distance Weak Gravity Conjecture Conjecture **Swampland program: formulate criteria** that identify consistent quantum gravity theories by defining a set of constraining conjectures

Recap: Distance Conjecture & S^1

In any consistent theory of quantum gravity: [Ooguri, Vafa '06]

when going to large distances in its moduli space, we encounter an infinite tower of states which become light exponentially

 $M(Q) \sim M(P) e^{-\lambda \Delta \phi}$ when $\Delta \phi \to \infty$, $\Delta \phi \equiv d(P,Q)$



It describes the parameters of the internal space



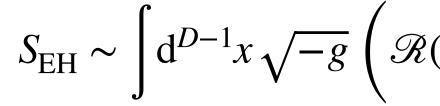
Recap: Distance Conjecture & S^1

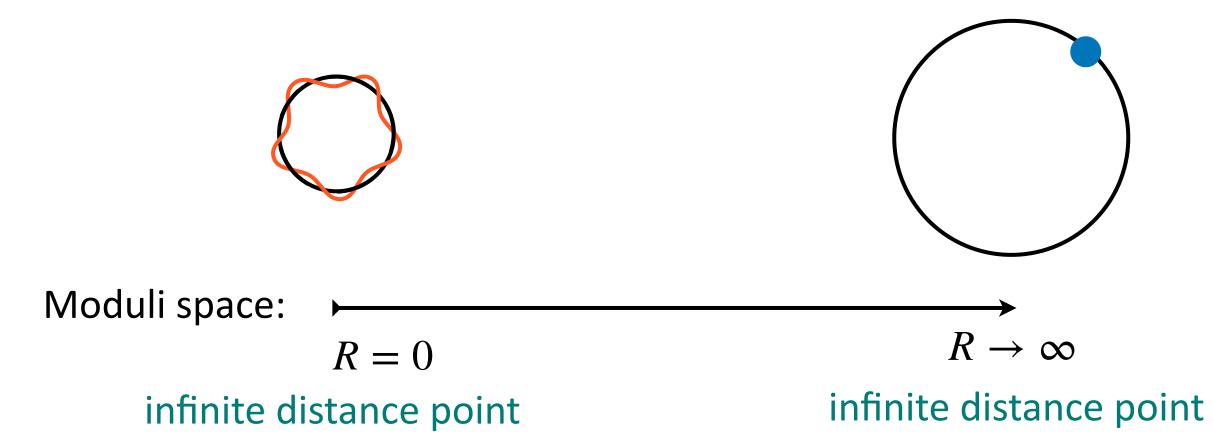
In any consistent theory of quantum gravity: [Ooguri, Vafa '06]

when going to large distances in its moduli space, we encounter an infinite tower of states which become light exponentially

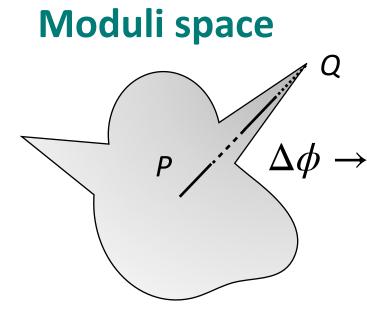
 $M(Q) \sim M(P)e^{-\lambda\Delta\phi}$ when $\Delta \phi \to \infty$, $\Delta \phi \equiv d(P,Q)$

Example: Circle compactification





$$r(g) - \frac{c}{R^2} (\partial R)^2$$



It describes the parameters of the internal space

For $R \to \infty$ **Infinite tower** of massless **KK**-modes $m_{KK}^2 \sim \frac{1}{R^2}$ &

For $R \rightarrow 0$

Infinite tower of massless winding-modes

$$m_w^2 \sim R^2$$

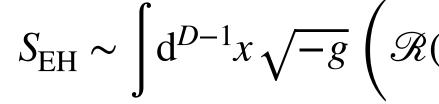
Recap: Distance Conjecture & S^{\perp}

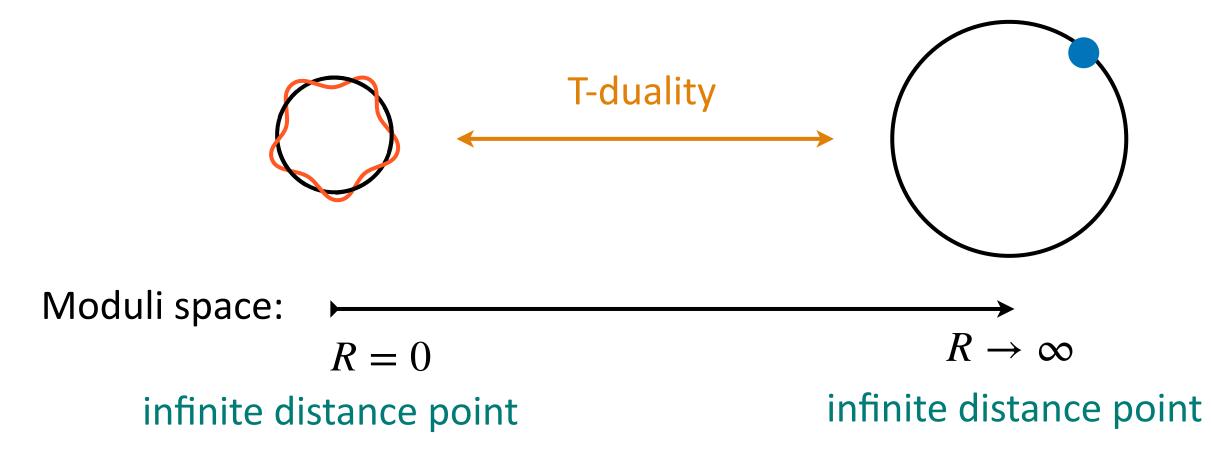
In any consistent theory of quantum gravity: [Ooguri, Vafa '06]

when going to large distances in its moduli space, we encounter an infinite tower of states which become light exponentially

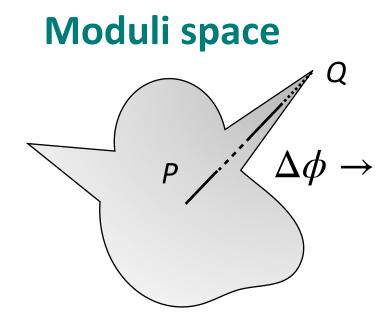
 $M(Q) \sim M(P)e^{-\lambda\Delta\phi}$ when $\Delta \phi \to \infty$, $\Delta \phi \equiv d(P,Q)$

Example: Circle compactification

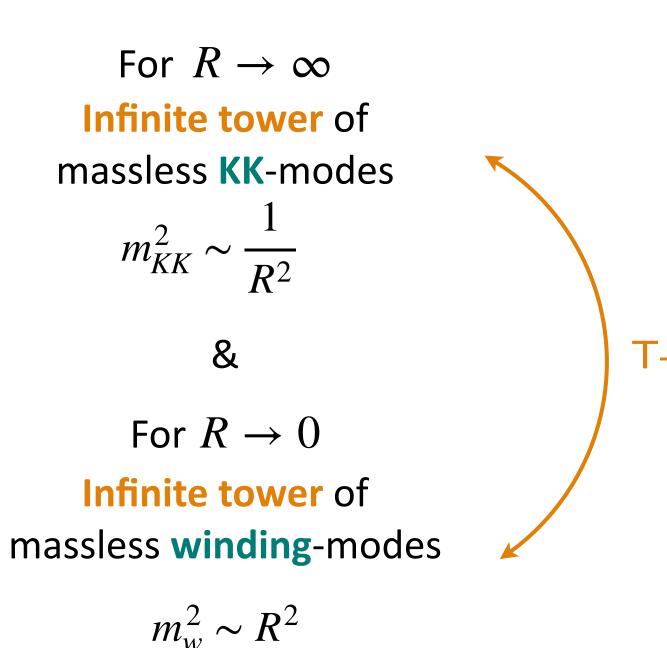


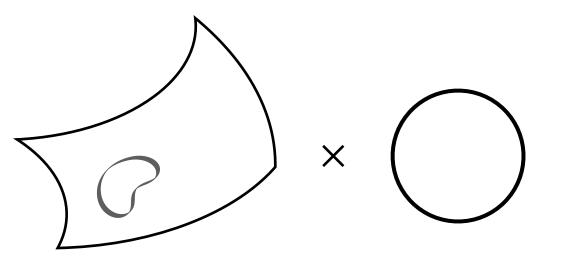


$$e(g) - \frac{c}{R^2} (\partial R)^2$$



It describes the parameters of the internal space

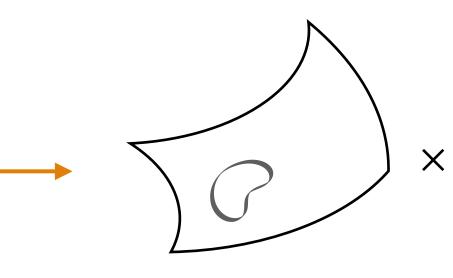


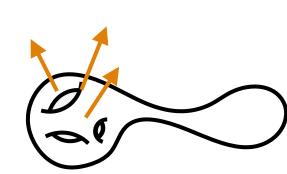


External space

internal space

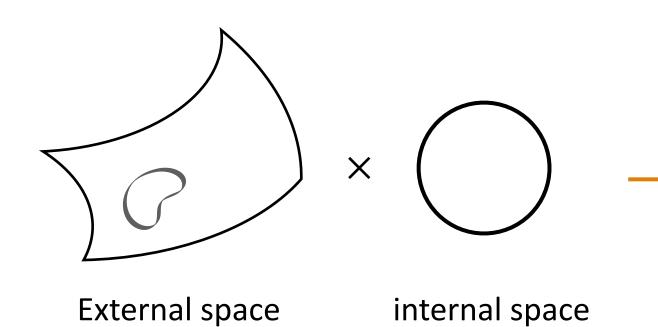
A much more challenging question...





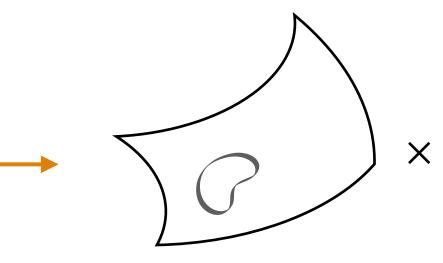
External space

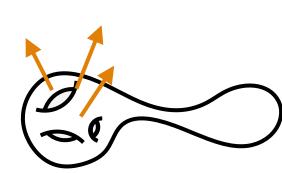
internal space



A much more challenging question...

> Backgrounds display curvature and/or fluxes: sources a scalar potential

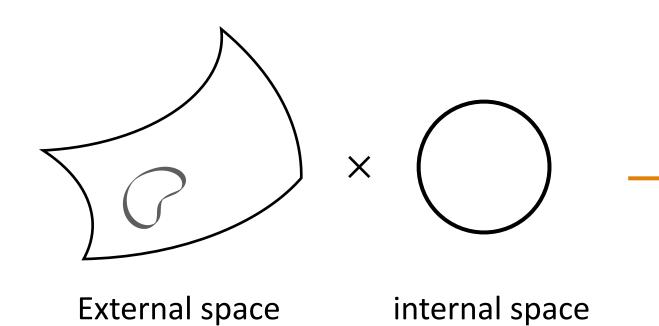




External space

internal space

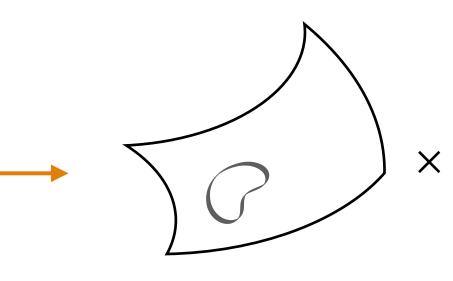
 $V(\varphi) \supset \mathcal{R}, H, \dots$

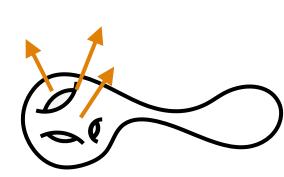


A much more challenging question...

> Backgrounds display curvature and/or fluxes: sources a scalar potential

> Under T-duality the backgrounds may display changes in topology

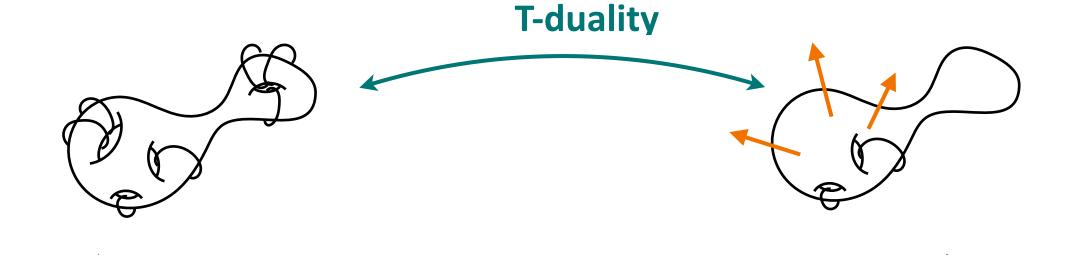


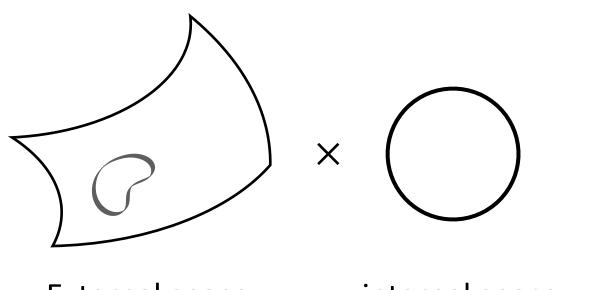


External space

internal space

 $V(\varphi) \supset \mathcal{R}, H, \dots$





External space

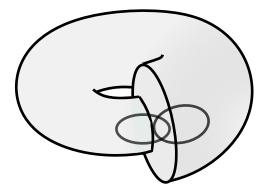
internal space

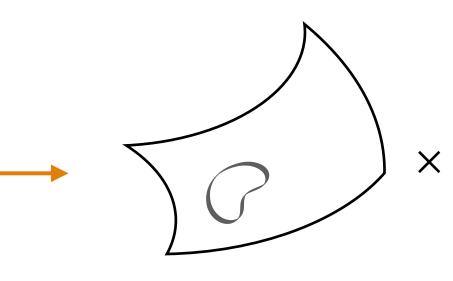
A much more challenging question...

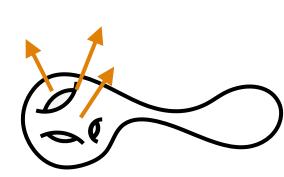
> Backgrounds display curvature and/or fluxes: sources a scalar potential

> Under T-duality the backgrounds may display changes in topology

> Non-geometric backgrounds



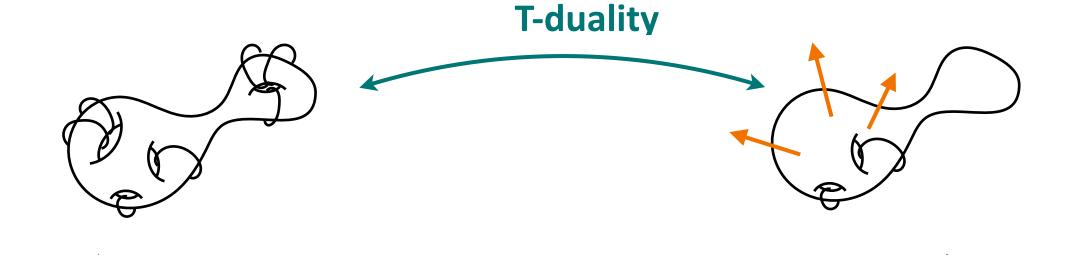


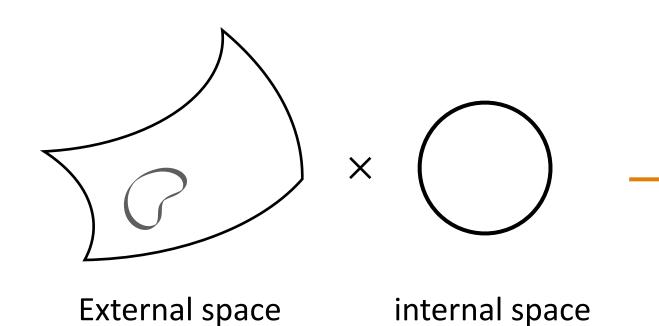


External space

internal space

 $V(\varphi) \supset \mathcal{R}, H, \dots$



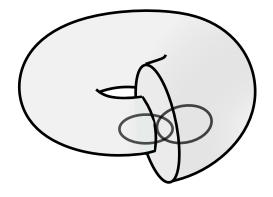


A much more challenging question...

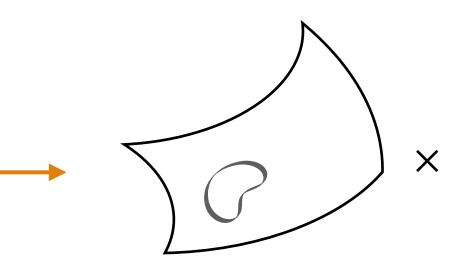
> Backgrounds display curvature and/or fluxes: sources a scalar potential

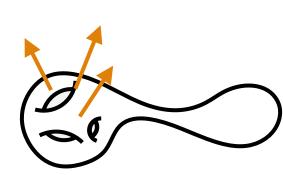
> Under **T-duality** the backgrounds may display changes in topology

> Non-geometric backgrounds



Do these properties modify the Swampland Distance Conjecture?

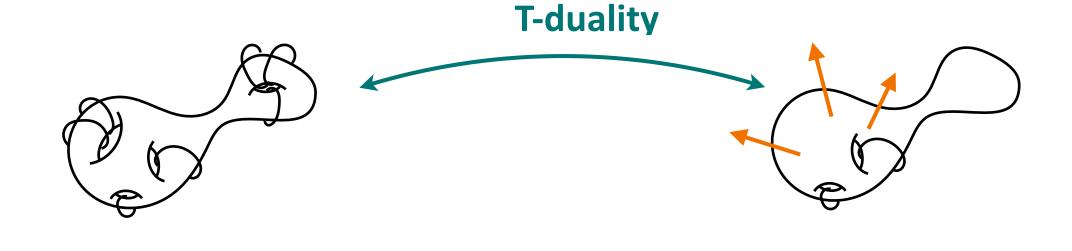




External space

internal space

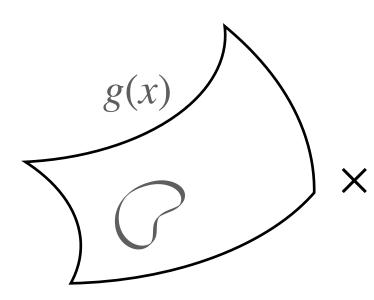
 $V(\varphi) \supset \mathcal{R}, H, \dots$



Generic setup & reduction

$$S = \frac{1}{2\kappa_0^2} \int \mathrm{d}^D X \sqrt{-G} e^{-2\Phi} \Big(\cdot \frac{1}{2\kappa_0^2} \Big) d^D X \sqrt{-G} e^{-2\Phi} \Big) d^D X \sqrt{-G} e^{-2\Phi} \Big(\cdot \frac{1}{2\kappa_0^2} \Big) d^D X \sqrt{-G} e^{-2\Phi} \Big) d^D X$$

Thomas Raml



$$h(y, \varphi^a)$$

 $\left(\mathcal{R}(G) - \frac{1}{12}H_{IJK}H^{IJK} + 4\partial_I \Phi \partial^I \Phi\right)$

External space

internal space dim = n

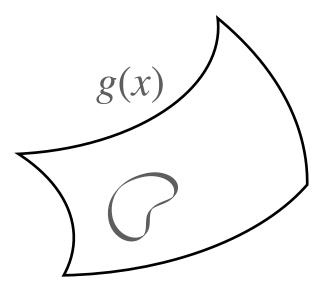
Generic setup & reduction

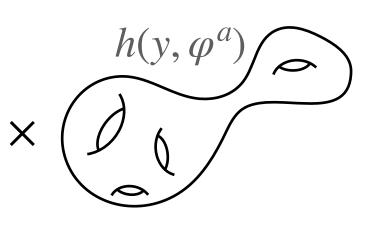
$$S = \frac{1}{2\kappa_0^2} \int \mathrm{d}^D X \sqrt{-G} e^{-2\Phi} \Big(A^{-2\Phi} \Big) \Big(A^{-2\Phi} \Big) \Big(A^{-2\Phi} \Big) \Big) = \frac{1}{2\kappa_0^2} \int \mathrm{d}^D X \sqrt{-G} e^{-2\Phi} \Big(A^{-2\Phi} \Big) \Big(A^{-2\Phi} \Big) \Big) = \frac{1}{2\kappa_0^2} \int \mathrm{d}^D X \sqrt{-G} e^{-2\Phi} \Big(A^{-2\Phi} \Big) \Big) = \frac{1}{2\kappa_0^2} \int \mathrm{d}^D X \sqrt{-G} e^{-2\Phi} \Big(A^{-2\Phi} \Big) \Big) = \frac{1}{2\kappa_0^2} \int \mathrm{d}^D X \sqrt{-G} e^{-2\Phi} \Big(A^{-2\Phi} \Big) \Big) = \frac{1}{2\kappa_0^2} \int \mathrm{d}^D X \sqrt{-G} e^{-2\Phi} \Big(A^{-2\Phi} \Big) = \frac{1}{2\kappa_0^2} \int \mathrm{d}^D X \sqrt{-G} e^{-2\Phi} \Big(A^{-2\Phi} \Big) = \frac{1}{2\kappa_0^2} \int \mathrm{d}^D X \sqrt{-G} e^{-2\Phi} \Big(A^{-2\Phi} \Big) = \frac{1}{2\kappa_0^2} \int \mathrm{d}^D X \sqrt{-G} e^{-2\Phi} \Big(A^{-2\Phi} \Big) = \frac{1}{2\kappa_0^2} \int \mathrm{d}^D X \sqrt{-G} e^{-2\Phi} \Big(A^{-2\Phi} \Big) = \frac{1}{2\kappa_0^2} \int \mathrm{d}^D X \sqrt{-G} e^{-2\Phi} \Big(A^{-2\Phi} \Big) = \frac{1}{2\kappa_0^2} \int \mathrm{d}^D X \sqrt{-G} e^{-2\Phi} \Big(A^{-2\Phi} \Big) = \frac{1}{2\kappa_0^2} \int \mathrm{d}^D X \sqrt{-G} e^{-2\Phi} \Big(A^{-2\Phi} \Big) = \frac{1}{2\kappa_0^2} \int \mathrm{d}^D X \sqrt{-G} e^{-2\Phi} \Big(A^{-2\Phi} \Big) = \frac{1}{2\kappa_0^2} \int \mathrm{d}^D X \sqrt{-G} e^{-2\Phi} \Big(A^{-2\Phi} \Big) = \frac{1}{2\kappa_0^2} \int \mathrm{d}^D X \sqrt{-G} e^{-2\Phi} \Big(A^{-2\Phi} \Big) = \frac{1}{2\kappa_0^2} \int \mathrm{d}^D X \sqrt{-G} e^{-2\Phi} \Big(A^{-2\Phi} \Big) = \frac{1}{2\kappa_0^2} \int \mathrm{d}^D X \sqrt{-G} e^{-2\Phi} \Big(A^{-2\Phi} \Big) = \frac{1}{2\kappa_0^2} \int \mathrm{d}^D X \sqrt{-G} e^{-2\Phi} \Big(A^{-2\Phi} \Big) = \frac{1}{2\kappa_0^2} \int \mathrm{d}^D X \sqrt{-G} e^{-2\Phi} \Big(A^{-2\Phi} \Big) = \frac{1}{2\kappa_0^2} \int \mathrm{d}^D X \sqrt{-G} e^{-2\Phi} \Big(A^{-2\Phi} \Big) = \frac{1}{2\kappa_0^2} \int \mathrm{d}^D X \sqrt{-G} e^{-2\Phi} \Big(A^{-2\Phi} \Big) = \frac{1}{2\kappa_0^2} \int \mathrm{d}^D X \sqrt{-G} e^{-2\Phi} \Big(A^{-2\Phi} \Big) = \frac{1}{2\kappa_0^2} \int \mathrm{d}^D X \sqrt{-G} e^{-2\Phi} \Big(A^{-2\Phi} \Big) = \frac{1}{2\kappa_0^2} \int \mathrm{d}^D X \sqrt{-G} e^{-2\Phi} \Big(A^{-2\Phi} \Big) = \frac{1}{2\kappa_0^2} \int \mathrm{d}^D X \sqrt{-G} e^{-2\Phi} \Big(A^{-2\Phi} \Big) = \frac{1}{2\kappa_0^2} \int \mathrm{d}^D X \sqrt{-G} e^{-2\Phi} \Big(A^{-2\Phi} \Big) = \frac{1}{2\kappa_0^2} \int \mathrm{d}^D X \sqrt{-G} e^{-2\Phi} \Big(A^{-2\Phi} \Big) = \frac{1}{2\kappa_0^2} \int \mathrm{d}^D X \sqrt{-G} e^{-2\Phi} \Big(A^{-2\Phi} \Big) = \frac{1}{2\kappa_0^2} \int \mathrm{d}^D X \sqrt{-G} e^{-2\Phi} \Big(A^{-2\Phi} \Big) = \frac{1}{2\kappa_0^2} \int \mathrm{d}^D X \sqrt{-G} e^{-2\Phi} \Big(A^{-2\Phi} \Big) = \frac{1}{2\kappa_0^2} \int \mathrm{d}^D X \sqrt{-G} e^{-2\Phi} \Big) = \frac{1}{2\kappa_$$

$$G(x, y) = g(x) \oplus h(y, \varphi^{a}(x))$$

$$V = S \sim \int d^{D-n}x \sqrt{-g} \left(\mathscr{R}(g) - \gamma_{ab} \partial_{\mu} \varphi^{a} \partial^{\mu} \varphi^{b} - V(\varphi^{a}) \right)$$

Thomas Raml

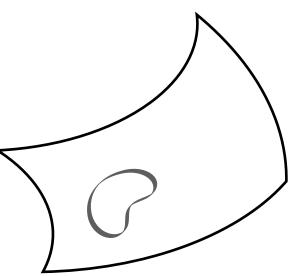




 $\left(\mathcal{R}(G) - \frac{1}{12}H_{IJK}H^{IJK} + 4\partial_I \Phi \partial^I \Phi\right)$

External space

internal space dim = n



Low-energy EFT on "External manifold"

Generic setup & reduction

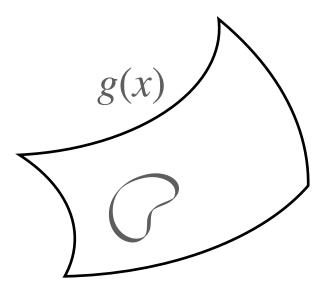
$$S = \frac{1}{2\kappa_0^2} \int \mathrm{d}^D X \sqrt{-G} e^{-2\Phi} \Big(A^{-2\Phi} \Big) \Big(A^{-2\Phi} \Big) \Big(A^{-2\Phi} \Big) \Big) = \frac{1}{2\kappa_0^2} \int \mathrm{d}^D X \sqrt{-G} e^{-2\Phi} \Big(A^{-2\Phi} \Big) \Big(A^{-2\Phi} \Big) \Big) = \frac{1}{2\kappa_0^2} \int \mathrm{d}^D X \sqrt{-G} e^{-2\Phi} \Big(A^{-2\Phi} \Big) \Big(A^{-2\Phi} \Big) \Big) = \frac{1}{2\kappa_0^2} \int \mathrm{d}^D X \sqrt{-G} e^{-2\Phi} \Big(A^{-2\Phi} \Big) \Big(A^{-2\Phi} \Big) \Big) = \frac{1}{2\kappa_0^2} \int \mathrm{d}^D X \sqrt{-G} e^{-2\Phi} \Big(A^{-2\Phi} \Big) \Big) = \frac{1}{2\kappa_0^2} \int \mathrm{d}^D X \sqrt{-G} e^{-2\Phi} \Big(A^{-2\Phi} \Big) \Big) = \frac{1}{2\kappa_0^2} \int \mathrm{d}^D X \sqrt{-G} e^{-2\Phi} \Big(A^{-2\Phi} \Big) = \frac{1}{2\kappa_0^2} \int \mathrm{d}^D X \sqrt{-G} e^{-2\Phi} \Big(A^{-2\Phi} \Big) = \frac{1}{2\kappa_0^2} \int \mathrm{d}^D X \sqrt{-G} e^{-2\Phi} \Big(A^{-2\Phi} \Big) = \frac{1}{2\kappa_0^2} \int \mathrm{d}^D X \sqrt{-G} e^{-2\Phi} \Big(A^{-2\Phi} \Big) = \frac{1}{2\kappa_0^2} \int \mathrm{d}^D X \sqrt{-G} e^{-2\Phi} \Big(A^{-2\Phi} \Big) = \frac{1}{2\kappa_0^2} \int \mathrm{d}^D X \sqrt{-G} e^{-2\Phi} \Big(A^{-2\Phi} \Big) = \frac{1}{2\kappa_0^2} \int \mathrm{d}^D X \sqrt{-G} e^{-2\Phi} \Big(A^{-2\Phi} \Big) = \frac{1}{2\kappa_0^2} \int \mathrm{d}^D X \sqrt{-G} e^{-2\Phi} \Big(A^{-2\Phi} \Big) = \frac{1}{2\kappa_0^2} \int \mathrm{d}^D X \sqrt{-G} e^{-2\Phi} \Big(A^{-2\Phi} \Big) = \frac{1}{2\kappa_0^2} \int \mathrm{d}^D X \sqrt{-G} e^{-2\Phi} \Big(A^{-2\Phi} \Big) = \frac{1}{2\kappa_0^2} \int \mathrm{d}^D X \sqrt{-G} e^{-2\Phi} \Big(A^{-2\Phi} \Big) = \frac{1}{2\kappa_0^2} \int \mathrm{d}^D X \sqrt{-G} e^{-2\Phi} \Big(A^{-2\Phi} \Big) = \frac{1}{2\kappa_0^2} \int \mathrm{d}^D X \sqrt{-G} e^{-2\Phi} \Big(A^{-2\Phi} \Big) = \frac{1}{2\kappa_0^2} \int \mathrm{d}^D X \sqrt{-G} e^{-2\Phi} \Big(A^{-2\Phi} \Big) = \frac{1}{2\kappa_0^2} \int \mathrm{d}^D X \sqrt{-G} e^{-2\Phi} \Big(A^{-2\Phi} \Big) = \frac{1}{2\kappa_0^2} \int \mathrm{d}^D X \sqrt{-G} e^{-2\Phi} \Big) = \frac{1}{2\kappa_0^2} \int \mathrm{d}^D X \sqrt{-G} e^{-2\Phi} \Big(A^{-2\Phi} \Big) = \frac{1}{2\kappa_0^2} \int \mathrm{d}^D X \sqrt{-G} e^{-2\Phi} \Big) = \frac{1}{2\kappa_0^2} \int \mathrm{d}^D X \sqrt{-G} e^{$$

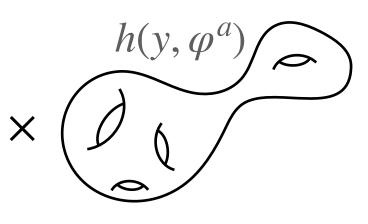
$$S \sim \int \mathrm{d}^{D-n} x \sqrt{-g} \left(\mathscr{R}(g) - \gamma_{ab} \partial_{\mu} \varphi^{a} \partial^{\mu} \varphi^{b} - V(\varphi^{a}) \right)$$

$$\gamma_{ab} \sim \int \mathrm{d}^n y \sqrt{h} \Big(\mathrm{tr} \big(h^{-1} \partial_{\varphi_a} h \ h^{-1} \partial_{\varphi_b} h \big) - \mathrm{tr} \big(h^{-1} \partial_{\varphi_a} B \ h^{-1} \partial_{\varphi_b} B \big)$$

$$V(\varphi^{i}) \sim \int d^{n}y \sqrt{h} \left(\mathcal{R}(h) - \frac{1}{12} H_{ijk} H^{ijk} + 4\partial_{i} \Phi \partial^{i} \Phi \right)$$

Thomas Raml



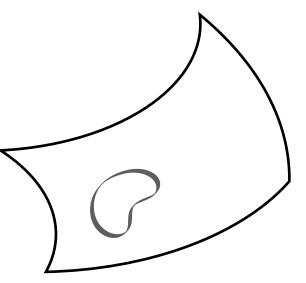


 $\left(\mathcal{R}(G) - \frac{1}{12}H_{IJK}H^{IJK} + 4\partial_I \Phi \partial^I \Phi\right)$

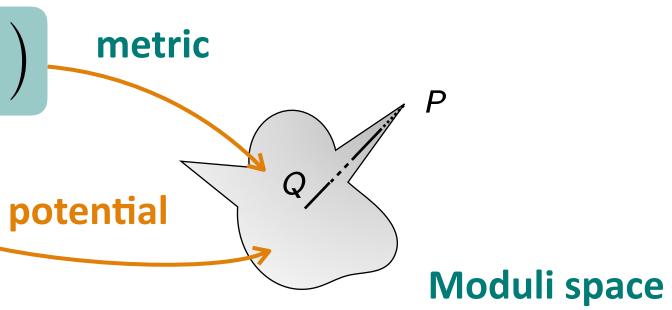
External space

internal space dim = n

$$G(x, y) = g(x) \oplus h(y, \varphi^{a}(x))$$



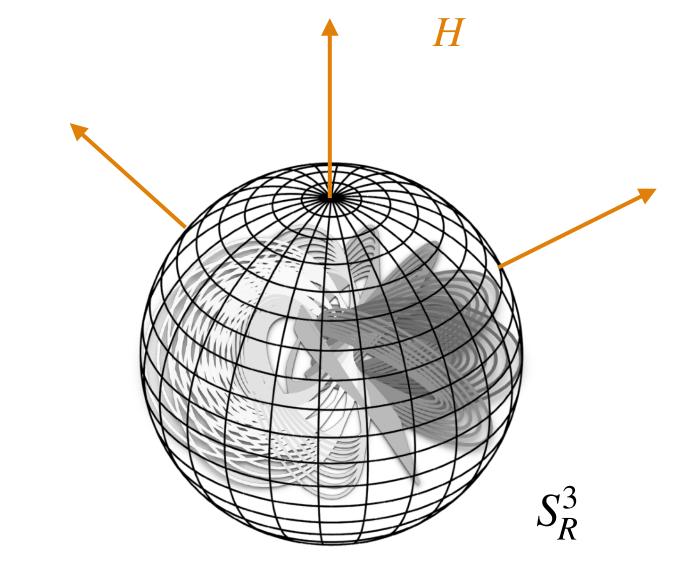
Low-energy EFT on "External manifold"

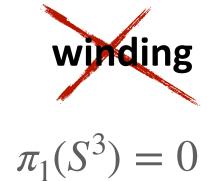


Example: S^3 with *H*-flux

 $S_{\rm EH} \sim \int d^d x \sqrt{-g} \Big(\mathscr{R}(g) - \gamma_{ab} \partial_\mu \varphi^a \partial^\mu \varphi^b - V(\varphi^a) \Big)$

 $ds^{2} = R^{2}(d\eta^{2} + d\xi_{1}^{2} + d\xi_{2}^{2} + 2\cos(\eta)d\xi_{1}^{2}d\xi_{2}^{2})$ $H = k \sin(\eta) d\eta \wedge d\xi_1 \wedge d\xi_2$





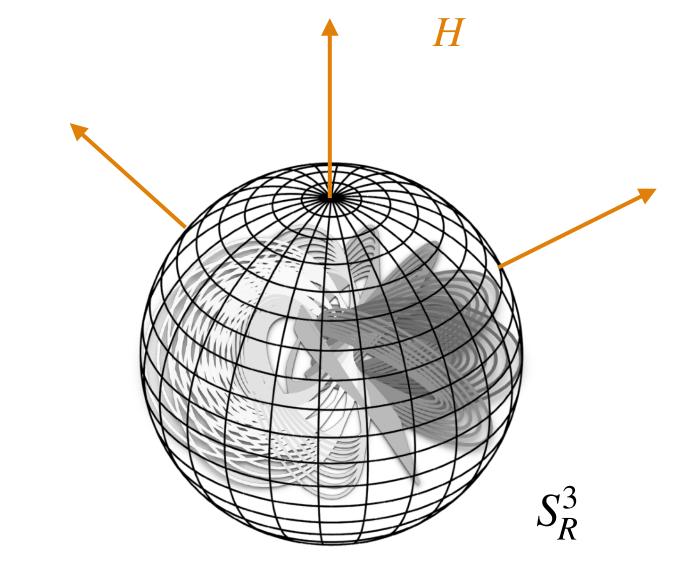
Thomas Raml

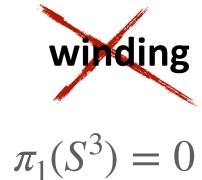
$$\gamma_{RR} = \frac{3}{R^2}$$
$$V(R;k) = -\frac{3}{2R^2} + \frac{k^2}{R^6}$$

Example: S^3 with *H*-flux

 $S_{\rm EH} \sim \int d^d x \sqrt{-g} \left(\mathscr{R}(g) - \gamma_{ab} \partial_\mu \varphi^a \partial^\mu \varphi^b - V(\varphi^a) \right)$ $ds^2 = R^2$

H = k





Thomas Raml

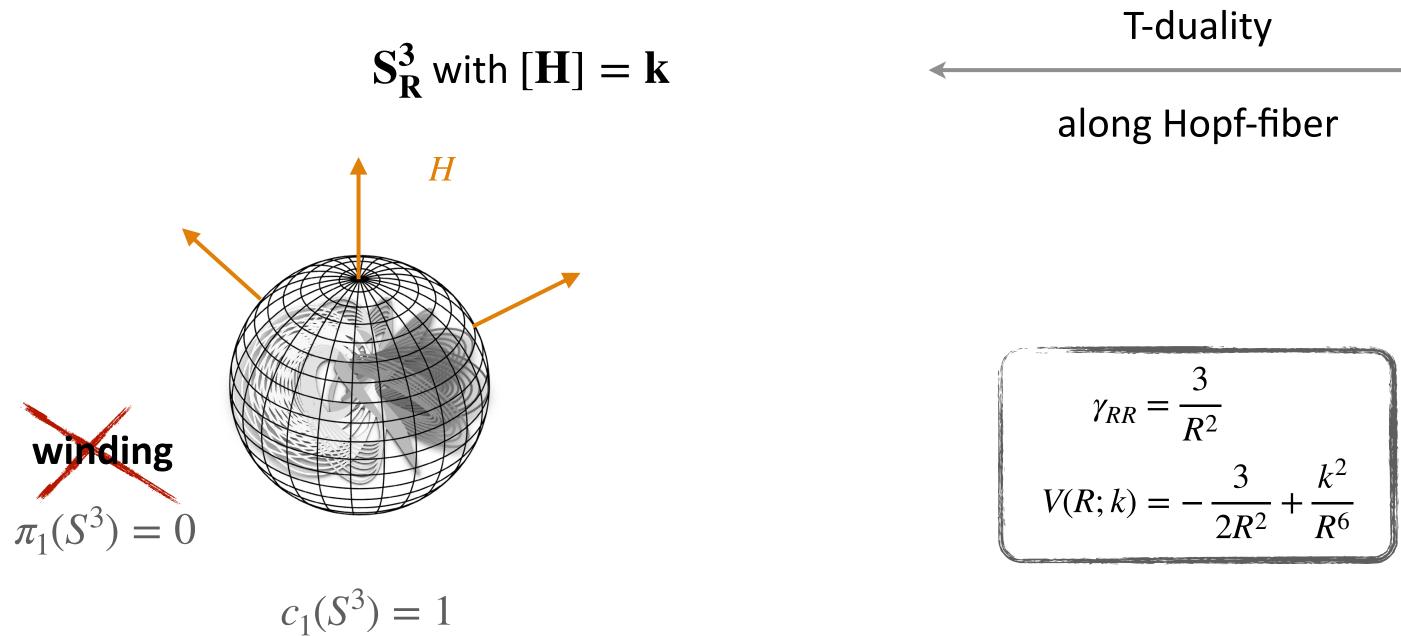
$$\gamma_{RR} = \frac{3}{R^2}$$
$$V(R;k) = -\frac{3}{2R^2} + \frac{k^2}{R^6}$$

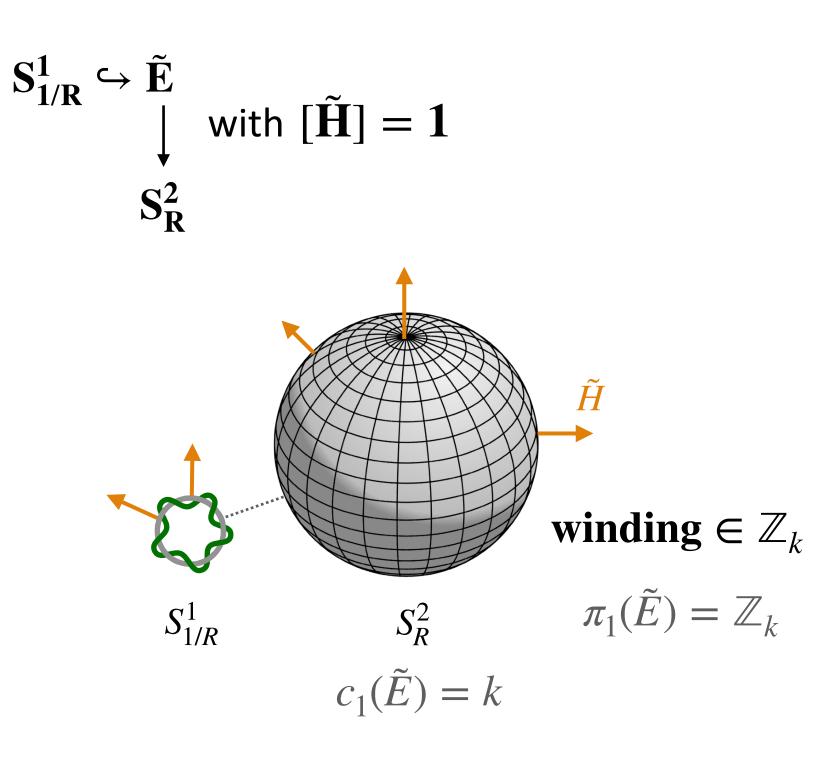
$$R^{2}(d\eta^{2} + d\xi_{1}^{2} + d\xi_{2}^{2} + 2\cos(\eta)d\xi_{1}^{2}d\xi_{2}^{2}$$

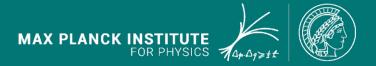
$$sin(\eta)d\eta \wedge d\xi_{1} \wedge d\xi_{2}$$

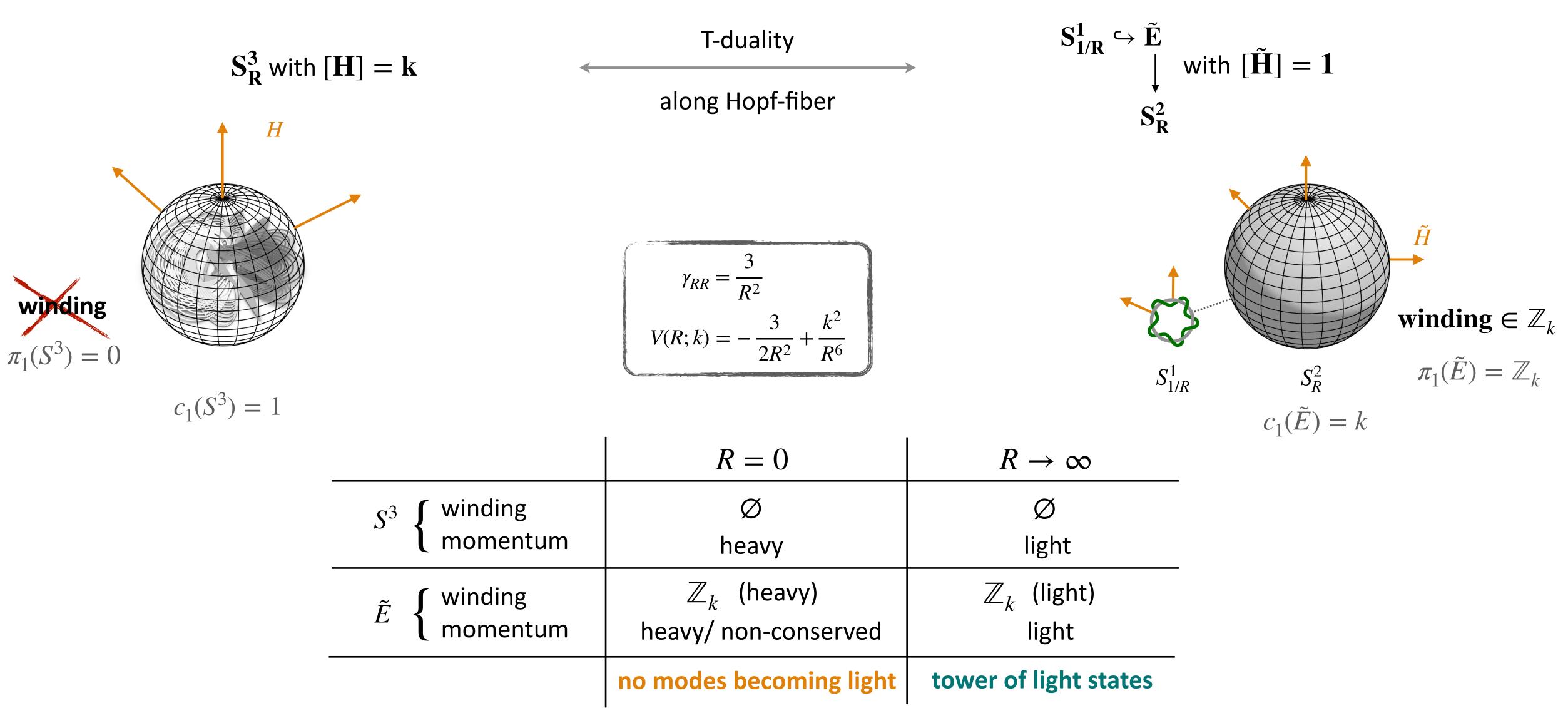
How is absence of winding modes compatible with **T-duality**?

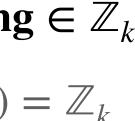
What does this mean for the **Swampland Distance Conjecture**?

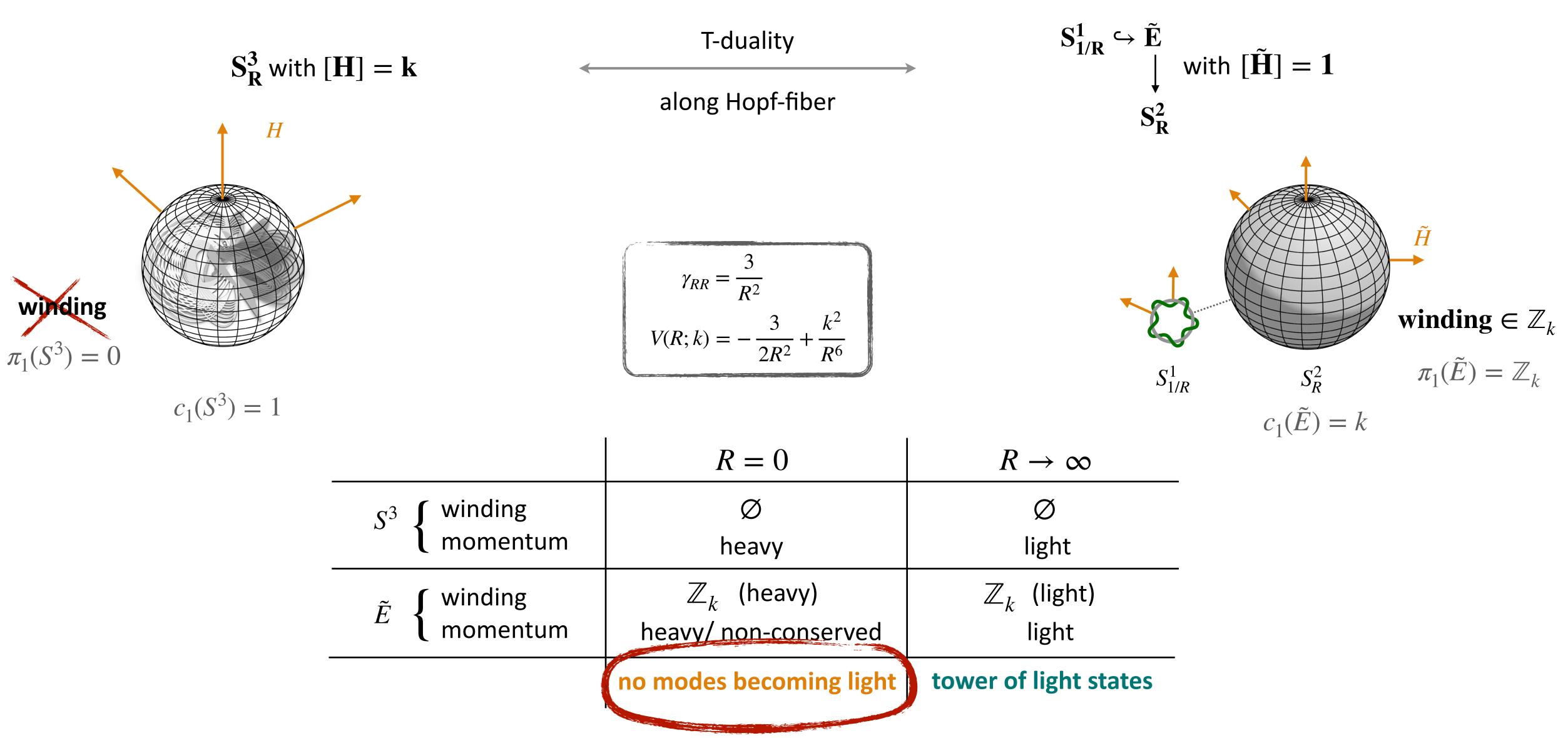




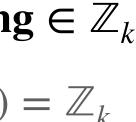




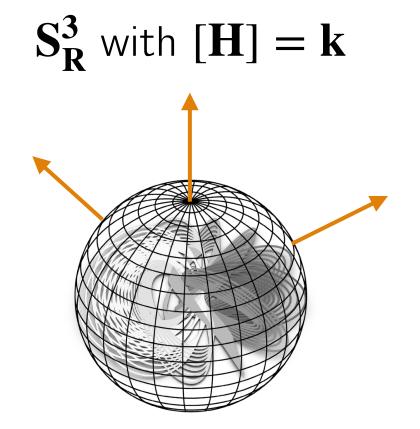




Thomas Raml



Distance Conjecture:

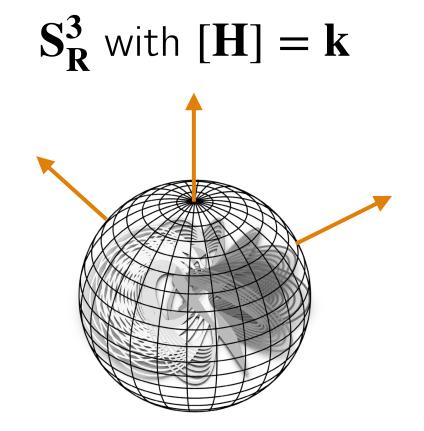


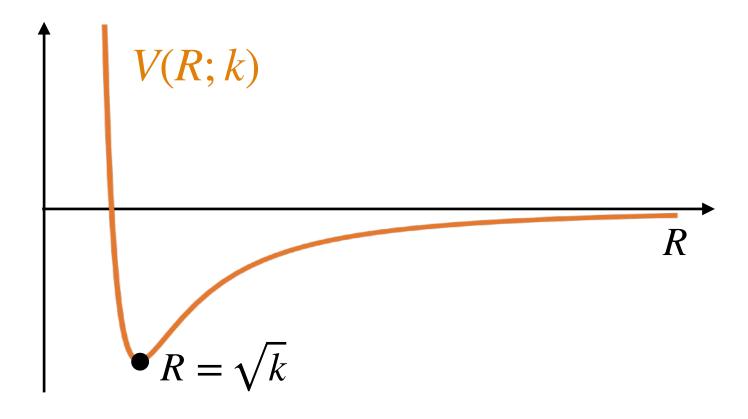
Apparent inconsistency: S^3 with appropriately tuned H-flux is **valid string background** and therefore should be in the Landscape

$$\gamma_{RR} = \frac{3}{R^2}$$
$$V(R;k) = -\frac{3}{2R^2} + \frac{3}{2R^2}$$

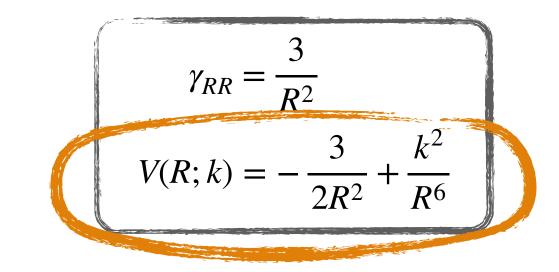
However there is **no tower of light states** for $R \rightarrow 0$ which is an infinite distance limit

Distance Conjecture:





Thomas Raml

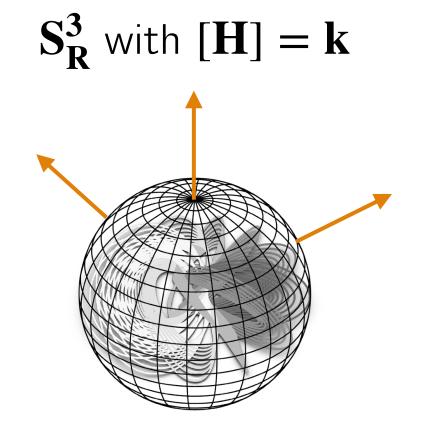


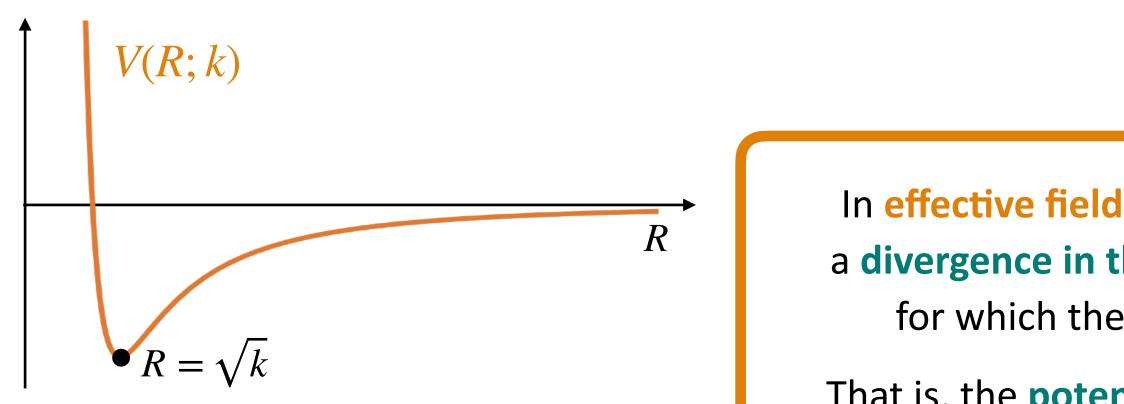
Apparent inconsistency: S^3 with appropriately tuned H-flux is **valid string background** and therefore should be in the Landscape

> However there is **no tower of light states** for $R \rightarrow 0$ which is an infinite distance limit

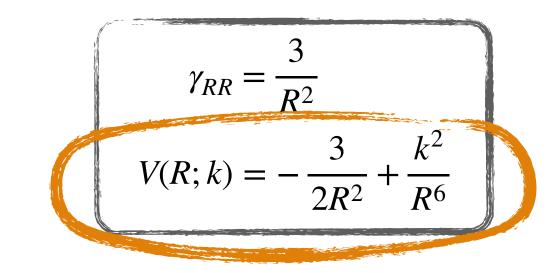
> > ...need to take into account scalar potential

Distance Conjecture:





Thomas Raml



Apparent inconsistency: S^3 with appropriately tuned H-flux is valid string background and therefore should be in the Landscape

> However there is **no tower of light states** for $R \rightarrow 0$ which is an infinite distance limit

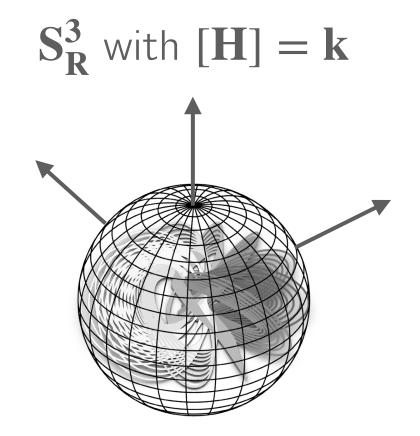
> > ...need to take into account scalar potential

[Demulder, Lüst, TR '23]

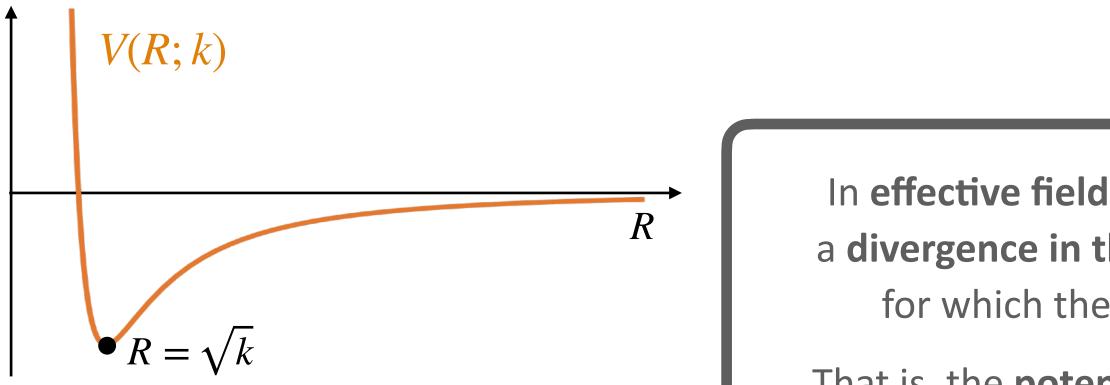
In effective field theories that can be lifted to a theory of quantum gravity in the UV, a divergence in the scalar potential emerges when approaching an infinite locus point for which the target space geometry cannot give rise to a light tower of states.

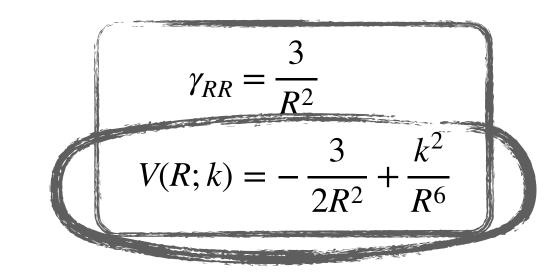
That is, the **potential signals pathological infinite distance loci** in the scalar field space.

► Distance Conjecture:



Apparent inconsistency: S^3 with appropriately tuned H-flux is valid string background
and therefore should be in the LandscapeHowever there is no tower of light states for $R \rightarrow 0$
which is an infinite distance limit





...need to take into account scalar potential

[Demulder, Lüst, TR '23]

In effective field theories that can be lifted to a theory of quantum gravity in the UV, a divergence in the scalar potential emerges when approaching an infinite locus point for which the target space geometry cannot give rise to a light tower of states.

That is, the **potential signals pathological infinite distance loci** in the scalar field space.

► Invariance of metric & flux variations:

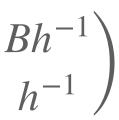
Metric on moduli space given by

$$\gamma_{ab} \sim \int d^{n}y \sqrt{h} \left(\operatorname{tr} \left(h^{-1} \partial_{\varphi_{a}} h \ h^{-1} \partial_{\varphi_{b}} h \right) - \operatorname{tr} \left(h^{-1} \partial_{\varphi_{a}} B \ h^{-1} \partial_{\varphi_{b}} B \right) \right)$$

$$= \frac{1}{2} \operatorname{tr} \left[(\mathscr{H}^{-1} \partial_{\varphi_{a}} \mathscr{H})^{2} \right] \qquad O(d, d) \ni \mathscr{H} = \begin{pmatrix} h - Bh^{-1}B & H \\ -h^{-1}B \end{pmatrix}$$

So by O(d, d) invariance γ_{ab} is invariant under (abelian) T-duality.

[Demulder, Lüst, TR '23]



► Invariance of metric & flux variations:

Metric on moduli space given by

$$\gamma_{ab} \sim \int d^{n}y \sqrt{h} \left(\operatorname{tr} \left(h^{-1} \partial_{\varphi_{a}} h \ h^{-1} \partial_{\varphi_{b}} h \right) - \operatorname{tr} \left(h^{-1} \partial_{\varphi_{a}} B \ h^{-1} \partial_{\varphi_{b}} B \right) \right)$$

$$= \frac{1}{2} \operatorname{tr} \left[(\mathscr{H}^{-1} \partial_{\varphi_{a}} \mathscr{H})^{2} \right] \qquad O(d, d) \ni \mathscr{H} = \begin{pmatrix} h - Bh^{-1}B & H \\ -h^{-1}B \end{pmatrix}$$

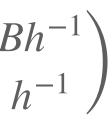
So by O(d, d) invariance γ_{ab} is invariant under (abelian) T-duality.

Example:
$$S^3$$
 with k(x)= $R^2(x)$ \leftarrow \tilde{E}

 $ilde{\mathbf{E}}$...modulus only in spacetime metric h

 γ_{RR} obtained in standard way from "deWitt" metric

[Demulder, Lüst, TR '23]



Invariance of metric & flux variations:

Metric on moduli space given by

$$\gamma_{ab} \sim \int d^{n}y \sqrt{h} \left(\operatorname{tr} \left(h^{-1} \partial_{\varphi_{a}} h \ h^{-1} \partial_{\varphi_{b}} h \right) - \operatorname{tr} \left(h^{-1} \partial_{\varphi_{a}} B \ h^{-1} \partial_{\varphi_{b}} B \right) \right)$$

$$= \frac{1}{2} \operatorname{tr} \left[(\mathscr{H}^{-1} \partial_{\varphi_{a}} \mathscr{H})^{2} \right] \qquad O(d, d) \ni \mathscr{H} = \begin{pmatrix} h - Bh^{-1} B & H \\ -h^{-1} B \end{pmatrix}$$

So by O(d, d) invariance γ_{ab} is invariant under (abelian) T-duality.

Example:
$$S^3$$
 with k(x)= $R^2(x)$ \leftarrow \tilde{E}

É ...modulus only in spacetime metric h

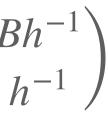
 γ_{RR} obtained in standard way from "deWitt" metric

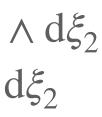
 $\tilde{\gamma}_{RR} = \gamma_{RR}$ only if **flux variation** are taken into account

[Demulder, Lüst, TR '23]

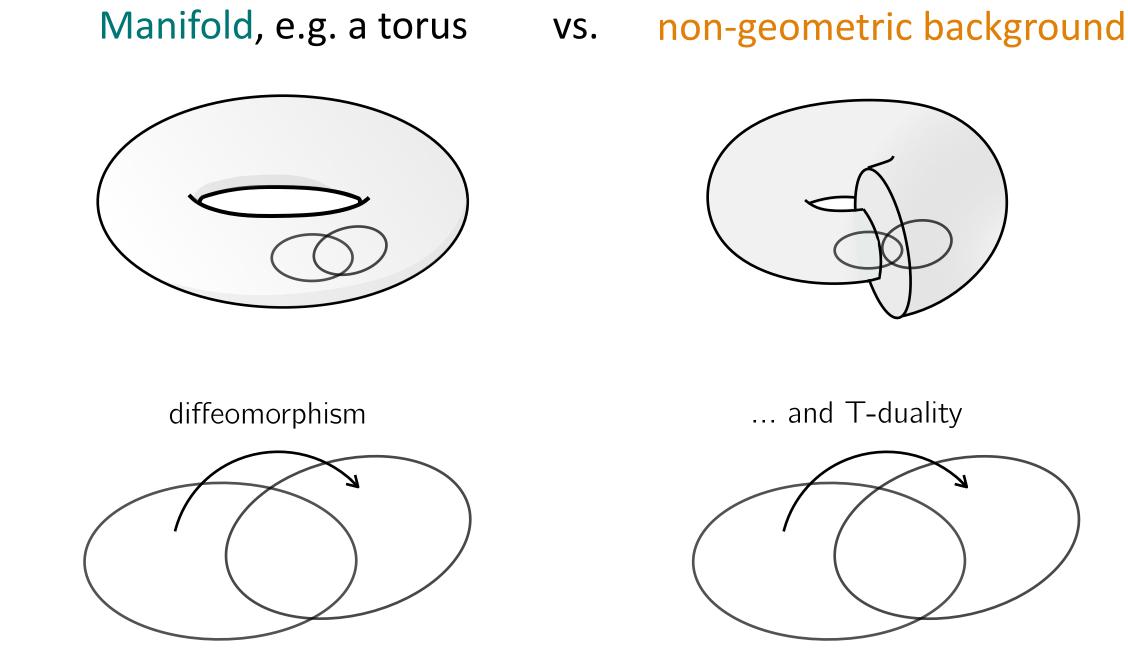
 $H = R^{2} \sin(\eta) d\eta \wedge d\xi_{1} \wedge d\xi_{2}$ $B = -R^{2} \cos(\eta) d\xi_{1} \wedge d\xi_{2}$ $S_{R}^{3} \text{ with } [\mathbf{H}] = \mathbf{k} = \mathbf{R}^{2} \quad \dots \text{modulus in h and B}$ also contribution $\operatorname{tr} \left(h^{-1} \partial_{\varphi_{a}} B \ h^{-1} \partial_{\varphi_{b}} B \right) \neq 0 \subset \gamma_{RR}$

c.f also [Li,Palti,Petri '23][Palti,Petri '24]





Described locally by Riemannian geometry with fluxes. However, transition functions are allowed to be T-dualities.

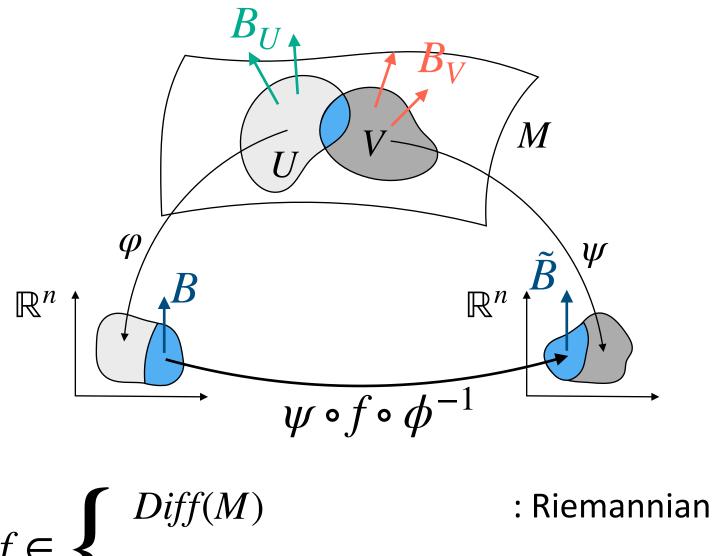


"Inevitable" in string theory

Moduli stabilisation

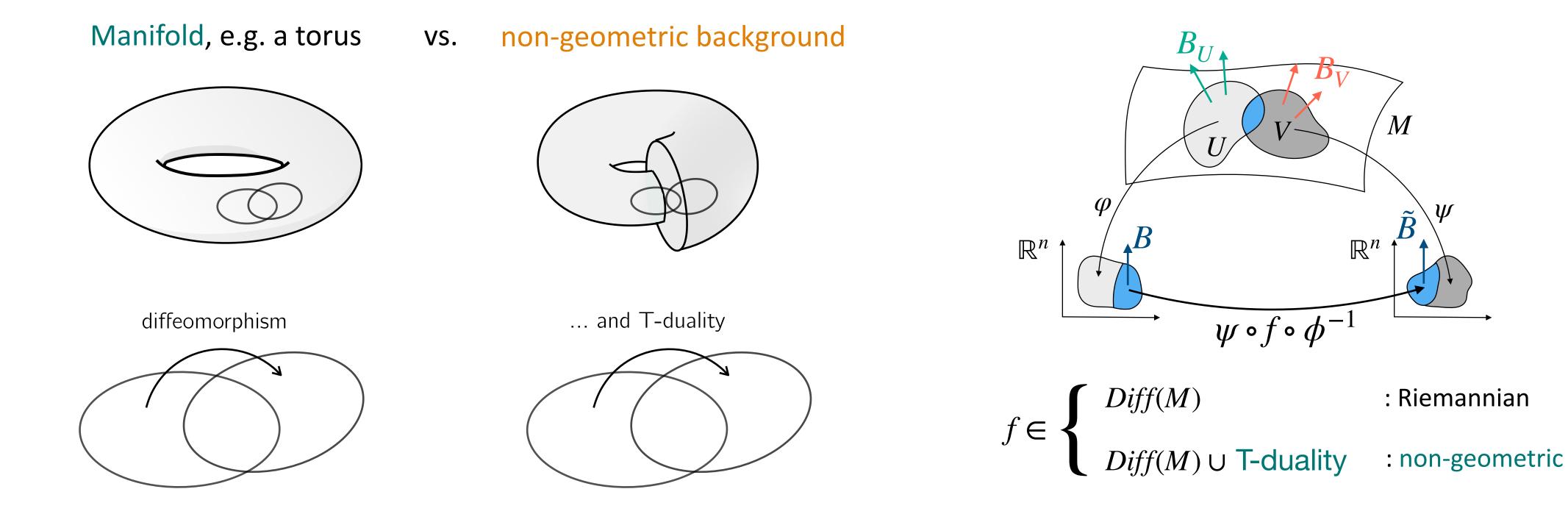
[Becker, Becker, Blumenhagen, Lüst, Plauschinn, Shelton, Taylor, Vafa, Wecht, Walcher, ...]

[Dabholkar, Hull '02&'05; Flournoy, Wecht, Williams '04...]



 $f \in \mathbf{k}$ $Diff(M) \cup \mathsf{T-duality}$: non-geometric

Described locally by Riemannian geometry with fluxes. However, transition functions are allowed to be T-dualities.



"Inevitable" in string theory

Moduli stabilisation

[Becker, Becker, Blumenhagen, Lüst, Plauschinn, Shelton, Taylor, Vafa, Wecht, Walcher, ...]

In addition to standard fluxes, there are non-geometric fluxes, called Q- and R-fluxes.

[Dabholkar, Hull '02&'05; Flournoy, Wecht, Williams '04...]

 $H_{ijk} \rightarrow f_{ij}^{\ k} \rightarrow Q_i^{\ jk} \rightarrow R^{ijk}$ Basic example: T-duality chain of T^3 with H-flux

Are these valid backgrounds for quantum gravity?

Generically the action of non-geometric backgrounds is ill-defined in standard NSNS frame

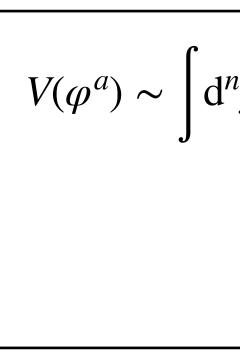
- How to obtain previous reduction procedure?
- ▷ How to obtain metric & potential on moduli space
 - Consistent picture under T-duality?

 $\theta \simeq \theta + 2\pi$ $g_{\mu\nu}(\theta + 2\pi) \neq g_{\mu\nu}(\theta)$

Generically the action of non-geometric backgrounds is ill-defined in standard NSNS frame

How to obtain previous reduction procedure?

- ▷ How to obtain metric & potential on moduli space
 - Consistent picture under T-duality?



Perform the field redefinition: $(h + B)^{-1} = (\tilde{h}^{-1} + \beta)$

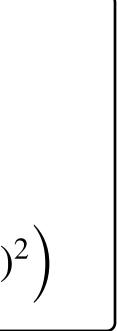
 $\theta \simeq \theta + 2\pi$ $g_{\mu\nu}(\theta + 2\pi) \neq g_{\mu\nu}(\theta)$

$$\tilde{V}_{y}\sqrt{h_{0}}\left(\mathscr{R}(h)-\frac{1}{12}H^{2}+4(\partial\Phi_{y})^{2}\right)$$

$$\tilde{V}(\varphi^{a})\sim\int d^{n}y\sqrt{\tilde{h}_{0}}\left(\mathscr{R}(\tilde{h})-\frac{1}{4}Q^{2}+4(\partial\tilde{\Phi}_{y})^{2}\right)$$

$$\mathcal{L}_{\beta}=\mathscr{L}_{NSNS}+\partial(\ldots)$$

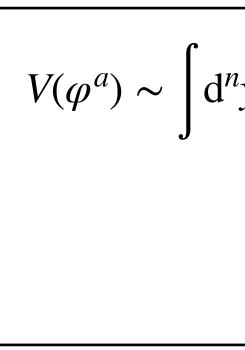
$$\dots \beta\text{-supergravity action}$$
[Andriot,Larfors,Lüst,Patalong '11]



Generically the action of non-geometric backgrounds is ill-defined in standard NSNS frame

How to obtain previous reduction procedure?

- > How to obtain metric & potential on moduli space
 - Consistent picture under T-duality?



Perform the **field redefinition**: $(h + B)^{-1} = (\tilde{h}^{-1} + \beta)$

Crucial to use β -supergravity for consitency of non-geometry backgrounds & geometric duals:

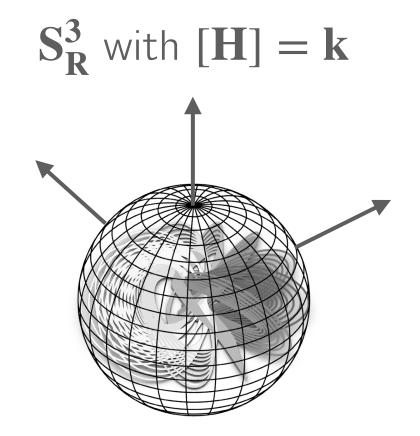
A consistent picture between a (globally) non-geometric space and its geometric dual - i.e. matching moduli spaces, potentials and towers of states -

can be established only after moving to the β -frame, where the background is well-defined.

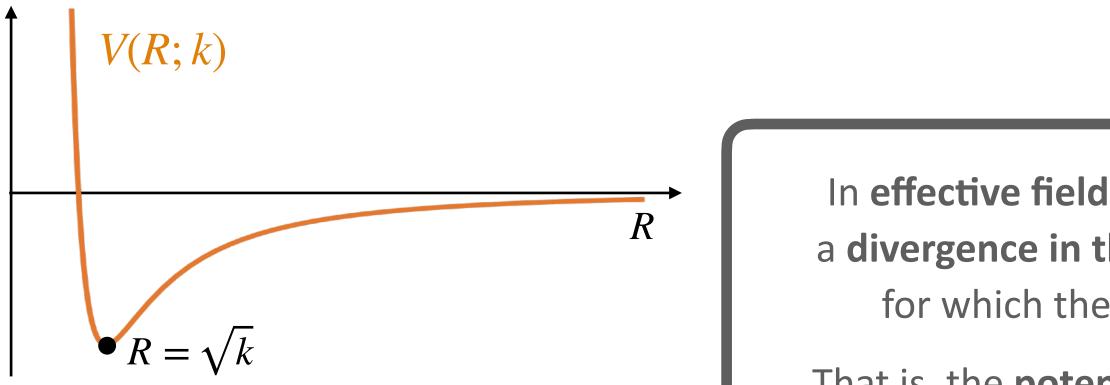
 $\theta \simeq \theta + 2\pi$ $g_{\mu\nu}(\theta + 2\pi) \neq g_{\mu\nu}(\theta)$

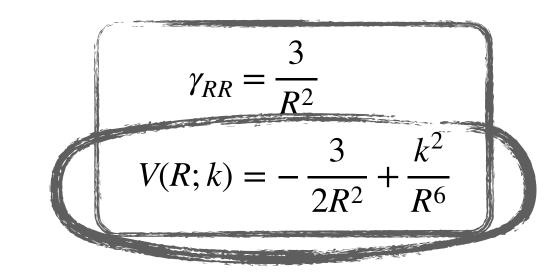
[Demulder, Lüst, TR '23]

► Distance Conjecture:



Apparent inconsistency: S^3 with appropriately tuned H-flux is valid string background
and therefore should be in the LandscapeHowever there is no tower of light states for $R \rightarrow 0$
which is an infinite distance limit





...need to take into account scalar potential

[Demulder, Lüst, TR '23]

In effective field theories that can be lifted to a theory of quantum gravity in the UV, a divergence in the scalar potential emerges when approaching an infinite locus point for which the target space geometry cannot give rise to a light tower of states.

That is, the **potential signals pathological infinite distance loci** in the scalar field space.

A different perspective

In which sense is R = 0 at infinite distance in the presence of a (divergent) scalar potential?

> Is the point "reachable" in the presence of a divergent potential?

> What is a **"good"** notion of **distance**?

A different perspective

> Is the point "reachable" in the presence of a divergent potential?

> What is a **"good"** notion of **distance**?

There is a plethora of works, examining the notion of distance in various settings.

Very recently taking into account a scalar potential:

- In which sense is R = 0 at infinite distance in the presence of a (divergent) scalar potential?

- [Mohseni, Montero, Vafa, Valenzuela '24]
 - Debusschere, Tonioni, van Riet '24]
 - ▷ [De Biasio '22]

A different perspective

▷ Is the point **"reachable"** in the presence of a divergent **potential**?

> What is a **"good"** notion of **distance**?

There is a plethora of works, examining the notion of distance in various settings.

Very recently taking into account a scalar potential:

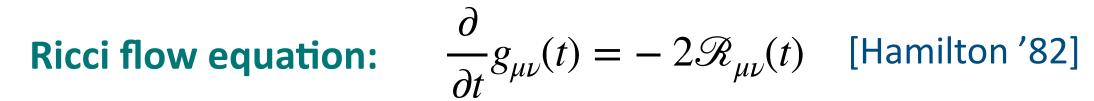
- In which sense is R = 0 at infinite distance in the presence of a (divergent) scalar potential?

- [Mohseni, Montero, Vafa, Valenzuela '24]
 - Debusschere, Tonioni, van Riet '24]
 - ▷ [De Biasio '22]

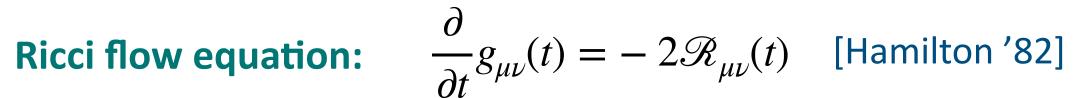
...another somewhat alternative aporach: Ricci flow

[Kehagias, Lüst, Lüst '19]

Ricci flow & Ricci flow Conjecture

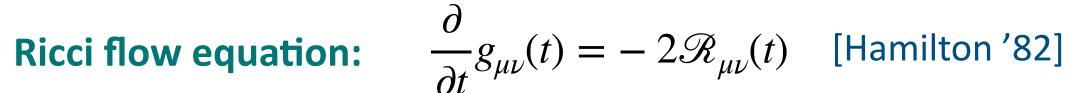


Ricci flow & Ricci flow Conjecture



Ricci flow Conjecture: Take a family of metrics $g_{\mu\nu}(t)$ satisfying Ricci flow equation. There is a infinite tower of states becoming massless when approaching a fixed point $\partial_t g_{\mu\nu}(t)|_{t=t_0} = 0$ at infinite distance. [Kehagias, Lüst, Lüst '19]

Ricci flow & Ricci flow Conjecture



Ricci flow Conjecture: Take a family of metrics $g_{\mu\nu}(t)$ satisfying Ricci flow equation. There is a infinite tower of states

AdS:
$$\mathscr{R}_{\mu\nu}(0) = \Lambda_0 \hat{g}_{\mu\nu} \longrightarrow \Lambda(t) = \frac{\Lambda_0}{(1 - 2\Lambda_0 t)}$$

fixed point with $\Lambda = 0$ as $t \to \infty$

Thomas Raml

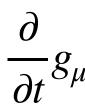
becoming massless when approaching a fixed point $\partial_t g_{\mu\nu}(t)|_{t=t_0} = 0$ at infinite distance. [Kehagias, Lüst, Lüst '19]

$$\Delta_{g} \sim \int_{\tau_{i}}^{\tau_{f}} \left(\frac{1}{V_{M}} \int_{M} \sqrt{(g)} g^{mn} g^{op} \frac{\partial g_{mp}}{\partial \tau} \frac{\partial g_{np}}{\partial \tau}\right)^{1/2} d\tau$$

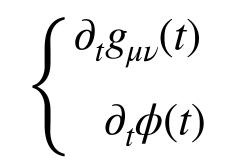
$$\begin{cases} \mathsf{I}: \Delta_{g} \simeq \log(1 - 2\Lambda_{0}t) \to \infty \\ \mathsf{II}: \Delta_{R} \equiv \log\left(\frac{\mathscr{R}(0)}{\mathscr{R}(t)}\right) \sim \log(1 - 2\Lambda_{0}t) \to \infty \\ \text{[Kehagias, Lüst, Lüst]} \end{cases}$$

Ricci flow Conjecture \implies **AdS Distance Conjecture**

Distance from Entropy functionals



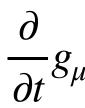
Including the dilation leads to **Perelmans combined flow** [Perelman '02]



Ricci flow equation: $\frac{\partial}{\partial t}g_{\mu\nu}(t) = -2\mathscr{R}_{\mu\nu}(t)$ [Hamilton '82]

$$= -2\mathscr{R}_{\mu\nu}(t)$$
$$= -\frac{1}{2}\mathscr{R}(t) - \Delta\phi(t) + 2(\nabla\phi(t))^2$$

Distance from Entropy functionals



Including the dilation leads to **Perelmans combined flow** [Perelman '02]

...gradient with respect to "Entropy Functional"

 $\mathscr{F}(g,f) = \int_{M} \mathrm{d}^{d} x \sqrt{d} x$

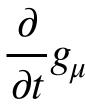
 $\begin{cases} \partial_t g_{\mu\nu}(t) \\ \partial_t \phi(t) \end{cases}$

Ricci flow equation: $\frac{\partial}{\partial t}g_{\mu\nu}(t) = -2\mathscr{R}_{\mu\nu}(t)$ [Hamilton '82]

$$= -2\mathscr{R}_{\mu\nu}(t)$$
$$= -\frac{1}{2}\mathscr{R}(t) - \Delta\phi(t) + 2(\nabla\phi(t))^2$$

$$\sqrt{-g}e^{-2\phi}\left(\mathscr{R}+4(\nabla\phi)^2\right)\qquad\qquad\qquad\int_M\mathrm{d}^dx\sqrt{-g}e^{-2\phi}=1$$

Distance from Entropy functionals



Including the dilation leads to **Perelmans combined flow** [Perelman '02]

$$\begin{cases} \partial_t g_{\mu\nu}(t) \\ \partial_t \phi(t) \end{cases}$$

...gradient with respect to "Entropy Functional"

$$\mathcal{F}(g,f) = \int_{M} \mathrm{d}^{d} x \sqrt{-g} e^{-2\phi} \left(\mathcal{R} + 4(\nabla \phi)^{2} \right) \qquad \qquad \int_{M} \mathrm{d}^{d} x \sqrt{-g} e^{-2\phi} = 1$$

Conjecture: The distance in field space $\Delta_{\mathscr{F}}$ along the combined flow is determined by the entropy functional $\mathscr{F}(g, f)$. $\mathcal{F} = 0$ lies at infinite distance and is accompanied by an infinite tower of massless states and

 $\Delta_{\mathscr{F}} \simeq \log$

Ricci flow equation: $\frac{\partial}{\partial t}g_{\mu\nu}(t) = -2\mathscr{R}_{\mu\nu}(t)$ [Hamilton '82]

$$= -2\mathscr{R}_{\mu\nu}(t)$$
$$= -\frac{1}{2}\mathscr{R}(t) - \Delta\phi(t) + 2(\nabla\phi(t))^2$$

$$g\left(\frac{\mathscr{F}_i}{\mathscr{F}_f}\right)$$
 [Kehagias, Lüst, Lüst '19]

Can we define notion of distance for generic internal manifold using generalized Ricci flow? What are the implications for the Swampland Distance Conjecture in presence of a potential?

Can we define notion of distance for generic internal manifold using generalized Ricci flow? What are the implications for the Swampland Distance Conjecture in presence of a potential?

> Purely NSNS internal background: ...can consider generalized Ricci flow [Oliynyk,Suneeta,Woolgar '05]

$$\mathcal{F}^{H}(g,H,\phi) = \int_{M} \mathrm{d}V \, e^{-2\phi} \left(\mathcal{R} - \frac{1}{12} \left| H \right|^{2} + 4 \left| \nabla \phi \right|^{2} \right) \longrightarrow \begin{cases} \frac{\partial g_{ij}}{\partial t} = -\left(\mathcal{R}_{ij} + \nabla_{i} \nabla_{j} \phi - \frac{1}{4} H_{ikl} H_{j}^{kl} \right) \equiv -\beta_{ij}^{g} \\ \frac{\partial H_{ijk}}{\partial t} = \dots \\ \dots \end{cases}$$

Can we define notion of distance for generic internal manifold using generalized Ricci flow? What are the implications for the Swampland Distance Conjecture in presence of a potential?

> Purely **NSNS internal background**: ...can consider generalized Ricci flow [Oliynyk,Suneeta,Woolgar '05]

$$\mathcal{F}^{H}(g,H,\phi) = \int_{M} \mathrm{d}V \ e^{-2\phi} \left(\mathcal{R} - \frac{1}{12} \left| H \right|^{2} + 4 \left| \nabla \phi \right|^{2} \right) \longrightarrow \begin{cases} \frac{\partial g_{ij}}{\partial t} = -\left(\mathcal{R}_{ij} + \nabla_{i} \nabla_{j} \phi - \frac{1}{4} H_{ikl} H_{j}^{kl} \right) \equiv -\beta_{ij}^{g} \\ \frac{\partial H_{ijk}}{\partial t} = \dots \\ \dots \end{cases}$$

Metric & potential on moduli space both derived from background data on internal space what are the implications of defining distance in presence of potential according to

$$\Delta_{\mathcal{F}^{H}} \simeq \log\left(\frac{\mathcal{F}_{i}^{H}}{\mathcal{F}_{f}^{H}}\right)$$

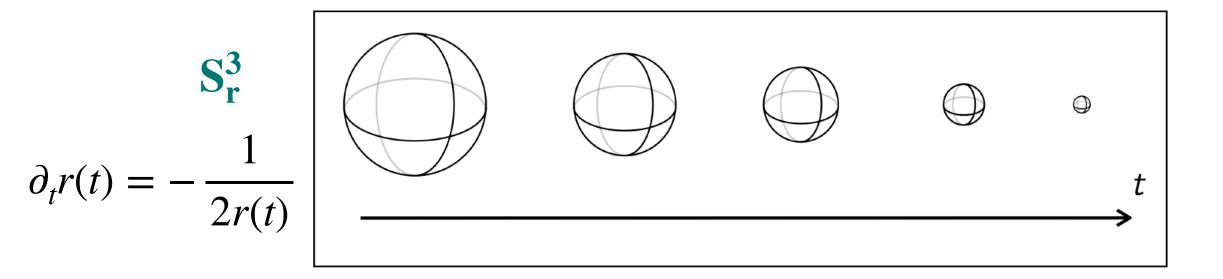
[Demulder, Lüst, TR; ongoing]

Can we define notion of distance for generic internal manifold using generalized Ricci flow? What are the implications for the Swampland Distance Conjecture in presence of a potential?

> Purely **NSNS internal background**: ...can consider generalized Ricci flow [Oliynyk,Suneeta,Woolgar '05]

$$\mathcal{F}^{H}(g,H,\phi) = \int_{M} \mathrm{d}V \ e^{-2\phi} \left(\mathcal{R} - \frac{1}{12} \left| H \right|^{2} + 4 \left| \nabla \phi \right|^{2} \right) \longrightarrow \begin{cases} \frac{\partial g_{ij}}{\partial t} = -\left(\mathcal{R}_{ij} + \nabla_{i} \nabla_{j} \phi - \frac{1}{4} H_{ikl} H_{j}^{kl} \right) \equiv -\beta_{ij}^{g} \\ \frac{\partial H_{ijk}}{\partial t} = \dots \\ \dots \end{cases}$$

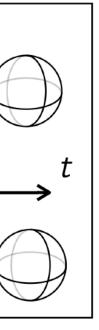
Metric & potential on moduli space both derived from background data on internal space \rightarrow what are the implications of defining distance in presence of potential according to $\Delta_{\mathcal{F}^H} \simeq \log(1)$



[Demulder, Lüst, TR; ongoing]

$$S_r^3 \text{ with H-flux [h]}$$

$$\partial_t r(t) = -\frac{1}{2r(t)} + \frac{h^2}{2r(t)^5}$$



Thomas Raml

Can we define notion of distance for generic internal manifold using generalized Ricci flow? What are the implications for the Swampland Distance Conjecture in presence of a potential?

> Purely **NSNS internal background**: ...can consider generalized Ricci flow [Oliynyk,Suneeta,Woolgar '05]

$$\mathcal{F}^{H}(g,H,\phi) = \int_{M} \mathrm{d}V \ e^{-2\phi} \left(\mathcal{R} - \frac{1}{12} \left| H \right|^{2} + 4 \left| \nabla \phi \right|^{2} \right) \longrightarrow \begin{cases} \frac{\partial g_{ij}}{\partial t} = -\left(\mathcal{R}_{ij} + \nabla_{i} \nabla_{j} \phi - \frac{1}{4} H_{ikl} H_{j}^{kl} \right) \equiv -\beta_{ij}^{g} \\ \frac{\partial H_{ijk}}{\partial t} = \dots \\ \dots \end{cases}$$

Metric & potential on moduli space both derived from background data on internal space ightarrow what are the implications of defining distance in presence of potential according to $\Delta_{\mathscr{F}^H}\simeq \logigl(rac{1}{2}igl)$

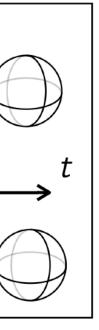
$$\partial_{t}r(t) = -\frac{1}{2r(t)}$$

Non-geometric flow?

[Demulder, Lüst, TR; ongoing]

$$S_r^3 \text{ with H-flux [h]}$$

$$\partial_t r(t) = -\frac{1}{2r(t)} + \frac{h^2}{2r(t)^5}$$



- Studied Distance Conjecture for curved compact spaces (with fluxes)
- Invariance of the metric on moduli space under (abelian) T-duality
- Interplay of scalar potential and Distance Conjecture & absence of tower of states
- > First step towards **non-geometric backgrounds** and associated distance on moduli space

Summary & Conclusions

Summary & Conclusions

- Studied Distance Conjecture for curved compact spaces (with fluxes)
- Invariance of the metric on moduli space under (abelian) T-duality
- Interplay of scalar potential and Distance Conjecture & absence of tower of states
- > First step towards **non-geometric backgrounds** and associated distance on moduli space

- Flux variations & potential: on-shell vs off-shell [Li,Palti,Petri '23][Palti,Petri '24]
- Deformations and generalized T-duality (Poisson-Lie T-duality)
- [Mohseni, Montero, Vafa, Valenzuela '24] [Debusschere, Tonioni, van Riet '24]
- Distance in presence of potential and generalized Ricci flow [Kehagias, Lüst, Lüst '19] Truly non-geometric spaces and the Swampland?

 \triangleright More realistic setups: full 10d backgrounds, e.g. $AdS_5 \times S^5$, $AdS_4 \times T^6$ with fluxes,...

Summary & Conclusions

- Studied Distance Conjecture for curved compact spaces (with fluxes)
- Invariance of the metric on moduli space under (abelian) T-duality
- Interplay of scalar potential and Distance Conjecture & absence of tower of states
- > First step towards **non-geometric backgrounds** and associated distance on moduli space

- Flux variations & potential: on-shell vs off-shell [Li,Palti,Petri '23][Palti,Petri '24]
- Deformations and generalized T-duality (Poisson-Lie T-duality)
- [Mohseni, Montero, Vafa, Valenzuela '24] [Debusschere, Tonioni, van Riet '24]
- Distance in presence of potential and generalized Ricci flow [Kehagias, Lüst, Lüst '19] Truly non-geometric spaces and the Swampland?

Thomas Raml

 \triangleright More realistic setups: full 10d backgrounds, e.g. $AdS_5 \times S^5$, $AdS_4 \times T^6$ with fluxes,...

Thomas Raml

Infinite distances, the scalar potential and Ricci flow

BACKUP SLIDES

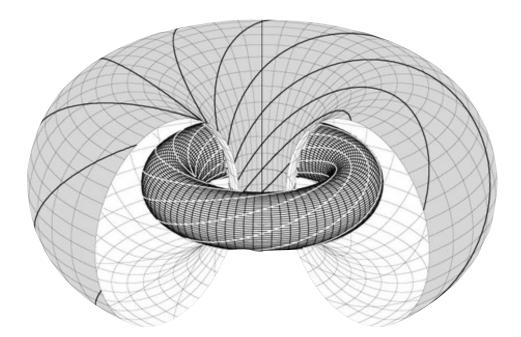
T-duality and change in topology

T-duality does not only affect the geometry locally but can also affect its global structure

T-duality exchanges *H***-flux** and the **first Chern class**

Concrete example:

 S^3 in the Hopf fibration

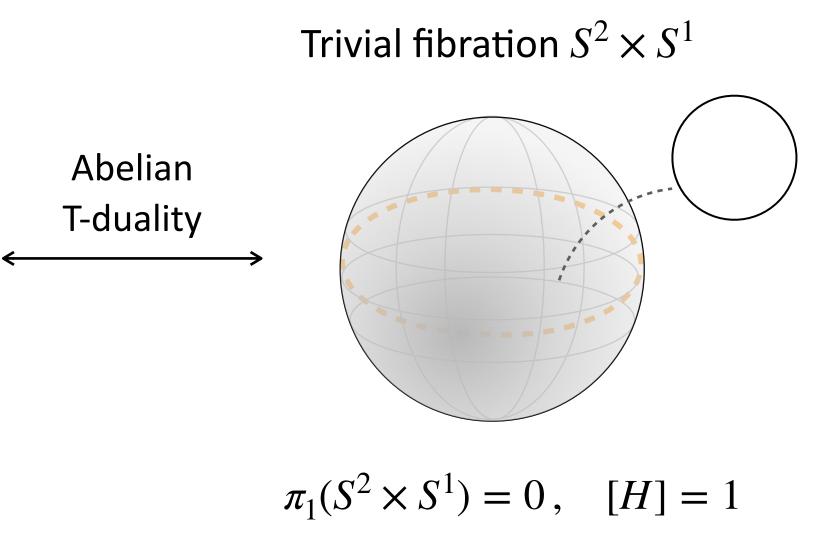


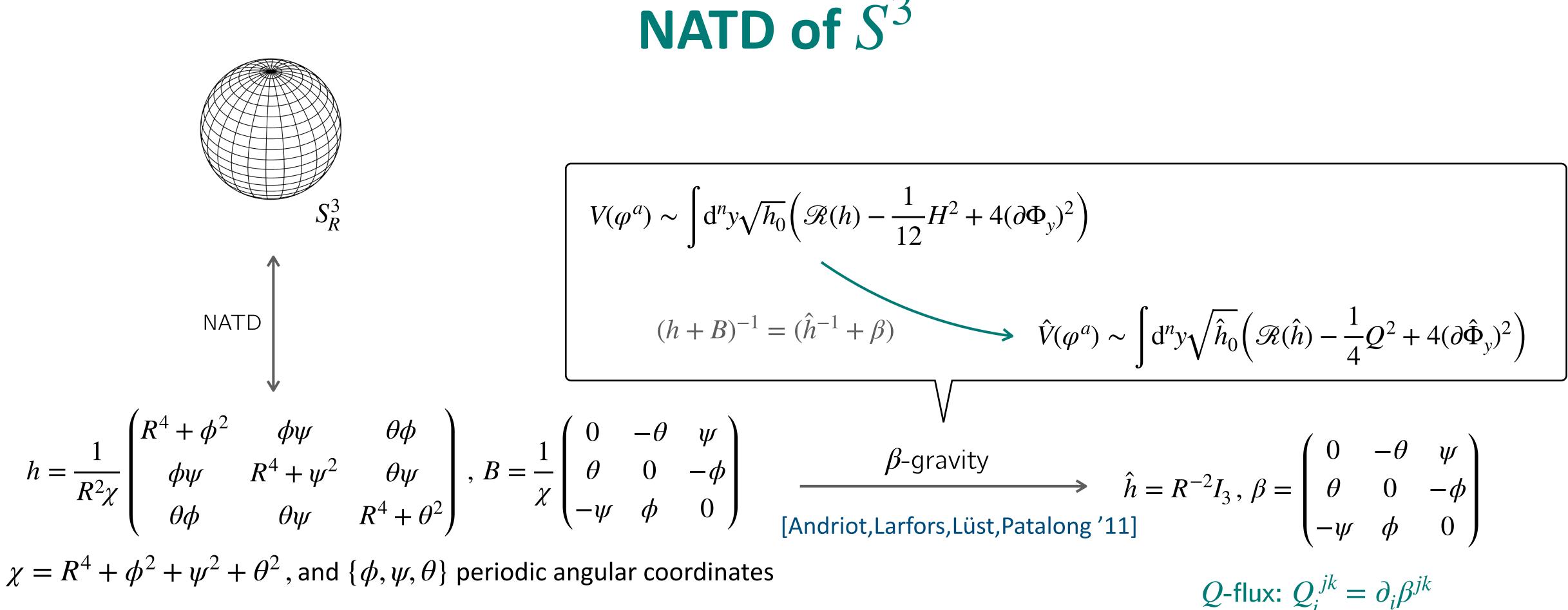
 $\pi_1(S^3) = 1$, [H] = 0

Thomas Raml

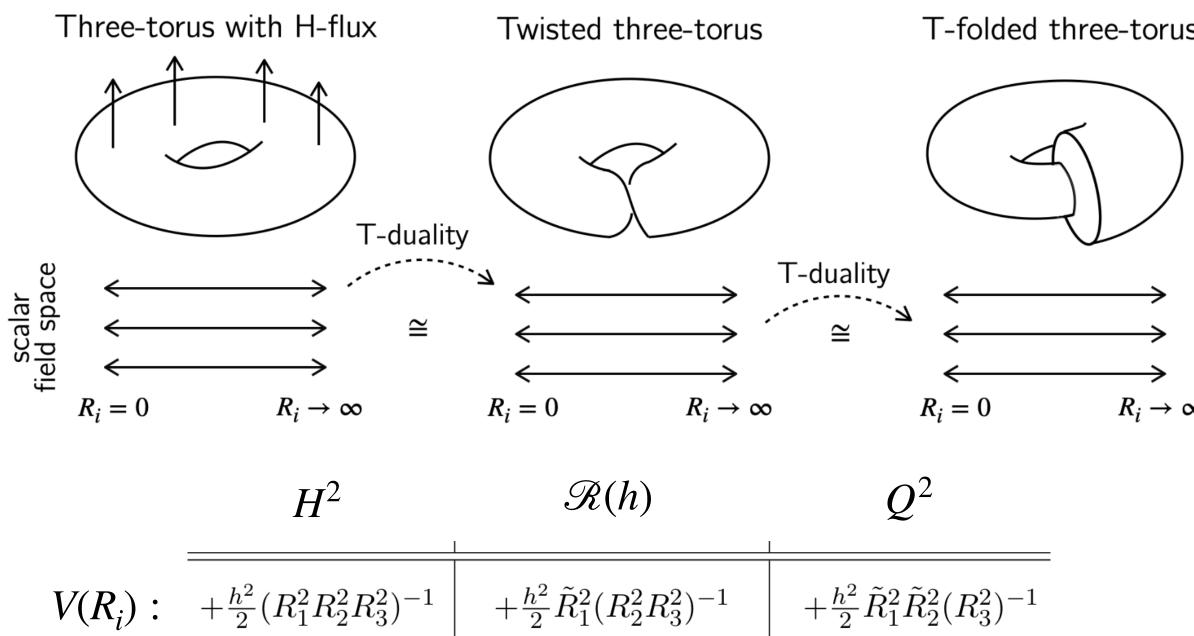
[Giveon, Kiritsis '94; Bouwknegt, Evslin, Mathai '04; Alvarez, Alvarez-Gaume, Lozano '05,]

fluxes : $\iota_k \mathcal{H} \quad \longleftrightarrow \quad \text{topology} : c_1(E_k)$





T-duality chain



infinite distance points and therefore:

Without a completion, e.g. additional fluxes, the backgrounds of the **T-duality chain** lie in the **Swampland**.

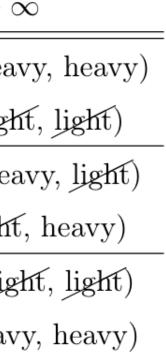
)		$V(R_i)$		$\longrightarrow R_i$
		modes	$R_i \to 0$	$R_i \rightarrow c$
∞	$T^{3}_{\mathcal{H}}, \ [\mathcal{H}] = k$ $\{R_{1}, R_{2}, R_{3}\}$	$w:\mathbb{Z}\oplus\mathbb{Z}\oplus\mathbb{Z}$	w: (light, light, light)	w: (heavy, heav
		$p:nc\oplus nc\oplus nc$	p:(heavy, heavy, heavy)	p: (light, light
	$T_{\text{tw}}^3, [f] = k$ $\{R_1, R_2, R_3^{-1}\}$	$w: \mathbb{Z} \oplus \mathbb{Z} \oplus \mathbb{Z}_k$	w: (light, light, heavy)	w: (heavy, hea
		$p:nc\oplus nc\oplus \mathbb{Z}$	p: (heavy, heavy, light)	p :(light, light
	T_Q^3 , $[Q] = k$	$w: \mathbb{Z} \oplus \mathbb{Z}_k \oplus \mathbb{Z}_k$	w: (light, heavy, heavy) p: (heavy, light, light)	w: (heavy, jig
	$\{R_1, R_2^{-1}, R_3^{-1}\}$	$p:nc\oplus\mathbb{Z}\oplus\mathbb{Z}$	p: (heavy, light, light)	p: (light, heav
I				

T-duality chain of T^3 with H-flux is not a proper string background. Careful analysis reveals a lack of towers of states for some

[Demulder, Lüst, TR '23]

Infinite distances, the scalar potential and Ricci flow

MAX PLANCK INSTITUTE FOR PHYSICS



$$S_{\text{DFT}} = \int dx d\tilde{x} e^{-2d} \left(\frac{1}{8} \mathcal{H}^{MN} \partial_{M} \mathcal{H}^{KL} - \frac{1}{2} \mathcal{H}^{MN} \partial_{N} \mathcal{H}^{KL} \partial_{L} \mathcal{H}_{MK}}{-2 \partial_{M} d\partial_{N} \mathcal{H}^{MN} + 4 \mathcal{H}^{MN} \partial_{M} d\partial_{N} d}\right).$$

$$\beta - \text{gravity}$$

$$\begin{pmatrix} h - Bh^{-1}B - Bh^{-1} \\ -h^{-1}B - h^{-1} \end{pmatrix} = \mathcal{H} = \begin{pmatrix} \tilde{h} & \tilde{h}\beta \\ -\beta \tilde{h} & \tilde{h}^{-1} - \beta \tilde{h}\beta \end{pmatrix}$$

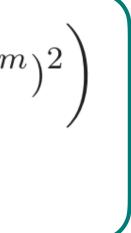
$$\mathcal{L}_{\text{DFT}}(\mathcal{E}, d) \qquad \text{[Andriot, Larfors, Liist, Patalong '11, Andriot et al '12]}$$

$$\mathcal{L}_{\text{DFT}}(\mathcal{G}, \beta, \tilde{\phi}) = \mathcal{L}_{\text{DFT}}(\mathcal{R}, \tilde{\mathcal{R}}) + \partial(\dots) + \tilde{\partial}(\dots)$$

$$\tilde{\partial} = 0 \qquad \tilde{\partial} = 0$$

Thomas Raml

Infinite distances, the scalar potential and Ricci flow



MAX PLANCK INSTITUTE