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Formal Drinfel’d twists

Let G be a real Lie group. Let G be its Lie algebra and U(G) the
universal enveloping Hopf algebra.
Definition. A formal Drinfel’d twist based on U(G) is an element
F ∈ U(G)⊗ U(G)[[ℏ]]:

F :=: 1⊗ 1 +
∞∑
k=1

ℏk Fk

such that

(I ⊗∆)(F ).(1⊗ F ) = (∆⊗ I )(F ).(F ⊗ 1)

Pierre Bieliavsky UCLouvain joint work with V. Gayral, S. Neyshveyev and L. Tuset Corfu, September 2024Differential geometrical methods for locally compact quantum groups



Star products

Proposition [Drinfel’d]. A Drinfel’d twist corresponds to a
left-invariant formal star-product ⋆F on C∞(G)[[ℏ]]:

f ⋆F g := m0

(
F̃ (f ⊗ g)

)
Corollary. The first order term defines a left-invariant Poisson
structure on G:

P̃F (f , g) :=
1

2
m0

(
F̃1(f ⊗ g) − F̃1(g ⊗ f )

)
Proposition. The symplectic leaf of P̃F through the unit e of G is
an immersed Lie subgroup G of G.
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Symplectic Lie groups

Definition [Lichnérowicz]. A symplectic Lie group is a pair
(G , ω̃) where G is a real Lie group and where ω̃ is a left-invariant
symplectic structure on G .

Example. R2n = T ⋆(Rn) is a symplectic Lie group
(ω̃ = dp ∧ dq).
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Fröbenius Lie groups and Lie algebras

Proposition. The left action of G on itself is Hamiltonian w.r.t. ω̃
iff G admits an open coadjoint orbit.

Definition. A Fröbenius Lie group is a Lie group which admits an
open coadjoint orbit.

Example. The affine group

G := GLn(R)⋉Rn

is a Fröbenius Lie group.
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A bit of structure theory

Proposition.

1 A Fröbenius Lie group G contains a non-discrete Abelian
normal subgroup J.

2 The left-invariant distribution symplectic-orthogonal to
T (G/J) is integrable.

3 Let J⊥ the leaf through unit e ∈ G . It is an immersed Lie
subgroup of G .
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Co-splitings

Definition. The Lie group J is cosplit in G if the exact sequence

{e} −→ J −→ J⊥ −→ J⊥/J −→ {e}

splits through a matched pair summand, H, of G .

Corollary. Under cosplit condition,

1 The natural action of G on T ⋆(J) induces a (measurable)
isomorphism of G -spaces:

G/H −→ T ⋆(J)

2 Considering a matched pair (H, L),

L ≃ G/H −→ T ⋆(J)

is a G -equivariant measurable isomorphism (H acts by
dressing).
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The dual orbit condition

Let Q a locally compact group acting on a locally compact Abelian
group V : Q × V → V , and set

G := Q ⋉ V

Definition. (Q,V ) satisfy the dual orbit condition (DOC) if there
exists an element η ∈ V̂ such that

Q → V̂ : q 7→ q.η

is a measurable equivalence.

Proposition. When DOC, the map

G → V × V̂ : g 7→ g .(0, η)

is a measurable G -equivalence.
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Locally compact quantum groups

Definition. A locally compact quantum group (LCQG) is a
quadruple (M,∆, φℓ, φr ) where

1 M is a von Neumann algebra,

2 ∆ : M → M⊗M is a compatible co-product,

3 φℓ and φr are weights on M+ (“Haar weights”)

such that
for all positive linear functional ω on M+ and x ∈ M+, one has

φℓ(ω ⊗ 1(∆(x))) = ω(1)φℓ(x) (sim. for φr )

Example. On G locally compact group (M = L∞(G ))

φℓ(f ) :=

∫
G

f (g) dg
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Unitary 2-cocycles

Definition. Let (M,∆) be a von Neumann bi-algebra. A unitary
2-cocycle is a unitary Ω̂ ∈ M⊗M such that

(∆⊗ I )(Ω̂) (Ω̂⊗ 1) = (I ⊗∆)(Ω̂) (1⊗ Ω̂)

Theorem [De Commer]. Let (M,∆, φℓ, φr ) be a LCQG. Let Ω̂
be a unitary 2-cocycle on (M,∆). Set

∆Ω̂ := Ω̂∆(.) Ω̂∗

Then (M,∆Ω̂) underlies a LCQG.
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Microlocal operators

Let V be a finite dimensional real vector space. For every symbol
a ∈ Sm(T ⋆(V )), consider

Op(a)ψ(q0) :=

∫
T⋆(V )

a(q, p) e i<p,q−q0> ψ(q) dq dp

Operator symbol composition formula:

a ⋆ b(x0) =

∫
K (x , x ′, x0) a(x) b(x

′) dx dx ′

with
K (x , x ′, 0) = e−i<p,q′> δ0(q) δ0(p

′)

Pierre Bieliavsky UCLouvain joint work with V. Gayral, S. Neyshveyev and L. Tuset Corfu, September 2024Differential geometrical methods for locally compact quantum groups



DOC groups [BGNT ; J. Funct. Analysis (2021)]

Theorem. Let G = Q ⋉ V be a DOC group. Through the
measurable equivalence G → V × V̂ , the element

Ω̂ :=

∫
G×G

K (x , x ′, 0) λx ⊗ λx ′ dx dx ′

=

∫
Q×V̂

e−i<p,q> λ(q,0) ⊗ λ(e,p) dq dp

is a unitary dual 2-cocycle based on W ⋆(G ).
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Formulas

In coordinates G = {g = (q, v)}q∈Q , v∈V , the associated
left-invariant star-product on G is

f1 ⋆ f2(x0) :=

∫
G×G

K (x , x ′, 0) f1(x0x) f2(x0x
′) dx dx ′ =∫

Q×V
e i⟨q.η− η , v⟩ f1(q0, q0.v + v0) f2(q0q, b0)

∆G (q, v)

∆Q(q)
dq dv
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ax + b

Here G = GL1(R)⋉R = {(a, b)}a∈R× , b∈R. The unitary dual
2-cocycle is

Ω̂ :=

∫
R××R

e i(
1−a
a )b λ(1,b) ⊗ λ(a,0)

1

|a|
da db

The Lie algebra is generated by two elements X and Y with
[X ,Y ] = Y and the formal twist associated to Ω̂ is

Ω̂ ∼ F := eX ⊗ log(1+Y )
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