Asymmetric Dark Matter in SUSY

Oscar Vives Marco Ardu and Daniel Queiroz (WIP)

DSU 2024

17th September, 2024, Corfu.

E Coincidence problem: Two apparently unrelated quantities, DM and baryon energy densities, are observed to be very similar at present. $\Omega_{DM} \sim 5\Omega_b$.

E Coincidence problem: Two apparently unrelated quantities, DM and baryon energy densities, are observed to be very similar at present. $\Omega_{DM} \sim 5\Omega_b$.

 \Rightarrow Asymmetric Dark Matter

- **P** DM abundance could be explained by an asymmetry related to the baryon asymmetry \rightarrow DM mass similar to the proton mass.
- \blacktriangleright This requires a new dark sector, new dark interactions, new portal interaction and a new conserved quantum number.

E Coincidence problem: Two apparently unrelated quantities, DM and baryon energy densities, are observed to be very similar at present. $\Omega_{DM} \sim 5\Omega_b$.

 \Rightarrow Asymmetric Dark Matter

- **P** DM abundance could be explained by an asymmetry related to the baryon asymmetry \rightarrow DM mass similar to the proton mass.
- \blacktriangleright This requires a new dark sector, new dark interactions, new portal interaction and a new conserved quantum number.
-

But ... We already have all this in SUSY!!!

- Assume a SUSY spectrum with gravitino as LSP and staulary as NLSP.
- **E** Leptogenesis at high scales generating a lepton asymmetry $B/3 - L_{\alpha}$.
- **Asymmetry redistributed among particles and sparticles** via equilibrium interactions.
- Assume a SUSY spectrum with gravitino as LSP and staulary as NLSP.
- **E** Leptogenesis at high scales generating a lepton asymmetry $B/3 - L_{\alpha}$.
- **Asymmetry redistributed among particles and sparticles** via equilibrium interactions.
- **At the SUSY breaking scale, sparticles decay to NLSP and** SM particles.

$$
\tilde{f}_{L,R} \to f_{L,R} + \tilde{B} \to f_{L,R} + \tau_R^\mp + \tilde{\tau}_R^\pm
$$

Stau annihilation $\tilde{\tau}_R^ \frac{d\mathcal{L}-\tilde{\tau}_R^+}{R}\rightarrow \mathsf{SM}$ removes symmetric population.

- Assume a SUSY spectrum with gravitino as LSP and staulary as NLSP.
- **E** Leptogenesis at high scales generating a lepton asymmetry $B/3 - L_{\alpha}$.
- **Asymmetry redistributed among particles and sparticles** via equilibrium interactions.
- **At the SUSY breaking scale, sparticles decay to NLSP and** SM particles.

$$
\tilde{f}_{L,R} \to f_{L,R} + \tilde{B} \to f_{L,R} + \tau_R^\mp + \tilde{\tau}_R^\pm
$$

Stau annihilation $\tilde{\tau}_R^ \frac{d\mathcal{L}-\tilde{\tau}_R^+}{R}\rightarrow \mathsf{SM}$ removes symmetric population.

Only the asymmetry (would) remains!!

But... \Rightarrow in the presence of Bino Majorana mass

But... \Rightarrow in the presence of Bino Majorana mass

But... \Rightarrow in the presence of Bino Majorana mass

 $\tilde{\tau}_R^ \frac{1}{R}\tilde{\tau}_R^- \to \tau_R^ \overline{R}$ $\tau_R^ \overline{R}_{R}^{-}$ transfers stau asymmetry to SM fermions!!

Decoupling at

$$
z_b = \frac{m_{\tilde{\tau}}}{T_b} \approx 23 + \ln\left[\frac{m_{\tilde{\tau}}}{\text{TeV}}\frac{(10\text{TeV})^2}{M_{\tilde{B}}^2}\right] + 2\ln\left[\frac{M_{\tilde{B}_M}}{M_{\tilde{B}_D}}\right]
$$

And then, asymmetry

$$
\frac{Y_{\tilde{\tau}}-\overline{Y_{\tilde{\tau}}}}{Y_{\tau}-\overline{Y_{\tau}}}\approx \frac{6\sqrt{\pi/2} z_b^{3/2}e^{-z_b}}{\pi^2}\simeq 10^{-10}
$$

4/15

\blacktriangleright Other processes also remove sfermion asymmetry (μ , trilinears)

 \blacktriangleright Other processes also remove sfermion asymmetry (μ , trilinears)

• Other processes also remove sfermion asymmetry (μ, μ) trilinears)

- **Exact R-symmetry needed to protect the relation between** baryon asymmetry and DM abundance.
- **•** Majorana gaugino masses, Higgs μ -term and trilinear couplings forbidden by R-symmetry.
- **Although conserved R-charge forbids sfermion asymmetry**

• Other processes also remove sfermion asymmetry (μ, μ) trilinears)

- **Exact R-symmetry needed to protect the relation between** baryon asymmetry and DM abundance.
- \blacktriangleright Majorana gaugino masses, Higgs μ -term and trilinear couplings forbidden by R-symmetry.
- **Although conserved R-charge forbids sfermion asymmetry**

$$
\Rightarrow
$$
 |Softly broken R-symmetry

 $\sqrt{2}$ ✍ Minimal R-symmetric Supersymmetric Standard Model (MRSSM)

- \blacksquare New adjoint chiral superfields: hypercharge singlet(s), weak triplet, color octet to get DIRAC gaugino masses.
- Additional scalar doublets \hat{R}_{d} and \hat{R}_{u} with R-charge 2 for R-symmetric Higgs masses.
- \blacktriangleright Soft R-symmetry breaking terms necessary for asymmetry.

 $\sqrt{2}$ ✍ Minimal R-symmetric Supersymmetric Standard Model (MRSSM)

- \blacksquare New adjoint chiral superfields: hypercharge singlet(s), weak triplet, color octet to get DIRAC gaugino masses.
- Additional scalar doublets \hat{R}_{d} and \hat{R}_{u} with R-charge 2 for R-symmetric Higgs masses.
- \blacktriangleright Soft R-symmetry breaking terms necessary for asymmetry.

$$
W_{SBR} = Y_u \hat{u} \hat{q} \hat{H}_u - Y_d \hat{d} \hat{q} \hat{H}_d - Y_e \hat{e} \hat{I} \hat{H}_d + \mu_D \hat{R}_d \hat{H}_d + \mu_U \hat{R}_u \hat{H}_u +
$$

+
$$
\lambda_D \hat{S} \hat{R}_d \hat{H}_d + \lambda_U \hat{S} \hat{R}_u \hat{H}_u + \lambda_D \hat{R}_d \hat{T} \hat{H}_d + \lambda_U \hat{R}_u \hat{T} \hat{H}_u +
$$

+
$$
\mu_S \hat{S}_1 \hat{S}_2 + \kappa \hat{S}_1^3 + \lambda_1 \hat{H}_u \hat{H}_d \hat{S}_1
$$

 $\sqrt{2}$ ✍ Minimal R-symmetric Supersymmetric Standard Model (MRSSM)

- \blacksquare New adjoint chiral superfields: hypercharge singlet(s), weak triplet, color octet to get DIRAC gaugino masses.
- Additional scalar doublets \hat{R}_{d} and \hat{R}_{u} with R-charge 2 for R-symmetric Higgs masses.
- **E** Soft R-symmetry breaking terms necessary for asymmetry.

$$
W_{SBR} = Y_u \hat{u} \hat{q} \hat{H}_u - Y_d \hat{d} \hat{q} \hat{H}_d - Y_e \hat{e} \hat{I} \hat{H}_d + \mu_D \hat{R}_d \hat{H}_d + \mu_U \hat{R}_u \hat{H}_u +
$$

+ $\lambda_D \hat{S} \hat{R}_d \hat{H}_d + \lambda_U \hat{S} \hat{R}_u \hat{H}_u + \Lambda_D \hat{R}_d \hat{T} \hat{H}_d + \Lambda_U \hat{R}_u \hat{T} \hat{H}_u +$
+ $\mu_S \hat{S}_1 \hat{S}_2 + \kappa \hat{S}_1^3 + \lambda_1 \hat{H}_u \hat{H}_d \hat{S}_1$

B SUSY soft-breaking preserve R-symmetry (except B_{κ}),

$$
-L_{soft} = \left(\frac{1}{2}B_S S^2 + \frac{1}{2}B_T T^2 + \frac{1}{2}B_{S_1} S_1^2 + \frac{1}{2}B_{S_2} S_2^2 + B_{S_1 S_2} S_1 S_2 + \right.
$$

$$
+ \frac{1}{2}B_O O_{\alpha} O_{\alpha} + \frac{1}{3}B_{\kappa} S_1^3 + \text{h.c.}\right) + m_S^2 |S|^2 + m_{S_1}^2 |S_1|^2 +
$$

$$
+ m_{S_2}^2 |S_2|^2 + m_t^2 |T|^2 + m_O^2 |O|^2 + B_{\mu} H_{\mu} H_d + B_d R_d H_d +
$$

$$
+ B_u R_u H_u + m_{R_d}^2 |R_d|^2 + m_{R_u}^2 |R_u|^2 + B_{\kappa} S_1^3
$$

And Dirac gaugino masses,

$$
-L_{Dirac} = M_D^B \tilde{B} \tilde{S} + M_D^{S_2} \tilde{B} \tilde{S}_2 + M_D^O \tilde{G}_{\alpha} \tilde{O}_{\alpha} + M_D^W \tilde{T}_i \tilde{W}_i
$$

 \blacksquare with this Lagrangian ...

- **Above the SUSY scale, chemical potentials determined by** equilibrium conditions and conserved quantum numbers.
- **•** With Dirac masses, gauginos can have a non-vanishing chemical potential, μ_{λ} .
- **Above the SUSY scale, chemical potentials determined by** equilibrium conditions and conserved quantum numbers.
- **E** With Dirac masses, gauginos can have a non-vanishing chemical potential, μ_{λ} .
- **P** R-symmetry breaking couplings $\rightarrow \mu_{S_1} = 0$.
- **E** Yukawa, gaugino, trilinear couplings, superpotential masses, sphaleron interactions and hypercharge conservation fix $\mu_{\lambda} = 0$ and all the chemical potential in terms of three initial asymmetries, Y_{Δ_e} , Y_{Δ_μ} , Y_{Δ_τ} .
- **•** We can relate the stau asymmetry, $Y_{\tilde{\tau}_R}$ with the initial $B/3 - L_{\alpha}$ (and baryon) asymmetries.

But... what about R-breaking asymmetry removal ??

But... what about R-breaking asymmetry removal ??

- **P** R-symmetry breaking only through S_1 interactions.
- **Estimate through contribution to bino Majorana mass.** (Work in progress...)
- **I** In the presence of κ and B_{κ} .

$$
M_{\tilde{B}} \sim \left(\frac{1}{16\pi^2}\right)^3 g_1^2 \ \kappa^* \ B_\kappa \ \lambda_1^2 \sim 10^{-7} \ g_1^2 \ \kappa^* \ B_\kappa \ \lambda_1^2 \sim 10^{-11} \ B_\kappa
$$

But... what about R-breaking asymmetry removal ??

- **P** R-symmetry breaking only through S_1 interactions.
- **Estimate through contribution to bino Majorana mass.** (Work in progress...)
- **I** In the presence of κ and B_{κ} .

$$
M_{\tilde{B}} \sim \left(\frac{1}{16\pi^2}\right)^3 g_1^2 \ \kappa^* \ B_\kappa \ \lambda_1^2 \sim 10^{-7} \ g_1^2 \ \kappa^* \ B_\kappa \ \lambda_1^2 \sim 10^{-11} \ B_\kappa
$$

So... neglecting asymmetry removal $(B_{\kappa} = 0)$

$$
\boxed{\text{Only }Y_{\Delta_\tau}\neq 0}
$$

Baryon asymmetry and stau asymmetry related to $Y_{\Delta_\tau}.$

$$
Y_B \simeq \frac{21}{70} Y_{\Delta_\tau} Y_{\tilde{\tau}_R} \simeq -\frac{4}{7} Y_B \simeq -0.57 Y_B
$$

\n
$$
\Rightarrow \text{Gravition mass: } m_{3/3} \simeq 5 \times m_p Y_B/Y_{\tilde{\tau}_R} \simeq 9 \text{ GeV}
$$

$$
\boxed{\text{Only }Y_{\Delta_\tau}\neq 0}
$$

Baryon asymmetry and stau asymmetry related to $Y_{\Delta_\tau}.$

$$
Y_B \simeq \frac{21}{70} Y_{\Delta_\tau} \qquad \qquad Y_{\tilde{\tau}_R} \simeq -\frac{4}{7} Y_B \simeq -0.57 Y_B
$$

 \Rightarrow Gravitino mass: $m_{3/3} \simeq 5 \times m_p Y_B/Y_{\tilde{\tau}_R} \simeq 9$ GeV

- \blacktriangleright Similar results for $Y_{\Delta_{e,u}}\neq 0$.
- \bullet $\mathcal{O}(1)$ differences for other NLSP states.
- **Larger gravitino masses possible for** $B_{\kappa} \neq 0$ and partial asymmetry removal (less predictivity).

Viable MRSSM model??

Viable MRSSM model??

- **Avoid tachionic states.**
- **Correct Higgs mass.**
- \blacktriangleright LHC constraints
- **E** Stau NLSP decaying before Nucleosynthesis.

Viable MRSSM model??

- **Avoid tachionic states.**
- **Correct Higgs mass.**
- \blacktriangleright LHC constraints
- **E** Stau NLSP decaying before Nucleosynthesis.

Spectrum generated with SARAH-4.15.2 and SPheno-4.0.5.

- \blacksquare $m_{\tilde{\tau}_R} = 1.7$ TeV, lifetime to gravitino, $\tau \sim 70$ sec
- **→** Other sleptons $m_{\tilde{l}} \gtrsim 2$ TeV.
- Lightest neutralino $m_{\chi_1^0} = 1.77$ TeV, chargino $m_{\chi_1^+} = 3.77$ TeV.
- **→** Heavy gluinos, squarks, $m_{\tilde{a}} \simeq 3.4$ TeV. $m_{\tilde{e}} = 13.6$ TeV.
- **F** Higgs masses, $m_h = 122$ GeV, $m_H \simeq m_A \simeq m_{H\pm} \simeq 3$ TeV.
- **Exotic colored scalars,** $m_{\sigma} = 5.8$ **TeV,** $m_{\phi} = 23$ **TeV.**

Spectrum generated with SARAH-4.15.2 and SPheno-4.0.5.

- \blacksquare $m_{\tilde{\tau}_R} = 1.7$ TeV, lifetime to gravitino, $\tau \sim 70$ sec
- **→** Other sleptons $m_{\tilde{l}} \gtrsim 2$ TeV.
- Lightest neutralino $m_{\chi_1^0} = 1.77$ TeV, chargino $m_{\chi_1^+} = 3.77$ TeV.
- **Heavy gluinos, squarks,** $m_{\tilde{g}} \simeq 3.4$ **TeV.** $m_{\tilde{g}} = 13.6$ TeV.
- **Higgs masses,** $m_h = 122$ GeV, $m_H \simeq m_A \simeq m_{H^{\pm}} \simeq 3$ TeV.
- **Exotic colored scalars,** $m_{\sigma} = 5.8$ **TeV,** $m_{\phi} = 23$ **TeV.**

 \Rightarrow Asymmetric Dark Matter with $m_{3/2} = 9$ GeV.

Conclusions ✆

☎

A Asymmetric dark matter in SUSY models possible in R-symmetric models.

 \overline{C} ✝

- **F** Small breaking of R-symmetry necessary to relate DM and baryon asymmetries.
- \blacktriangleright Breaking in singlet sector preserves stau asymmetry.
- **F** Gravitino mass \sim 10 GeV with no asymmetry removal.
- **•** Other NLSP possible, with different relations to the baryon asymmetry.