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Why to study (Euclidean) Wormholes
Wormholes are interesting (exotic) solutions of GR + matter
• Proposed physical effects due to wormholes
◦ They lead to a non-trivial topology of space(time)
◦ Connect the black hole interior with exterior? - Implications on the

information paradox?
◦ Related to Cosmologies (Bang-Crunch universes) upon analytic continuation

• Different types of wormholes
◦ Lorentzian vs Euclidean
◦ Macroscopic multi-boundary geometries (saddles) vs.

Microscopic "gas of wormholes"
◦ Different characteristic scales

LP � LW ∼ LAdS vs. LP ≤ LW � LAdS

• Our main focus will be macroscopic (Euclidean) wormholes in the context
of holography (AdS/CFT )

• Plan of the talk
◦ Introduction
◦ Bulk Perspective
◦ Dual QFT models
◦ N = 4 Wilson loops and type IIB "bubling" wormholes
◦ Summary and Future directions
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Introduction
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Lorentzian wormholes or "ER = EPR"
• Einstein - Rosen Bridge: Connects the two sides of the eternal black hole

• We cannot communicate a message between the two sides
• Traversable Wormholes: Lorentzian signature solutions for which the null
energy condition is violated ⇒ Signals can pass through the wormhole

• Local interactions that couple the two boundary QFTs
∫
ddxOL(x)OR(x)

[Gao-Jafferis-Wall ...]
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Euclidean Wormholes (saddles)

• There is no Lorentzian time, only Euclidean space
• To have such solutions, one needs locally negative
Euclidean Energy to support the throat from collapsing

• Such energy can be provided by axionic fields or
"magnetic" fluxes

• Several solutions in different dimensions/setups (some can be embedded
in the standard model + gravity)
- a subset of those is perturbatively stable [Marolf-Santos ...]

• There is a further reason why Euclidean wormholes are interesting: They
are related to cosmology[see P.Betzios talk]
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Holographic comments

• No time ⇒ No entaglement in the usual sense

• Naively: different QFTs on ∂M = ∪i∂Mi ⇒ Cross-correlations factorise

• Common Bulk dictates otherwise ⇒ Some form of interaction?

• Global symmetries for the boundary theories? ↔ A common Bulk "Gauss
Law constraint"
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The factorisation problem: Z(J1, J2) 6= Z1(J1)Z2(J2)
[Maldacena - Maoz (2004) ...]

= + + ...

(other?)

Possible resolutions in the literature :

• The QGR path integral corresponds to an average:
〈Z(J1)Z(J2)〉 ⇒ Several options [...]

• Explicit averaging over ensembles of CFT’s - (Unitarity crisis)
• In canonical AdS/CFT there is a single theory with fixed parameters

• Approximate statistical averaging ("ETH" - "Quantum Chaos")
⇒ "Statistical wormholes" from complicated/almost random
Hamiltonians [...]

• Consistency with N = 4 planar integrability?
⇒ Observables/states above the BH threshold [Schlenker - Witten ...]

The "statistical wormholes" need not be saddles of (SU)GRA eoms
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The factorisation problem
[Betzios - Kiritsis - OP (19 - 21)], see also related work by [Van Raamsdonk et. al.
(20-22)]

= + + ...

(other?)

A straightforward but subtle resolution for wormhole saddles:

• Interactions between holographic QFT’s ⇒ UV soft - IR strong

• Could the Schwinger functional acquire the form (S some “sector" )

Z(J1, J2) =
∑
S

ew(S)Z
(QFT1)
S (J1)Z(QFT2)

S (J2)

for a unitary/reflection positive system?

• Cross correlators ⇒ averages of lower point correlators in individual
subsystems
⇒No 1− 2 cross correlator singularities
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Bulk perspective
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Types of solutions
Betzios-Kiritsis-OP ’19

We studied Euclidean solutions with two asymptotic AdS boundaries
(bottom-up)

• We analysed examples in different
dimensions

• And different matter content

• We found universal features for various observables irrespective of
dimensions
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Local observables: Two boundary correlators
[Betzios - Kiritsis - OP (19)]

• To unravel the physics of Euclidean
wormhole saddles in holography we should
further study observables/correlation
functions

• Correlators for local boundary (scalar)
operators O1(x), O2(x)
⇒ Study the (2nd order) bulk fluctuation
equation for the dual bulk (scalar) field
φ(z, x)

• We have two boundaries, where we can insert operators or sources
• The extra freedom provides for two types of correlation functions, either
on a single boundary such as 〈O1O1〉 or 〈O2O2〉, or cross-correlators
across the two boundaries such as 〈O1O2〉
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Scalar Correlators: Universal properties
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• The 〈O1O1〉 and 〈O2O2〉 have a similar behaviour in the UV as when
there is only one boundary (power law divergence)

• In the IR they saturate to a constant positive value

• The cross correlator 〈O1O2〉 goes to zero in the UV and has a finite
maximum in the IR

• In position space (EAdS2) they behave as ∼ 1/ sinh2∆+(τ) and
∼ 1/ cosh2∆+(τ) respectively ⇒ No short distance singularity for the
cross-correlator

• The qualitative behavior of the correlators is the same for all the types of
solutions ⇒ Universality

Euclidean Wormholes in Holography 10/23



Non-local observables: Wilson Loops
[Betzios - Kiritsis - OP (19), Refined in: Betzios - OP (23)]

• Wilson loop observables W (C) = Tr
(
P exp i

∮
C
Aµdx

µ
)
refine the

analysis of [Schlenker - Witten (2022)] that studied the compressibility
properties of various boundary cycles C in the wormhole bulk

• In holography: Find the string worldsheet ending on the corresponding
loop C on a boundary (if it exists) and minimize its area

• Simplest observable: expectation
value of a single Wilson loop 〈W (C)〉

Universal features:
• Large loops on the boundary
penetrate further in the bulk and we
can probe the IR properties of the
boundary dual

• Typically we find an Area law
behaviour in the IR

• If the EW geometry contains a non-contractible (thermal) cycle Cβ : S1
β ,

then there is no bulk surface ending on it, so that 〈WP (Cβ)〉 = 0
• Again reminiscent of some kind of confining behaviour (center symmetry)
In contrast with the BH cigar for which 〈WP (Cβ)〉 6= 0 (deconfinement)
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Wilson Loop correlators (universal results)

• Study loop cross-correlators
〈W (C1)W (C2)〉, the two loops residing on
different boundaries

• As we shrink the boundary loops, we find
that the leading configuration of lowest
action is the one for two disconnected loops

• In the regime of large Wilson loops, the
leading contribution originates from a single
surface connecting the two loops having a
cylinder topology S1 ×R

• Large loops ⇒ Strong IR cross-coupling

• In the presence of a a non-contractible (thermal) cycle Cβ : S1
β , we find

only a connected cylindrical bulk surface (〈WP (C(1)
β )WP (C(2)

β )〉 6= 0)
• Consistent with unbroken diagonal center symmetry ex:
Z

(1)
N × Z

(2)
N → Zdiag.N "cross-confining behaviour" - diagonal singlets
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Dual QFT models
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Tripartite BQFT construction
[van Raamsdonk (20) - (22)], [Betzios - Kiritsis - OP (21)]
• Two d-dim (holographic) BQFT’s on Σ coupled through a d+ 1-dim
intermediate ("messenger") theory on I × Σ

• Consider a system for which
cd+1 � cd

• We would like the system to flow to a
gapped/confining theory in the IR

• The geometric idea: The dual bulk gravity
can localise on d+ 1-dim EOW branes that
bend and connect in the IR [van Raamsdonk ]

• We focus in the case where the messenger theory is (quasi) topological
(TQFTd+1) ⇒ No contamination from d+ 2 bulk perturbative modes,
natural gap in the IR ... [Betzios - Kiritsis - OP]

• Integrate out TQFTd+1 ⇒ The Schwinger functional does become

Zsystem =
∑
S

ew(S)Z
(BQFT1)
S (J1)Z(BQFT2)

S (J2)

Euclidean Wormholes in Holography 13/23



Solvable microscopic tripartite model (2d− 1d)
[Betzios - Kiritsis - OP (21), Betzios - OP (23)]

• Consider a generalised YM in 2d (τ, z) with BF action

SgYM =
1

g2
YM

∫
Σ

TrBF +
θ

g2
YM

∫
Σ

TrB dµ−
1

2g2
YM

∫
Σ

Tr Φ(B) dµ

where F = dA+A ∧A

• Couple it with two 1d U(N) gauged matrix quantum mechanics theories
M1,2(τ) at the endpoints of an interval I (z = ±L)

SMQM1,2 =
∫

dτTr
(

1
2 (DτM1,2)2 − V (M1,2)

)
, DτM1,2 = ∂τM1,2 + i[A1,2

τ ,M1,2]

Aτ (τ, z = ±L) = A1,2
τ (τ) is the value of the 2d gauge field on the two

boundaries

• Solvable system: 2d YM - ( Φ(B) = B2 ) coupled to two Gaussian MQM
(V (M1,2) = 1

2M
2
1,2)
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"Entangling" the representations

• Place the system on I × S1 (cylinder) of length 2L and circumference β

• The 2d YM amplitude on the cylinder is

ZYM (U1, U2) =
∑
R

χR(U1)χR(U†2 )e−L
g2
YM
N C

(2)
R

+iθC(1)
R

and depends on the two asymptotic holonomies U1,2 = exp
∮
dτA1,2

τ

(zero modes of the gauge field)

• R a U(N) representation, C(1,2)
R its Casimirs and χR(U) are U(N)

characters/wavefunctions at the ends of the cylinder

• Integrate out M1,2 to obtain the (twisted) MQM partition functions
ZMQM

1,2 (U1,2;β) =
∫
DM1,2 〈U1,2M1,2U

†
1,2 |M1,2〉H.Osc.

• Couple the 2d YM amplitude ZYM (U1, U2) to the two MQM partition
functions ZMQM

1,2 (U1,2;β) and integrate over the zero modes U1,2
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"Entangling" the representations
• The complete partition function on I × S1 is

Zsystem =
∑
R

e−L
g2
YM
N C

(2)
R

+iθC(1)
R ZMQM1

R (β)ZMQM2
R (β) ,

ZMQM
R (β) = TrHRe−βĤ

MQM
R =

∫
DUχR(U)ZMQM (U ;β)

with β the S1 size and HR the Hilbert space of MQM in a fixed
representation R [Kazakov, Klebanov ...]

• The two MQM representations R are correlated/"entangled"∑
R ⇒ is a form of "averaging", consistent with unitarity (reflection

positivity) for a single (tripartite) quantum mechanical system
⇒ What we previously called "the sectors S"

• No approximation (such as ETH or coarse graining) or averaging over
theories involved!

• The allowed representations in the sum are center symmetric, so indeed
g

(1)
c × g(2)

c → g
(diag.)
c [Betzios - OP (23)]

Euclidean Wormholes in Holography 16/23



N = 4 Wilson loops and

type IIB "bubbling" wormholes
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Wilson loops in N = 4 SYM
• The 2d/1d model is reminiscent of SUSY localization computations of
line/defect operators in N = 4 SYM [Wang, Komatsu, Dedushenko,...]

• Idea: correlate representations of (1/2-BPS) Wilson loops WR in higher
dimensional examples that have known semiclassical holographic duals.
Here: Consider two (non-interacting) copies of N = 4 SYM and a
correlated observable∑
R

ew(R) 〈WR〉1 〈WR〉2 WR = TrRP exp
[
i

∮
ds(iAµẋµ + ~n · ~Φ|ẋ|)

]

• A single 1/2-BPS Wilson loop in the representation R is computed via
localization resulting in a Hermitean matrix integral [Pestun ...]

〈WR〉 = 〈TrR(eM )〉M = 1
Z

∫
DMe−

2N
λ TrM2

χR
(
eM
)

• We would like to understand the limit where the operator is "very heavy"
and backreacts strongly in the dual geometry

• We need to consider representations R : {R1, ..RN} with O(N2) boxes
and the highest weights Ri ∼ O(N)

Euclidean Wormholes in Holography 17/23



The type IIB backreacted geometries
• The geometry dual to a backreacted loop in rep R, has an
SO(2, 1)× SO(3)× SO(5) isometry [D’Hoker-Estes- Gutperle, ...]

ds2 = f2
1 ds

2
AdS2

+ f2
2 ds

2
S2 + f2

4 ds
2
S4 + 4ρ2dzdz

where z, z parametrise a Riemann surface Σ and f1,2,4(z, z), ρ(z, z).
The Wilson loop is on the S1 boundary of the AdS2 disk

• The solution also contains a non-trivial dilaton and
3-cycles/5-cycles/7-cycles with RR/RR/NSNS fluxes supporting them
(D5/D3/F1)

• Everything is determined by two harmonic functions h1,2(z, z). h2 = 0
determines the boundary of Σ and h1 contains the data of the "bubbling"
geometry (cuts ↔ fluxes + singularity ↔ asymptotic AdS5 × S5 region)

C , C3 7 C , C5 7C , C5 7C , C5 7

S 4 0S 4 0S 4 0S 4 0S 4 0
S 2 0 S 2 0 S 2 0

C , C5 7
C , C3 7
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Bubbling Wormholes ≡ multiple singularities on ∂Σ

• The matrix model resolvent 2ω(z) = V ′cl(z)− y(z) = ih2(z)− ih1(z)
completely determines the dual SUGRA geometry

• h1,2 need to have common singularities on ∂Σ. Near such singularities
the metric asymptotes to AdS5 × S5

• We found solutions with more than one singularities/asymptotic regions,
still preserving the regularity conditions of [D’Hoker-Estes- Gutperle, ...]

• The simplest such Σ corresponds to a disk with two cuts and two
singularities [Betzios, Ji Hoon Lee, OP]

h1(z) = i
2
λz

√
(z2 − e2min)(z2 − e2max) + cc. , h2(z) = i

2
λ

(
z −

eminemax

z

)
+ cc.
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Matrix model dual of Σ wormhole with two S4 boundaries

• The dual matrix model spectral curve needs two cuts and two singularities

• The correct field theoretic observable is an "analogue of the Dirac-δ" for
two 1/2-BPS loop operators on two copies of N = 4 ⇒ We "glue" the
two copies of N = 4 on the great S1 where the loops are placed

〈det
(
I ⊗ I − eM1 ⊗ eM2

)−1〉1,2 =
∑
R

〈χR(eM1)〉1 〈χR(eM2)〉2

• This can be analysed as a coupled two matrix model ⇒ The planar
resolvent describes precisely our wormhole solution!

ω(z) = 2
λ

(
z − ab

z

)
− 2
λz

√
(z2 − b2)(z2 − a2)

a = 1
2 (
√

3− 1)
√
λ , b = 1

2 (
√

3 + 1)
√
λ

ρ(μ)
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Summary and Future
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Summary and Future Directions
Summary
• We proposed a general class of microscopic models for Euclidean
Wormholes, in terms of BQFTs coupled via a higher dimensional TQFT

• These models are reflection positive and do not require any ad hoc
averaging (over couplings/ensembles of CFTs or otherwise)
- no deviation from the usual holographic prescription and rules
There is though a resulting sum over representations of the gauge group
after we integrate out the "messenger" TQFT

• This makes the resulting field theoretic correlators to be compatible with
dual computations on wormhole saddles

• We found that similar models can also arise by considering heavy
correlated observables in otherwise decoupled QFTs
We analysed the case of correlated Wilson loops between copies of
N = 4 SYM. They give rise to "bubbling" wormhole geometries in IIB

• In the 1/2-BPS case we have exact control on both sides of the duality
but the boundaries touch on one dimensional S1 ⊂ S4’s (similar to Janus)
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A Hilbert space interpretation of our constructions
• For Lorentzian wormholes (eternal BH): H = HCFT1 ⊗HCFT2 and

|Ψ〉TFD = 1
Z

∑
n

e−
β
2En |En〉1 ⊗ |En〉2

• This correlates the energies of the two subsystems
• Our proposed models for Euclidean wormholes: Correlate ("entangle")
U(N) representations and not energies as in the TFD

• Realisation I: Presence of gauge constraints (messenger TQFT) - the
Hilbert space is reduced into H =

∑
RH1

R ⊗H2
R. One could think this in

terms of states
|Ψ〉RD =

∑
R

ew(R)|R〉1 ⊗ |R〉2

• Realisation II: Consider insertions of "heavy" operators that correlate the
copies with a similar representation theoretic "entanglement" (ex: Wilson
loops WR in N = 4/IIB)

• Future Realisation? An effective constraint on the Hilbert space could
arise dynamically in the IR
("cross-confinement"/diagonal IR singlets: U(N)× U(N)→ Udiag.(N))
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Future Directions

• The MQM non-singlet sectors are also relevant for black hole physics and
involve similar sums over representations (c = 1 MQM). Connections?
[Kazakov et al., Betzios - OP]

• Other top down constructions embeddable in critical string theory

• Less (super)symmetric but still controllable examples of correlated loops
or tripartite systems

• Understand better the Lorentzian continuations of our field theoretic
setups and their holographic duals (Bang/Crunch Cosmologies) - a Λ < 0
alternative to the dS/CFT correspondence? see talk by P.Betzios, [P.
Betzios, OP]

• Study (target space) Euclidean wormhole backgrounds in string theory
from the worldsheet perspective (WZW cosets?)
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Thank you!
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Intuitive understanding of the 2MM: Two component gas
• The 2MM saddle point equations describe two types of particles

−4N1

λ1
µ

(1)
i −

N2∑
k=1

2
sinh(µ(1)

i + µ
(2)
k )

+
∑
j 6=i

2
µ

(1)
i − µ

(1)
j

= 0 ,

−4N2

λ2
µ

(2)
k −

N1∑
i=1

2
sinh(µ(1)

i + µ
(2)
k )

+
∑
j 6=k

2
µ

(2)
k − µ

(2)
j

= 0

with an 1− 1 and 2− 2 repulsion and 1− 2 attraction to "mirror" points
• There is an overall Gaussian attractive potential ⇒ This leads to a paired

1− 2 condensate at the origin (the additional pole of the planar resolvent)

+-

- - - - -
-
- + + + + +
+
+

◦ After lots of pairs condense, they
create a repulsive effective potential
for the rest of the eigenvalues

◦ The rest of the eigenvalues distribute
on two opposite sides of the origin.
At large-N they form two cuts,
giving rise to the wormhole resolvent
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Cross-Correlators

• The n-point cross-correlator takes the general form

〈Oi1(τi1) ... Õi2(τi2) ...〉 =
∑
R

〈Oi1(τi1) ...〉R1 〈Õi2(τi2) ...〉R2 e−L
g2
YM
n C

(2)
R

+iθ|R|

where i1 refers to the first and i2 to the second MQM subsystem

• This correlator generically only depends separately on the differences
τi1 − τj1 and τi2 − τj2 and not on time differences that mix the 1, 2
sub-indices, or Oi1 with Õi2 operators

• No short distance singularities in the cross-correlators!

• The absence of short distance singularities in the cross correlators is a
robust-universal feature of dual wormhole backgrounds
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4D Einstein - Yang - Mills Solutions
[Hosoya-Ogura’89]

S =
∫
d4x
√
g

(
− 1

16πGR+ Λ + 1
4g2
YM

(
F aµν

)2)
• The metric is ds2 = dr2 +

(
B cosh(2r)− 1

2
)
dΩ2

3, r ∈ [−∞,∞]
• with B =

√
1
4 − r

2
0H

2 , r2
0 = 4πG/g2

YM , H2 = 8πGΛ/3
• The minimum size of the throat is r2

min = B − 1
2

• The throat is supported by a background gauge field Aα: the Meron
configuration ("half-instanton")

• Using Euler angles

dΩ2
3 = 1

4

(
dt21 + dt22 + dt23 + 2 cos t1 dt2dt3

)
= 1

4ω
aωa

0 ≤ t1 < π, 0 ≤ t2 < 2π, −2π ≤ t3 < 2π

Aa = 1
2ω

a = 1
2g
−1dg , with F a = 1

8ε
abcωb ∧ ωc

ωa is the Maurer-Cartan form of SU(2)
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Dual geometry?

• The singlet sector of one gauged MQM (inverted oscillator/in the double
scaling limit) is dual to 2d linear dilaton background of the
c = 1-Liouville string
⇒ A single asymptotic (weakly coupled) region of space

• Non trivial reps with few boxes in their Young diagrams are related to
long strings - Large reps ("long string condensates") deform the
background geometry, possibly creating black holes
[Gaiotto, Maldacena, Kazakov-Kostov-Kutasov, Betzios-OP...]

• We studied the saddle point equations using a large representation limit
(continuous Tableaux), in order to determine the corresponding geometric
saddle → technically difficult, hard to reconstruct the dual metric

• However, we were able to prove the existence of different saddles some of
which seem to correspond to disconnected and others to connected
geometries (factorised vs. non-factorised contributions)
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Further properties of wormhole saddle
• One can compare the free energy of the wormhole saddle with two
disconnected AdS5 × S5 spaces

Fw − 2FAdS = −1
2 log λ

• The wormhole has lower free energy. (Indicative for its stability)

• One can also compute the expectation of probe Wilson loops. For
example Wf = TreM

〈Wf 〉AdS =
∫ ∞
−∞

dzρAdS(z)ez = 2√
λ
I1(
√
λ)

〈Wf 〉worm = 4
πλ

∫ b

a

dz

z

√
(b2 − z2)(z2 − a2)ez

It grows with a slower rate with λ wtr to the AdS example

• Interesting to extend this to observables with coordinate dependence,
such as correlators of local operators and match with the gravity side
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Geometric properties II: "conical excess" on Σ

• A second caveat: The bulk geometry exhibits an integer (4π) conical
excess at the center of Σ

dΣ2 ≈ Cr2(dr2 + r2dθ2) = C

4 (du2 + 4u2dθ2) , θ ∈ [0, 2π]

• The conical excess provides the negative energy to support the wormhole

• It is reminiscent of orientifolds (O(7)), but the branch locus is
AdS2 × S2 × S4 (also a large number of them for backreaction)

• Most deformations of h1,2(z) (within our half-BPS ansatze) turn the
conical excess into a naked singularity

• We do not know a top down "resolution" of this conical excess in string
theory - but perhaps it is only a "pathology" of the very
(super)symmetric bulk ansatz we use

• The matrix model dual is perfectly well defined
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Connecting the MM resolvent with the harmonic functions
• One can show that the matrix model resolvent is related to the two
harmonic functions h1,2 via (y(z) : "spectral - curve")

2ω(z) = V ′c (z)− y(z) , ρ(z) = 1
2π=y(z) , z ∈ C

h1(z, z) = A+A , h2(z, z) = B + B

iV ′c (z) = 2i
λ
z = B(z) , iy(z) = A(z)

• This means that it completely determines the properties of the dual
SUGRA geometry

• h1,2 need to have common singularities on ∂Σ. Near such singularities
the metric asymptotes to AdS5 × S5. ex:

h1 = 2i
λ

√
z2 − λ + c.c. , h2 = 2i

λ
z + c.c.

• For a single Wilson loop in any rep, there is only a single such singularity.
The topology of the boundary is an S4 and the half-BPS Wilson loop
wraps a great S1 ⊂ S4
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Wormholes ≡ multiple singularities on ∂Σ

• We found solutions with more than one singularities/asymptotic regions,
still preserving the regularity conditions of [D’Hoker-Estes- Gutperle, ...]

• The simplest such Σ corresponds to a disk with two cuts/singularities ≡
a square with two singularities [Betzios, Ji Hoon Lee, OP]
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h1(z) = i
2
λz

√
(z2 − e2

min)(z2 − e2
max) + cc. , h2(z) = i

2
λ

(
z − eminemax

z

)
+ cc.

• We also found more complicated solutions that can be mapped to regular
polygons with 2n edges and n singularities, as well as solutions when Σ is
an annulus

Euclidean Wormholes in Holography 23/23



Geometric properties I: AdS2 factor and "Janus"
• The two boundary wormhole geometry is a form of a double cover of
AdS5 × S5 (dilaton is still constant)

• There is a caveat: The geometry has an EAdS2 factor with disk
topology and its boundary S1 is shared by all the AdS5 asymptotic
boundaries (Σ singularities) that have the topology of S4

• This means that the would-be distinct S4 boundaries are identified on a
common S1, in analogy with other Janus-type of solutions
[D’Hoker, Estes, Gutperle, Bachas, Gomis, Assel ...]

I II

S1 S1

S4 S4

• Still it is possible to connect separate points on the two S4’s by
traversing the bulk wormhole, without ever crossing the common S1

Euclidean Wormholes in Holography 23/23



An aside: Two boundary AdS2 wormhole?
[Betzios - OP (23)]

• What about using global EAdS2 that has two boundaries (cylinder)?

t

T T

σ σ 

σ 

 τ

ρ

π0 π0

• In this case away from the Σ singularities the geometry is the two
boundary EAdS2 × S4 × S2 ×R2
(similar to the [Maldacena Milekhin Popov] wormhole geometries)

• At the Σ singularities, the former UV asymptotic S4’s are now replaced
by S3 × S1

• The two asymptotic S1’s of the cylinder EAdS2 comprise the S1’s on
the north and south poles of the S3.

• Consistent with the fact that one needs to have a pair of Polyakov loops
(around the S1), sitting on the north and south poles of S3 (Gauss-law)
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Matrix model dual of Σ wormhole with two S4 boundaries
• The dual matrix model spectral curve needs two cuts and two singularities

• Use an "analogue of the Dirac-δ" for two 1/2-BPS loop operators on two
copies of N = 4 ⇒ We "glue" the two copies of N = 4 Wilson loops

〈det
(
I ⊗ I − eM1 ⊗ eM2

)−1〉1,2 =
∑
R

〈χR(eM1)〉1 〈χR(eM2)〉2

If the matrices were unitary this would have been a Weyl-invariant delta
function

• This can be analysed as a coupled two matrix model or as a model in the
space of highest weights Ri of R

• For the multi-boundary wormholes use an Âr necklace matrix chain and
connect the nodes with determinant operators

N2

N3

N1

N4 ΣΣ
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The resolvent at large-N and strong coupling

• At strong ’t Hooft coupling the saddle point equations simplify in terms
of only rational functions (similar to two coupled O(2) models on a
random lattice) [Kostov, Eynard ... ]

• In this limit we can obtain an exact solution for the resolvent

ω(z) = 2
λ

(
z − ab

z

)
− 2
λz

√
(z2 − b2)(z2 − a2)

a = 1
2 (
√

3− 1)
√
λ , b = 1

2 (
√

3 + 1)
√
λ

ρ(μ)

• The normalisability of the density of eigenvalues (
∫
supp.

ρ(µ) = 1) fixes
the end-points a, b in terms of the ’t Hooft coupling λ

• The resulting harmonic functions h1,2 correspond precisely to the ones we
found in the gravitational description
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