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• To make progress in multi-loop calculations 

• To compute various RG functions needed for BSM model-
building, precision calculation at colliders and  critical 
phenomena

m2�2Example: 

Coupling             depends on the scale so to run it  
we need to know anomalous dimension of the operator 

m2(µ)
�2

Goals

�nWe will compute anomalous dimensions for       family 
beyond state-of-the-art of perturbation theory 
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If the model has continuous global symmetry 

Composite operators  family charged under the symmetry 
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n(x) = [�(x)�̄(x)]n/2

Or you can construct singlet (uncharged) operators
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For ℷ<<1 dominated by the extrema of S

Consider model with U(1) global symmetry
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Badel, Cuomo, Monin, Rattazzi 2019

Now consider correlators of �

Q(x)



Bring field insertions to the exponent 

For perturbation theory works (expand around)
� = 0
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For expand around new saddles�Q � 1
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ℷ<<1 so Q >>1 to have new saddles and keep ℷQ=fixed
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• can be solved perturbatively but technically challenging 



• If we are at the fixed point of RG, however, we can 
use the power of conformal invariance

h�̄Q(xf )�
Q(xi)iCFT =
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In a CFT

Physical critical exponents

We will use conformal invariance just to simplify the calculation. 
Results will be valid also for non-conformal theories



�Q =
X

k=�1

�k(�0Q)

Qk

We expect scaling dimensions to take the form:

�k is (k+1)-loop correction to the saddle point equation

We will compute            and         ��1 �0

Goal :        compute ��Q ⌘ Q
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We will use conformal invariance just to simplify the calculation. 
Results will be valid also for non-conformal theories



Semiclassical computation
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• ne QFT to the perturbative fixed point

• Tune QFT to the (perturbative) fixed point (WF or BZ type) 

• Map the theory to the cylinder  

• Exploit operator/state correspondence for the 2-point 
function to relate anomalous dimension to the energy                                                                                          

• To compute this energy, evaluate expectation value of the 
evolution operator in an arbitrary state with fixed charge Q

Semiclassical method

h�̄Q(xf )�
Q(xi)iCFT =

1

|xf � xi|2��Q

Badel, Cuomo, Monin, Rattazzi 2019

E = ��Q/R

Double scaling limit : � ! 0, Q ! 1, �Q = fixed



To study system at fixed charge thermodynamically we have:

H ! H + µQ  𝜇 is chemical potential

• To compute this energy, evaluate expectation value of the 
evolution operator in an arbitrary state with fixed charge Q

hQ|e�HT |Qi T!1
= N̄e�E�QT

as long as there is an overlap between |Q>  and the 
ground state, the latter will dominate for  T ! 1
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Back to our U(1) global symmetry model

In d=4-ℇ there is an IR WF fixed point
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Plug the solution into the action:



⇢ = f + r(x) � = �iµ⌧ +
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 One relativistic (Type I) Goldstone boson (the conformal mode=phonon) 
and one massive state
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Charged operators family result 

Perfect agreement for coloured terms with diagrammatics



Recover perturbative expansion

3-loop2-loop1-loop

��1

�0

�2

….

….

….

….

...

Q2�0

Q�0

Q3�2
0

Q2�2
0

Q�2
0

Q4�3
0

Q3�3
0

Q2�3
0

Q�3
0



Uncharged operators: Real scalar
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Charged Uncharged

(Z2 symmetry)

2408.01414
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Perturbative WF fixed point at 1-loop reads
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⇢(x) = f, �(x) = �iµ⌧, Aµ = 0

Homogeneous ground state ansatz

Local U(1) model

Dµ� = (@µ + ieAµ)�



⇢(x) = f, �(x) = �iµ⌧, Aµ = 0

Homogeneous ground state

From EOM

Plugging into Seff.   
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and expand Seff to quadratic order
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Perfect agreement for the leading and subleading terms with 
large-Q results!
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Yukawa interactions: NJLY model
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Leading quantum correction 
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Eigenvalues of the Laplacian on the sphere



Standard model
SU(3)xSU(2)xU(1) local symmetry 

• To NLO in semiclassical expansion SU(3) does not enter 

• Add fermions with full CKM structure 



Standard model: Higgs family HQ(x)

2312.12963
OA, Bersini, Panopoulos, 

Sannino, Wang



Pheno application: Higgsplosion

h⇤ ! nh



• In a generic QFT, I showed how to semiclassically 
compute anomalous dimensions for operators      
needed for BSM model-building, precision calculation 
at colliders and critical phenomena

�n

• Large order behaviour of the series (resurgence) 

• Higher correlation functions 

• Condensed matter applications 

• Inhomogeneous ground state (operators with spin/derivatives) 

• Test dualities between different CFTs in their charged sectors 

• ……

Other directions/aspects



Thank you!


