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General idea

® Talk aims:

- 1: Review G-structure conditions for N’ =1 AdS2 solutions of type II supergravity.

- 2: Make their utility clear with some interesting examples.

® We begin with some motivation and definitions
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Why AdSsy?

There are many reasons to study SUSY AdSs d = 10, 11 supergravity.
- A principle one is AdS/CFT:

® Know that AdSjy1 solutions are dual to CFT}, that live on the AdS boundary.
- Best understood avatars of AdS/CFT are SUSY with string theory embedding.
- Low energy/curvature limit is supergravity in d = 10,11

- ~ strong coupling limit of CFTy.

® AdS; is dual to SCQM, interesting in its own right.

- Recent proposals for quiver/AdSz pairs. [Lozano-Nunes-Ramirez-Speziali]

® Also appears in several higher dim AdS/CFT contexts.
- Wrapped brane scenarios dual to CFT, compactified on ¥4_1.
- Janus/Hades like solutions with higher dim AdS asympotics dual to interfaces.

- Holographic description of Wilson loops in higher dimensional CFTs.
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Another very interesting application for AdSs is black holes:

® Famously the near horizon limit of d = 4 extremal RN is AdSs xS2.
- The AdS; factor appears to be universal for extremal BHs.

- What else appears depends on d, symmetries, ang-momentum and asymptotics.

® Near horizon limit of all known BH geometries are solutions to EOM.
- Constructing near horizons provides stepping stone to full BH geometry.

- Expect AdS2/SQCM to be of value to study of BHs.

® Bekenstein-Hawking entropy only require near horizon to compute.

- embedding AdS» into string theory allows micro-state counting [Strominger-Vata].

® For ' =2 AdS4 BHs AdS/CFT provides microscopic description of entropy.
- Computed through extreamisation of topologically twisted index [Benini-Hristov-Zatfaroni]
- Can compare to AdSy computation.

- CFT side implies likely many more BH geometries than currently known.
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G-structures and what are they?

Why G-structures?
® SUSY for classical solution requires a Killing spinor. i.e d = 11 supergravity
1
Vime+ ﬁGABC’D (F}?JBCD — 851’?/[FBCD) c=0.

- Not on equal footing with the bosonic fields (g, G), which satisfy geometric conditions.
- Need a solution in hand to check if its SUSY.
- Can be rather hard to work with.

® G-structure methods resolved these issues by making SUSY preservation geometric.
But what are G-structures?

® A G-structure is a property a supersymmetric manifold posses.

- “G” is for group and “structure” is a generalisation of holonomy.

® Simplest solutions of supergravity have only a non trivial metric.

= Ryny =0
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G-structures and what are they?

An example
® Of much interest to string-pheno were SUSY Mink4 xMg.

- Mg supports covariantly constant spinor V,n4+ = 0.

- Forming bi-linears it is possible to show equivalence to
dJo =0, dQ3=0.
- Manifolds admitting such forms are CY3 with SU(3)-holonomy.

® SU(3)-structure manifolds are more general and allow “torsion classes” W,.
dJs = glm(Wlﬂ) F Wi+ Wy AJy, dQz=WiJaAJa+WaAJdy+WsAQs.
- Necessary for solutions with more bosonic fields turned on.
- W, determine properties of Mg, Complex, Kahler, half-flat....
® There exist different G-structures in different dimensions or with more spinors turned on.

- General N' =1 Mink4xMg can have SU(3) or SU(2)-structure

[Grafia-Minasian-Petrini-Tomasiello].

® In most cases bosonic fields expressed in terms of G-structure forms.

- Reduces need to make ansatze.
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Talk outline

e N =1 AdS; in type II supergravity.

- G-structure conditions for AdS,.

® Applications.
- N =1 solutions with foliations involving weak G2 manifolds

- Small N = 4 solutions on with AdSsxS? foliated over CYs x Zs.
® Some comments on d = 11 case.

® Conclusions.
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N =1 AdS, in type II supergravity

[A. Legramandi, A. Passias, NTM]
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N =1 AdS; in type II: N = 1 supersymmetric AdSs

® In general AdSs solutions of type II supergravity decompose as (£ for IIA/IIB)

ds? = 24ds?(AdS2) + ds?(Mg), Fy = e*Af4 + vol(AdS2) A xsA(f+),
H = e24v0l(AdS2) A Hy + Hz, @ = ®(Ms).

- task is derive geometric constraints on internal fields: (A, ®, f+, H1 3,ds?(Ms)).

AdS3 (inverse radius m) supports Majorana-Weyl (MW) Killing spinors (+:
Vil = Twls, CL=Cx
® d =10 MW spinors decompose in terms of d = 8 MW spinors
a=¢oxi+oxt, e=Goxi+oxd,
- All of XL’Q must be non zero, or m = 0.

® N =1 means there are two independent real supercharges.

- Two from {4+ and one from lel:’Z.

® KSE of type II then imply conditions on Xiz. Can use to derive geometric conditions.
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N =1 AdS, in type II: Work smart not hard

® G-structure conditions for general N' = 1 type II solutions already exist [Tomasiello]
- depend on bi-linears:

10
14— 1 —
1,2 _ 1,2 L _—_ 1p+My...My,
KM = 561'21—‘]\46 s \Ijj: =€ QeEg = 33 E f'E2FMan1€ i

= n!
that imply a poly-form ¥4 and two one forms 2K = K + K2, 2K = K' — K2,
® Supersymmetry entirely equivalent to the following differential constraints

- 1 -
VinKay =0, dK =.xH, (d—H/\)(e_q)\Ili):—?E(K/\-i—LK)F

- As well as some algebraic “Pairing” constraints - complicated, will omit details.
- Fix metric and other Bosonic fields.
- Killing vector K9, can be time-like/null.

® For AdS2xMg, ¥t decompose in terms of forms on AdSs and Mg

- Can factor out AdS2 data to arrive at geometric conditions on Mg = SUSY.
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N =1 AdS, in type II: Say no to AdSs!

® The condition V(n Ky = 0 is actually very powerful, one finds (x'2 = Xi’Q + Xi’z
K = g (A0 + IR+ e 0Tt F 2t ) - g fok
where in particular the AdS2 n-forms (v1,v1, fo) obey
V) =0, V(u(u1),) = —mfogps2.

® Actually imposing that KM 9y, is Killing means that

Viakp =0, LrA+ %G_A(x”ﬁxl Fx*T49x2) =0,

Al (XM + PP =0, dlem Ot FaPTx?)) + 2me Ak = 0.
® So either k = 0 or k%8, is Killing w.r.t Mg but not e24.

- If Killing can take k0, = 0, wlog
AdS3

= e24ds?(AdS2) 4 ds?(Mg) = €247 |m? cosh? pds?(AdS2) + dp? | +ds? (M)

- So one has AdSs unless k, := %(X”q/axl F x%tyax?) = 0 and x'T4x! F x*t9x2 = 0.

- So KM@y, is time-like for true AdSs solutions.
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N =1 AdS, in type II: Necessary and sufficient condtions

® Proceeding in kind with the rest of the d = 10 geometric SUSY constraints one finds:
® Conditions for no AdS3
OHrax! Fxax®) =0, XM T =0, bal? = el
® Conditions for SUSY phrased in terms of following:
e cos B := xlT’yxl, e sin BV = XlT'yaxlea, et = |)(1|2
p=x'@x*, P=9n@x*

® N =1 SUSY is equivalent to imposing

A Hy = me?sin BV — d(eQA cos ), d(eA sin V) =0,

ity (¢~ s) = £2ce sin BV A S,

X 1
Ay (™) —me™Ps = F oA (xs e + cos ),
1 1
(h+, f+)s = iZE_q) (m - EGA Sinﬁbvfh) vol(Ms).

- final condition comes from Pairing constraints, proving equivalence to this is not easy.
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N =1 AdS; in type II: What G-structure?

® No AdS3 conditions are restrictions on allowed Xi’Q and so (1, 1/3) = G-structure.

- Need only: Unit norm x4+, 1-form U s.t t;yU = 0 and phase e*® to span X:E‘Q.

- X+ = d = 8 Ga-structure which is broken to SU(3)-structure by U.

® We define d = 7 bi-linears orthogonal to V in terms of SU(3)-structure bi-linears

: ’LO[ —1 1
WD = (wiU“)Hw:SFU(?”AU), SV = 86 itz ¢§U<3):§QS,

In terms of which we have
¢i:eARe[w§:7)+cos,B¢§:7)/\V], wq::eAsinBV/\Re[wg)],
&i = eARe[lLv:(g) /\V—l—cos,&bﬁ?], 1&; = fef sin SRe [wg)}.

® Mg supports SU(3)-structure generically.

- enhanced to Ga-structure when e'® = i, then

1
O3 = —(J2 AU +ReQs), #7P3= 3J2 N T2 = U AImQs.
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N =1 AdS; in type II: Summery

® AdSs solutions in type II supergravity
ds? = e*4ds®(AdSz) + ds®(Mg), Fi = €2 f1 + vol(AdSa) A xsA(f4),
H = *Avol(AdS2) A Hy + H3, ® = ®(Mg).
® Preserve N = 1 supersymmetry when following hold
24 H; = metsin BV — d(e2A cos ), d(eA sin 8V) =0,
1
dig(e7 T x) = £ sin BV A fa,

& _ 1
A=Py)r) —me™ Py = :FT6€2A(*8>\f:t + cos Bf+),

(Y, fr)s = i%e*‘? (m - %e" sianHl) vol(Mg).

dp, (e

- (1, %) expressed in terms of SU(3)-structure.

- Totally geometric conditions. No spinors any more!
® SUSY implies that one has a solutions when
Hs =0,  iy(dmyfe) =0, cosp [d(e*” xs H1)+ 5 (a, f:t)s:| 0.
- follows from integrability proof for time-like KM 9y [Legramandi-Martucei-Tomasiello]
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Applications

[A. Legramandi, A. Passias, NTM]
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Applications: N = 1 with foliation involving weak Go manifold.

® Family of massive IIA N = 8 solutions exists, foliations of AdS2xS7 over interval

[Dibitetto-Passias].

- S7 supports weak Ga-structure: Exists ®3 s.t
dPs = 4 x7 B3
- Many other weak Go-manifolds: Compact examples with G2 cone singularities
ds?(My) = do? + sin? ads?(Bs), Be = (S8, 3 x 3, CP3, F3).
® What about also allowing fluxes to depend on (<i>37 *7&)3)?
® We assume ansatz such that weak Gg-structure is respected
ds? = €2%ds?(My) + €2Fdp?, Hz =0
f+=Fo+ ekp&),?, ANdp + g7 D3 + ekqvol(M7) Adp,
- (e4,eF, e, g, q) functions of p only, OpM7 =0
® We also assume we are in Go-structure limit with
V= ekdp, Pz = e?’C(f’g
- Actually large assumption, not required that ®3 o b3
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Applications: N = 1 with foliation involving weak Go manifold.

® Though the G-structure conditions find class of form

ds? h [hh''\/1—=7 h' Vi=T7
@ J DBV T T h2 (AdSs) + dp” + Jds*(M7) ) |,
L2 h' 8A 8hy/T1 — Tv (v—1)2

VA(L - v) (h”>%
COL3(1—7’U)% h ’

2 ’ _
g L d(hh 1-7v)
8v2 A

A =2hh" — (1 —7v)(h))?,

p) Avol(AdSy), e T =

-None of the RR flux terms generically zero.

® One has a solution whenever away from sources

_vz 7" \/5 v§ 3 1.,
o (B2 (o () - g (0t o

- complicated in general but for v = vy truncate to

1
R =Fy, wo(l45v0)=0, = h=ci+cap+c3p’+ §F0p3 (Locally)
® yg = 0: expected generalisation of AdS2 xS7 x T to general weak Gg manifolds.
® (14 5vp) = 0: unexpected solution with (3, x7®3) in fluxes.

® [y can be piece-wise constant = D8 sources along interval.

- interesting global solutions a la AdS7 in massive ITA.
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Applications: Class of small N = 4 solutions

Can use N = 1 conditions to construct solutions with extended SUSY.

- Must make SU(3)-structure forms charged under R-symmetry.

® Will consider case of small ' =4 AdSs solutions
-SU(2) g R-symmetry, thus consider decomposing
ds® = €2Cds?(S?) + ds?(My) + V2 + U2, Hs = ¢?“ Hy Avol(S?) + Hs,
® 32 supports the embedding coords pq, SO(3) triplets
- Can decompose SU(3)-structure forms in terms of these and SU(2)-structure forms jq
Jo = e2cvol(S2) — Maja, Sz = e© (dpa A ja + t€qpeppdppe A je)
Ja A Jo = 26apvol(Ma)

® By insisting that RR sector is SU(2)r singlet can construct N' = 4 class:

ds? — (—dsz(AdSQ) Allds2(s2)) +1/23 2(CYs) + thh (d2? + da2) |,

\/h3h7 AQ
2 2
:CO‘/AIAQh% A1:1+M7 Az:l—M.
h3h7 h3h7

- and all NS and RR fluxes are non trivial, depend on primitive (1, 1)-forms X <1 D
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Applications: Class of small N = 4 solutions

® Functions in the metric have dependence
- hg = h3(CY2,zq), h7 = h7(za), u = u(za)
® Supersymmetry amounts to solving
Viu=o0.
® Bianchi identities of fluxes impose
da X = daXSY =0, 0, XY =0, XSV, 0, (h2X V) = —0,, (R2XSHY),
V3hr =0, %Vzhg + Vhs + hr ((X{D)2 + (x{"V)2) =0,
- Generalised D3-D7 system extended in AdS2 xS2.

1,1 - . .
- ha = h3(z,) and X{ 3 P limit, 3 harmonic functions [Chiodaroli-D’Hoker-Gutperle-Krym)]
,

- Contains further classes with 0z, or 0z, isometries [Lozano-Nunez-Ramirez-Speziali]
® Have solution whenever these PDEs are solved.

® Fixing u = 1 gives embedding of extremal RN near horizon into IIB.

ds? =

1 [h
Vv (ds?(AdS2) + ds*(S?)) + idSQ(CYQ) + V/hsh7(da? + dad)
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Comments on d = 11 case

[J. Hong, NTM, L. A. Pando Zayas]
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Comments on d = 11 case

® Some time ago provided G-structure conditions for AdSs2 in d = 11
ds® = €?2ds?(AdSy) + ds?(Mg), G = e*2vol(AdS2) A G2 + Gy.
® Necessary geometric conditions for general N' = 1 solutions exist
dZ2 =G, VuKpn)=0,

2 1
d¥s =g xG— Q2 NG, *dK=§E2/\*G—§Z5/\G.

- Simple but only sufficient for time-like K [Gauntlett-Pakis].
® Assuming this for AdS2 = SU(4)-structure.
- Provided conditions for such solutions [J. Hong, NTM, L. A. Pando Zayas].

”

® But now realise V(37K ) = 0 here also implies “no AdS3” conditions.

- Other structures possible, but solutions are AdS3 i.e SU(4) is general.
® Assumed round AdSs - in extremal Kerr-Newman near horizon, has U(1) fibered over it.
- Some embeddings into d = 11 known [Couzens-Marcus-Stemerdink-Heisteeg].

- In general such solutions will lift from ITA limit of d = 10 AdS2 conditions.

21/23



Conclusions

Have provided G-structure conditions for =1 AdS; in d = 10
-Also classified solutions in terms of torsion classes (too long for here).

- Applications for AdS/CFT and black holes.

Have provided some new AdS; examples:
- N =1 solutions with weak Gz-manifolds governed by k' = Fy
- Broad class of small N = 4 solutions on AdS2xS? x CYa x 3.

Many other interesting applications:

- N = 8 solutions should be fruitful: N' = (8,0) AdS3 suggests interesting Janus type
solutions in massive ITA exist.

- Wrapped Brane scenarios dual to compactified CFTs.
- N =2 AdS; solutions compatible with AdS4; BH near-horizons.

- Holographic duals to Z extreamisation.

Interesting to generalise to type II solutions with U(1) fibered over AdS>

- Needed for some extremal near horizons solutions, i.e Kerr-Newman.
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Thank you



d =11 AdSy SU(4)-structure conditions

® Recall AdSs in d = 11 decomposable as

ds? = e?2ds?(AdS2) + ds?(Mg), G = e?Avol(AdS2) A Ga + Gy.
® For SU(4)-structure to happen Mg must support a chiral Dirac spinor x
® SU(4)-structure forms defined as

i 1
AV = xTyaxe®, eJa = —EXT’YabXCGb, Ay = EXCT’Yabcheadea

® Conditions on SU(4)-structure forms
d(e®J2) =0,
d(eZAV) el s+ 222Gy = 0,
d(e®V ATmQy) —e®J2 AGy =0,
d(e* A ReQyq) — €AV ATm€Qy + €22 (29G4 — V AG4) =0,
*9 (2V A%9G2 + ReQ2 A G4) + 6dA =0
JoAJz AGa =0,
€2 (2J2 Ax9Ga — V ATmQu A G4) = 6Vol(Mo).
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