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Matrix model of SU(2) gauge theory with an adjoint Weyl fermion

Gague field (glue): Mia (where i = 1, 2, 3 and a = 1, 2, 3).
Chromoelectric Field: Eia = −i ∂

∂Mia
[Mia,Ejb] = iδijδab.

Chromomagnetic field: Bia = 1
2εijkFjk = −Mia − gεijkεabcMjbMkc

Glue Hamiltonian:

HYM =
1

2
(EiaEia + BiaBia) = 9d-Harmonic osc. + cubic + quartic

=
1

2
E 2
ia +

1

2
M2

ia − gεabcεijkMiaMjbMkc +
g2

2
εabcεadeMibMjcMidMje

Fermions in matrix model: ψ time-dependent Grassmann-valued matrices
A left-weyl fermion transforming in adjoint rep of SU(2):

Gluino: ψ =

(
bαa
0

)
, spin-index: α = 1, 2,

{bαa, b†α′a′} = δαα′δaa′ color-index: a = 1, 2, 3

Total Hamiltonian Diez-Pandey-Vaidya (2020):

H = HYM + Hf = HYM + gεabcb
†
αaσ

i
αβbβbMic︸ ︷︷ ︸

fermion-glue interaction

+b†αabαa
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Rotational and Gauge symmetries

Under Under
spatial rotations color SU(2)

Mia spin-1 rep adjoint rep

Generated by: Generated by:
Li ≡ −εijkEjaMka G a

g ≡ −εabcΠibMic

[Li , Lj ] = iεijkLk [G a
g ,G

b
g ] = iεabcG

c
g

ψ spin-1/2 rep adjoint rep

Generated by: Generated by:

Si ≡ 1
2
b†αaσ

i
αβbβa G a

f ≡ −iεabcb†αbbαc

[Si , Sj ] = iεijkSk [G a
f ,G

b
f ] = iεabcG

c
f

SO(3)rot & color SU(2) symmetry

Ji = Li + Si , G a = G a
g + G a

f

[Ji , Jj ] = iεijkJk ,

[G a,G b] = iεabcG
c

H commutes with Ji and G a:

[H, Ji ] = 0, [H,G a] = 0

H also formally commutes
with Nf = b†αabαa:

[H,Nf ] = 0

U(1)R NOT a symmetry: Anomaly
Nf is observable: we can find 〈Nf 〉
Acharyya-Pandey-Vaidya (2021)

Nirmalendu Acharyya QPT and SUSY in matrix model of SU(2) gauge theory



Physical Hilbert Space

Fermionic Hilbert space Hf :

Max. no of fermion number in a
state=6

No. of states=26 = 64.

Hf is finite-dim: states can be
arranged in reps of {Si} and {G a

f }.

Glue Hilbert space HG :

HG is infinite dimensional.

HG = {square-integrable f (Mia)}
inner-prod measure= dM11..dM33

Physical Hilbert space Hphys :

Hphys ⊂ Hf ⊗HG

|Ψ〉 ∈ Hphys satisfies: G a|Ψ〉 = 0

All states in Hphys :
• are color-singlets
• can have spin J = 0, 1

2
, 1 . . .

spanned by color-singlet
eigenstates of H

The colorless eigenstates of H can be

labelled its spin J: H|ΨJ
n〉 = E J

n |ΨJ
n〉

A variational ansatz to find E J
n and |ΨJ

n〉:

|ΨJ
n〉 =

∞∑
k=0

∑
I

c I ,kn |F I
...〉 ⊗ |φk

...〉

{|F I
...〉} = basis of Hf

{|φk
...〉} = basis of HG

= eigenfunctions of 9d Hosc

Truncated: |ΨJ
n〉 =

Nmax∑
k=0

∑
I

c I ,kn |F I
...〉⊗|φk

...〉

Obtain c I ,kn by minimizing E J
n

Increase Nmax till E J
n converged.
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N = 1 Supersymmetry

Super charges: Qα = b†βaσ
i
βα(Eia + iBia), α = 1, 2

[H,Qα] = −igb†αaGa.⇐= Commutes in Hphys

{Qα,Q†β} = δαβ(2H + Nf − 3)−2σi
βα(Ji + MiaGa),

For any energy eigenstate |ΨJ
n〉 satisfying H|ΨJ

n〉 = E J
n |ΨJ

n〉:

〈ΨJ
n|{Qα,Q†α}|ΨJ

n〉 ≥ 0 =⇒ E J
n ≥ −

1

2
(〈Nf 〉 − 3) + J3︸ ︷︷ ︸

Bound saturated for any SUSY-Singlet

⇐=
spectrum of H
bounded from below

Strong coupling limit: well studied
both theoretically and numerically

Numerical estimates of the
spectrum of H at g →∞: flat
directions and continuous spectra
Campostrini-Wosiek (2004), Anous-Cogburn (2019),

Han-Hartnoll (2020)...

Theoretical computation of the
Witten index at g →∞
Yi (1997), Sethi-Stern (1998) ...

We construct the energy eigenstates for
both weak and strong coupling regime

Provide numerical evidence for:

QPT at weak coupling
a crossover to a
non-supersymmetric phase in
strong coupling
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Weak and Intermediate Coupling regime 0 ≤ g ≤ 2
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1
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n

g
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b)

We obtained the low-lying energy eigenstates for J = 0 and J = 1/2.

The ground state:

has spin-0 and is unique
undergoes level crossing at g = gc ⇐= Quantum Phase Transition

Numerical estimate of gc ≈ 0.225.

There is no other level crossing in the ground state even in the strong coupling
regime
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Two phases: 0 ≤ g ≤ 2

The properties of the phases and QPT captured by ground state expectation
of observables:
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c)

g < gc g > gc

• 〈Nf 〉 =0 • 〈Nf 〉 =2

• “Non-interacting”: 〈Hint〉 = 0 • Interacting: 〈Hint〉 6= 0

• Only spin-0 glue: 〈LiLi 〉 = 0 • Glue with non-zero spin: 〈LiLi 〉 6= 0
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Binder Cumulants : 0 ≤ g ≤ 2

The QPT is also captured in the third and fourth order Binder cumulants

G3 ≡
√

3

2

εijkεabc〈MiaMjbMkc〉
〈MiaMia〉

3
2

, G4 ≡
9

8

[
〈MiaMibMjaMjb〉
〈MiaMia〉2

− 1

2

]
,

For any random 3× 3 Hermitian real matrix Mia , the allowed values of G3 and G4

constrained to lie in shaded region Pandey-Vaidya (2016)

The ground state expectation values is a curve in the shaded region

Carries info about gauge configurations in the ground state.
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For g < gc : gauge config
localized near “center of
arrow”

For g = gc : it jumps to
the “corner”

Corners correspond to
special configurations:
all three singular values
become equal
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Excited states and SUSY : 0 ≤ g ≤ 2
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Except near the QPT:

Each excited state is 4-fold degenerate:
two spin-0 states + one spin-1/2 doublet
N = 1 Super-multiplets

The ground state has energy
Egs = − 1

2
(〈Nf 〉 − 3)⇐ SUSY-singlet

Near the QPT:

The levels get rearranged.

This leads to lifting of the degeneracy of the
multiplets in the neighbourhood of gc

Away from gc , the system is supersymmetric in both
phases.

Witten index at small g :
as the spectrum is discrete and the ground state is
unique bosonic state

W = lim
β→∞

(−1)F e−βH = 1
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Strong coupling regime

To study the strong coupling (large g) regime:

Re-scale: Mia → g−
1
3Mia and Eia → g

1
3Eia Define: ν ≡ g−2/3.

The Hamiltonian

H ≡ ν−1
[1

2
E 2
ia +

1

2
εabcεadeMibMjcMidMje + εabcb

†
αaσ

i
αβbβbMia −

νεijkεabcMiaMjbMkc + νb†αabαa +
ν2

2
M2

ia

]
,

≡ ν−1H̃

We can now find the eigenvalues of H̃

Problem: Large g or small ν regimes are plagued with finite cut-off (finite
Nmax) error!

Primary reason: M2
ia gets suppressed in H̃.

Most severe: At ν = 0
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Nonetheless, ν = 0

At ν = 0:

All low-lying eigenvalues of H̃ has a
power-law dependence on Nmax :

Ẽn ∼
Cn

(Nmax)α
,

Log-Log plots are fitted with line
(dashed lines)

Numerically obtained: α ≈ 0.93.
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Lightest spin-0 state 2-fold degenerate at ν = 0.

To understand the implications: add mHm to H̃
where Hm = (ψTγ2γ0ψ + h.c)

lim
m→0+

〈Hm〉 ≈ −1 Non-vanishing “Gluino condensate”

Residual Z2 ⊂ U(1)R Witten (1982)
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Strong coupling regime with 0ν > 0

The finite-cutoff error:
∆En(ν) ≡ Ẽn(ν,Nmax)− EJn (ν)

∆En ≡ (ν) for all low-lying eigenvalues of H̃ has a power-law dependence on Nmax :

∆En(ν) ∼ Dn(ν)

(Nmax)β(ν)

.
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EJn can be identified as:

EJn (ν) = lim
Nmax→∞

Ẽn(ν,Nmax)

The spectrum is discrete
away from ν = 0

Lightest multiplet at large ν:
breaking at small non-zero ν

Cross-over to a
non-supersymmetric phase

SUSY reappears only at
ν = 0
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∆En(ν) ≡ Ẽn(ν,Nmax)− EJn (ν)

∆En ≡ (ν) for all low-lying eigenvalues of H̃ has a power-law dependence on Nmax :

∆En(ν) ∼ Dn(ν)

(Nmax)β(ν)

.

●
●

●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●

●
●

●

●
●

●
●

●

2.2 2.4 2.6 2.8 3.0

-2.0

-1.5

-1.0

-0.5

0.0

∆
E

J n
(N

m
a
x
)

Nmax

J = 0, n = 0

J = 0, n = 0

J = 1/2, n = 0

ν = 0.05 β(ν = 0.05) ≈ 1.25

●
●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

2.2 2.4 2.6 2.8 3.0

-4

-3

-2

-1
∆
E

J n
(N

m
a
x
)

J = 0, n = 1

J = 0, n = 0

J = 1/2, n = 0

ν = 0.25 β(ν = 0.25) ≈ 3.0

Nmax

0.0 0.1 0.2 0.3 0.4

0

1

2

3

4

β
(ν
)

ν

● ● ● ● ● ● ● ● ● ●
●

●

●
●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

● ●
●

●

●

●
●

●

●

●

0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40

0.0

0.5

1.0

1.5

ĒJ
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EJn can be identified as:

EJn (ν) = lim
Nmax→∞

Ẽn(ν,Nmax)

The spectrum is discrete
away from ν = 0

Lightest multiplet at large ν:
breaking at small non-zero ν

Cross-over to a
non-supersymmetric phase

SUSY reappears only at
ν = 0
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Summary and Discussion

Weak and intermediate coupling:

QPT at gc ≈ 0.225
Observables are discontinuous at gc
Away from the critical coupling, both phases are supersymmetric
In vicinity of gc : SUSY breaks due rearrangement of levels

At ν = 0:

Power-law dependence of the energy eigenvalues
Non-zero Gluino Condensate
Continuous spectrum of H? Witten Index?

Strong coupling regime: ν > 0:

Spectrum is discrete
Lightest supermultiplet breaks: cross-over to a non-supersymmetric phase
Why it happens: Quantum anomalies? Smilga (1987), Casahorran-Esteve (1992) . . .

Thank You
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