Corfu2024: Workshop on Noncommutative and Generalized Geometry in String
theory, Gauge theory and Related Physical Models

Noncommutative gravity and spacetime perturbations

Based on : PLB 854 (2024) 138716, JHEP 06 (2024) 130 and arXiv:2409.01402

with Nikola Herceg, Tajron Jurié, Andjelo Samsarov, Ivica Smolic

Naveena Kumara A. Institut
September 23, 2024 }achiE??,
Rudjer BosSkovié¢ Institute, _Z;()Sﬁ%{)])i(ﬁ

Zagreb, Croatia



Table of contents

1. Black hole perturbations
2. Noncommutative differential geometry

3. Noncommutative gravitational perturbations



Black hole perturbations



Understanding Quantum Effects in Black Holes

Croatian Science Foundation research project
Search for Quantum Spacetime in Black Hole QNM Spectrum and Gamma Ray Bursts

Inspiral Merger Ringdown

./ °
The aim of this project is to

investigate the QNMs resulting from
perturbations of realistic N}\M R
4-dimensional black holes in the

presence of quantized spacetime. Post — Newto ‘

H\em) \ laivi

Compact Binary Coalescence, relevant to quantum
effects in spacetime (arXiv:1610.03567)



Black Hole Perturbations and Quasinormal Modes (QNM)

= QNM frequency: w = wg + iw;. wg: oscillation frequency; w;: damping rate.
= QNMs depend only on black hole parameters ( "footprints" of a black hole).
= Schwarzschild black holes (Regge & Wheeler):

linearised Einstein equations — Schrédinger-like equation.

Wave Equation for Perturbations

82)/ ) a2y
f— == ~ Fundamental 8[‘2 -V 8)(2 - O’ 'y(rf"/o) -
5= il (60 =0, h=57
<{Ez> e i hamonic Discrete frequencies depend on system
P length (L) and wave speed (v).

Vibrating string analogy



Black Hole Perturbations: Approach and Boundary Conditions

Approach to BH Perturbations: Key Differences:

= Compute equations of motion for perturbations.

. . . Guitar String :: BH Perturbations
= Cast into a wave propagation equation.

Self-adjoint :: Not self-adjoint
Real B.C. :: Complex B.C.

= Derive boundary conditions.

= Perform numerical computation.

Boundary Conditions: Outcome:
= At event horizon (r = ry): impose ingoing BH perturbations yield
conditions: h ~ e—ilwt+kr) damped/exponentially growing

= At infinity (r = oo): impose outgoing smusmdsr,] mhdlc.atlng ene'rg]z/ I'oss
conditions: h ~ e~ iwt—kr) toward the horizon and infinity.



Metric Perturbations and Axial Modes

= Black hole metric: g, — g + hy., with h,, being the perturbation.

-1
= Schwarzschild background: ds® = — (1 — 21\/7) dt?® + (1 — 21\/,) dr® + r’dQ?

= hy,, decomposed into spherical harmonics Y,; axial (odd-parity) and polar (even-parity)
modes are treated separately.

= Time dependence handled via Fourier modes: F(t,r) fdwF w, r)e”iwt,

Gauge and Axial Modes: K& JEaatonT
» hip < h§MOy Yim
u h,g 0.8 h{map ng
U hnp 0.8 hé’"&g ng
O h,cp XX h{mag ng

= Gauge freedom arises from diffeomorphism
invariance: h,, — hy,, +V & + V&,

= Regge-Wheeler gauge used for axial modes.

= Axial perturbations for ¢ > 2 parameterized by
h§™, h{™, and h5™.



Schrodinger-like Equation and Effective Potential

Effective Potential:

Perturbation Equation: Voaa(r) = (1 _ /:J) w
dy 2 ISR — jw?
=My, M) = ( e T
: TTRE TR o6f ' ' PR
‘/CVUII
where Y = T(ho(r), hi(r)/w). 0.5/
Schrodinger-like equation: 04F ]
42V, . T 03f ]
dr? M (wz ~ V()M =0 02 ]
Tortoise Coordinate: ol ]
. 0.0 —— , , , e
. = RI (— — 1) -5 0 5 10 15
12 r+ Rin R .

Effective potential for gravitational perturbations. 6



Noncommutative differential
geometry



Lie Algebra, Hopf Algebra, and Drinfeld Twist

Dieffigebrafandihiopfiigebia: Drinfeld Twist and R-Matrix:

= Lie algebra of vector fields (=, [, ]): describes « Drinfeld twist F € H & H: deforms the

infinitesimal diffeomorphisms of M. s el

= Universal enveloping algebra U= encodes 2 Deformed Hopf algebra:

Leibniz rule, inverse, and normalization via A
(coproduct), S (antipode), € (counit). AT (&) = FA)F™Y, ST(€) =xS(E)x7?

= Hopf algebra structure: H = (U=, u, A€, S).
= Universal R-matrix relates the deformed

e 2lEhlE Eonalilens: coproduct to its coopposite:

(A@)AE) = (4® A)AE) (A7) (€) = RAF(E)R-"
(c@id)Ag) =¢ = (|d 2 €)A()
(S @id)A(€)) = (&)1 where R = Fo1.F .



Noncommutative Space, Moyal-Weyl Twist, and x-Product

Noncommutative Space:

= The deformed Hopf algebra H” is not
cocommutative, leading to NC structures on
spaces, like the algebra of functions on M.

Moyal-Weyl Twist:

= We use the Moyal-Weyl twist F on M = RV,

= The twist is given by:
ia u
W= exp —59 a,u ® 3y

where ©H¥ is antisymmetric.

*-Product:

The algebra of smooth functions C*°(M)
with pointwise multiplication h(x)k(x)
becomes A* = (C*(M), x).

The x-product for the Moyal-Weyl twist is:

/'a<_ LV
hk=hel?u®" B0y
A* is R-symmetric:

hx k = R*(k) x Ry(h)



NC Geometry: Covariant Derivatives, Torsion, and Curvature

= x-Covariant Derivative: A x-covariant derivative V* along v € = is a C-linear map
satisfying:
Viiwz=Vyz+V, 2,
h*vz = hx V:Z,
Vi(hxz)=£(h)xz+ R*(h) x V,*—i,a(v)z
= x-Torsion and Curvature: Given V*, the x-torsion T* and x-curvature R* are:
T ( ) V w— VRO((W) ( )_ [V7 W]*7

/‘?*(V7 W,Z) = V:V;Z - v%a(w)v%ﬂ(\,)z - vrv,w]*z

= *-Ricci Tensor: In the x-dual basis (0,,, dx”), = ¢/, the x-Ricci tensor is:

p
R*(v,w) = (dx", R*(0y, v, w)).

The noncommutative Ricci tensor is not R-symmetric, as the Riemann tensor is not
R-antisymmetric in its last two indices.



NC Geometry: Moyal-Weyl Twist, Torsion, Curvature, and Inverse Metric

= Moyal-Weyl Twist: The x-covariant derivative, torsion, curvature, and Ricci tensor are

given by:
V5,00 =T %3, = (120,
T*(0,0) = (T, = T37.) 0,

R*(0,,0,,0,) = (8HI'1*,;'J = 0,00+ T e — 7 * I'f,‘;) Oy,
R*(0y,0,) =0T — 0T + T x Tl = TH0 x TR
= Inverse Metric: The metric and inverse metric satisfy:

gu*xg"r =200, g'"xg,=70
The inverse metric is:
g’ =g — g7 01 (9,8°7)(0,8y) + O(a%)
= Levi-Civita Connection: The Levi-Civita connection is:

1 o
r;f;f = Eg*p * (albgva + 8l/g;w - aag;u/)
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Noncommutative gravitational
perturbations



Non-commutative Einstein Manifolds and R-Symmetrization

= In commutative gravity, black hole = For Moyal-Weyl type deformations,
perturbations use R, = 0. R-symmetrization is:
= In non-commutative gravity, the analogous 1
. . o RJ,I/:R* :7(R* +R* )
condition is R, = 0. + (nv) = o\ v Vi

R-symmetrized Ricci tensor

R/u) = <don’ R*(aav a,lm 81/) + R*(a()ﬂ F?A(au)7 'L_?A(allr))>*

= A generalized abelian twist is:
= Ensuring R}, = 0 is non-trivial due to the

non-symmetry of R, . F =exp (—I;@“”XM ® X,,)

11



Selection of a Specific Twist and Semi-pseudo-Killing Twist

Selection of a Specific Twist:
3 Semi-pseudo-Killing Twist:
= Twist selection in quantum gravity should
. i q ) & y i = |n black hole perturbation studies
ideally be guided by experiments, but in o i )
] (guv + huw), a Killing twist results in NC
their absence, symmetry arguments ] o

corrections that are quadratic in h, as

£xkg =0 but £h # 0.

= A semi-pseudo-Killing twist, constructed

provide guidance.

= A twist constructed from Killing vectors

K" of the background does not

, g E ) from Killing vector K* and arbitrary vector
produce nontrivial NC effects since . o .
. L XV, yields leading linearized NC
£xg = 0. The same applies to semi-Killing .
) ] . perturbation terms.
twists with K* and arbitrary vector V”.

12



Semi-pseudo-Killing Twist

Twist Form and Killing Fields: Eigenvalue and *-Product:
= The semi-pseudo-Killing twist is defined = The parameter \ is the eigenvalue of the
as: Killing field's action on the perturbation:

F = o—i3(Kex-xak)

huy oc e “te™? £ych,, = i\hy,,
= The background has two Killing fields K;

and K,. We choose: A= —aw+ Fm
K =ad,+ B0, X=0, = The linearized x-product is:
i
= The resulting commutation relations: hxk = hk + 53 [K(h)X (k) — X(h)K(k)]
[txr]=iac, [p*r]=iaB = Where X (k) = £(k).

13



Zerilli Gauge and Linearized Einstein Equations

= Zerilli Gauge: In polar perturbations, the metric is parameterized by four functions in the
Zerilli gauge: Hg"’, Hf"’, Hf"’, and K*m:

hy = Z M(t, r)Yem(0, ©), ZH (t, r)Yem(0, ),
hrr = mZHﬁm(ﬁ r)ng(G,go), hab = Zsz(L r)gabyfm(()a(p)’
£,m {,m

where A(r) =1— R/r and a, b denote angular coordinates.
= Linearized Einstein Equations: The equations of motion, up to linear order in
perturbation h,,, and NC deformation a, yield coupled PDEs for Hyg, H;, Ho, and K. Using
R = Hj/w, the linearized Einstein equations reduce to:
K' = [ao(r) + ao(r)w?] K + [Bo(r) + Ba2(r)w?] R,
R = [’)/o(r) —+ ’}/2(r)w2} K + [50([‘) 4 52(/’)(4}2] R
where a(r), B(r), v(r), and 6(r) are complicated functions of r.

14



Linearized Einstein Equations and Schrodinger-Like Form

= We introduce the field redefinition: Complzil ClEs are (ConsiEiiis

= A generic transformation results in coupled ODEs:
k/ = [O,\zo(l’) —+ dz(r)wz] k + |:Bo(r) + 52(r)w2} /A?,
with the coordinate transformation
dr/d?* = h(r). R = [30(r) + 42(r)w?] K + [do(r) + Ba(r)e?] R.

= The requirement: = Constraints:

dk ~ dR . . . R . .
— =R, — = (V-w?K Go(r) = da(r) = Ba(r) = do(r) = da(r) =0,
dr* dr*
leads to the Schrédinger-like Bo(f) =1, A(r)=-1
equation:

= Seven conditions for five unknowns

2K (F(r), &(r), h(r),1(r), n(r)) allow the system to

) .
72 + (W= V)K=0. admit a solution.

15



Non-commutative Solutions and Zerilli Potential

= The solutions to the required field redefinition are:

F(r)=f(r)+ xaf(r), &(r) = g(r) + rag(r),
h(r) = h(r) + Xah(r), 1(r) = I(r) + Xal(r),
where the terms with tildes are the non-commutative corrections.
= The tortoise coordinate is:

. r 4r% + 2ArR + 3R?
n(r) = —Aa
r—R 2(r — R)?(2Ar + 3R)
= The effective potential is V = Vz + V¢, where:
(r—R) (8/\2(/\ +1)r3 + 12A%r?R + 18ArR? + 9R3)
r*(2Ar + 3R)?

Vz =

B Aa [
~ 4r3(2Ar + 3R)3
(NC potential abbreviated.)

Ve —32N°(2N° + 7)r® + - - - + 387R’]
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-commutative potentials

V(r)
0.8
=4 — V()
— V(r),am = 0.2
0.6¢ —V(r),am = —0.2

041
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Left: NC Regge-Wheeler potential. Right: NC Zerilli potential
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QNM using higher order WKB method

Aw Aw
0.010¢
Nl [ //_’_,_‘
A1

10—6 L

107

[ I " am
-0.2 -0.1 0.1 0.2 -0.2 SSOM 0.1 0.2

The comparison between the noncommutative correction A, and the relative error Ay in the optimal
WKB order is illustrated. Left: Axial case. Right: Polar case.

The WKB QNM formula

WKB error formula NC correction A,

A _ |wk+l _wk—ll

' 1
Nz A 2 ‘ 2 ’ Ac = |wne —wel-

18



Axial QNM frequencies

am WKB Order Poschl-Teller Rosen-Morse

-0.2 0.3775(61) - 0.0883(97)i 6 0.382049 - 0.090320 i 0.38335 - 0.08924 i
-0.1 0.3755(14) - 0.0887(70) i 6 0.380114 - 0.090466 i 0.38057 - 0.09008 i
-0.01 0.3738(07) - 0.0888(92) i 6 0.378454 - 0.090521 i 0.37855 - 0.09044 i
-0.001  0.3736(38) - 0.0888(91) i 6 0.378294 - 0.090520 i 0.37838 - 0.09044 i
0 0.3736(19) - 0.0888(91) i 6 0.378276 - 0.090520 i 0.37837 - 0.09044 i
0.001 0.3736(01) - 0.0888(91) i 6 0.378258 - 0.090520 i 0.37838 - 0.09042 i
0.01 0.3734(33) - 0.08388(88) i 6 0.378099 - 0.090518 i 0.37836 - 0.09030 i
0.1 0.3715(87) - 0.0889(38) i 4 0.376562 - 0.090455 i 0.37756 - 0.08961 i
0.2 0.36(8345) - 0.08(8195) i 4 0.375007 - 0.090238 i 0.37611 - 0.08930 i

Table 1: NC axial QNMs for n =0, M =1 (R =2), and ¢ = 2. To convert frequencies to kHz,
multiply by 27 x 5142Hz x (M /M). For a 10Mg black hole, Mw = (0.37,—0.09) corresponds to 1.2
kHz and a damping time of 0.55 ms. LIGO detects frequencies from 10 Hz to 10 kHz.
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Polar QNM frequencies

am WKB Order Poschl-Teller Rosen-Morse

-0.2 0.3(80198) - 0.0(83646) i 3 0.382642 - 0.097531 i 0.38379 - 0.09648 i
-0.1 0.37(4735) - 0.09(1148) i 4 0.380292 - 0.093609 i 0.38178 - 0.09230 i
-0.01 0.3738(64) - 0.0892(07) i 5 0.378475 - 0.090866 i 0.37890 - 0.09050 i
-0.001  0.3736(58) - 0.0889(67) i 5 0.378308 - 0.090622 i 0.37845 - 0.09050 i
0 0.3736(36) - 0.0889(40) i 5 0.378290 - 0.090595 i 0.37839 - 0.09051 i
0.001 0.3736(13) - 0.0889(14) i 5 0.378272 - 0.090567 i 0.37836 - 0.09049 i
0.01 0.3734(13) - 0.0886(75) i 5 0.378109 - 0.090322 i 0.37821 - 0.09023 i
0.1 0.3718(88) - 0.0861(75) i 6 0.376612 - 0.088102 i 0.37741 - 0.08744 i
0.2 0.3711(29) - 0.0836(58) i 7 0.375215 - 0.085959 i 0.37794 - 0.08379 i

Table 2: Table of NC polar QNMs for n =0, M =1, and ¢ = 2.
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Isospectral Breaking

=4 Awp s
—— gl a
0,000 —p
\\ 4
.--"WW“
T 0.088
2
0.086
Ao am
G 01 01 T2
0.084 —= Awg
am am -2
0.2 01 : 0.2 0.1 01 02 Ay
(a) wg vs. am (b) wy vs. am (c) Relative deviation Awg

Isospectrality breaking due to noncommutativity for £ = 2. Parameters: n =0, M =1 (R = 2). Values
chosen correspond to optimal WKB order.

axial __, polar
R,l R,!
polar
R,l

Relative deviation, Awg ; = 100 X
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= Perturbations of Spinning Black Holes

= Teukolsky Approach: Using the Newman—Penrose formalism
= Slow Rotating Approximation

= Cosmological Perturbations
= Perturbations of Charged Black Holes

= Generalization to Different Twists

22



Thank You!
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