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Introduction

The first instances of four-dimensional pure N = 4 supergravities
were constructed more than 40 years ago by [Das (1977), Cremmer
and Scherk (1977), Cremmer, Scherk and Ferrara (1978),
Freedman and Schwarz (1978)].
The coupling of N = 4 supergravity to vector multiplets, as well as
some of its gaugings, were analyzed a few years later, by [de Roo
(1985), Bergshoeff, Koh and Sezgin (1985), de Roo and
Wagemans (1985), Perret (1988)].
More recently, various gauged N = 4 supergravity models
originating from orientifold compactifications of type IIA or IIB
supergravity were studied [D’Auria, Ferrara and Vaula (2002),
D’Auria, Ferrara, Gargiulo, Trigiante and Vaula (2003),
Angelantonj, Ferrara and Trigiante (2003,2004), Dall’Agata,
Villadoro and Zwirner (2009)].
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A systematic parametrization of all the consistent gaugings of
four-dimensional N = 4 matter-coupled supergravity is provided by
[Schön and Weidner (2006)] by means of an appropriately
constrained embedding tensor.

The full Lagrangian for the most general gauged D = 4, N = 4
matter-coupled supergravity in an arbitrary symplectic frame is
given by [Dall’Agata, Liatsos, Noris and Trigiante (2023)].

Objective: construction of all possible gaugings of D = 4, N = 4
supergravity coupled to an arbitrary number n of vector multiplets
that involve the global scaling symmetry R+ of the equations of
motion of the ungauged theory, in addition to a subgroup of
SL(2,R)× SO(6, n).
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Earliest instance of a supergravity theory with local scaling
symmetry: massive 10D IIA theory constructed by [Howe,
Lambert and West (1998), Lavrinenko, Lu and Pope (1998)] by a
generalized dimensional reduction [Scherk and Schwarz (1979)] of
11D supergravity, different from Romans’ massive IIA
supergravity [Romans (1986)].

Later, 9D and 6D supergravity theories with local scaling
symmetry were constructed by [Bergshoeff, de Wit, Gran, Linares
and Roest (2002)] and [Kerimo and Lu (2003), Kerimo, Liu, Lu
and Pope (2004)] respectively.
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A general framework for the construction of supergravity theories
with local scaling symmetry that makes use of the embedding
tensor formalism was established by [Le Diffon and Samtleben
(2009)]. Such theories do not posses an action.

We use this formalism to construct the most general
D = 4 ,N = 4 supergravity theory coupled to n vector multiplets
with a gauge symmetry that is the direct product of a subgroup of
SL(2,R)× SO(6, n) and the on-shell scaling symmetry of the
corresponding ungauged theory.
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The Ingredients of D = 4 ,N = 4 Supergravity

N = 4 supergravity multiplet:

graviton gµν

4 gravitini ψi
µ, i = 1, . . . , 4

6 vector fields Aij
µ = −Aji

µ

4 spin-1/2 fermions χi (dilatini)

1 complex scalar τ

n vector multiplets:

n vector fields A
a
µ, a = 1, . . . , n

4n gaugini λai

6n real scalar fields ϕam, m = 1, . . . , 6
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The scalar sector of the supergravity multiplet

The complex scalar of the N = 4 supergravity multiplet
parametrizes the coset space SL(2,R)/SO(2).

Coset representative: complex SL(2,R) vector Vα, α = +,−,
which satisfies

VαV∗
β − V∗

αVβ = −2iϵαβ , (1)

where ϵαβ = −ϵβα and ϵ+− = 1.

Vα carries SO(2) charge +1.

We also define
Mαβ = Re(VαV∗

β) . (2)
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The scalar sector of the vector multiplets

The 6n real scalars of the n vector multiplets parametrize the coset
space SO(6,n)/(SO(6)×SO(n)).

Coset representative: (n + 6)× (n + 6) matrix L with entries
LM

M = (LM
m, LM

a), where M = 1, . . . , n + 6, m = 1, . . . , 6,
a = 1, . . . , n, which is an element of SO(6,n):

ηMN = ηMNLM
MLN

N = LM
MLNM = LM

mLNm + LM
aLNa , (3)

where ηMN = ηMN = diag(−1,−1,−1,−1,−1,−1, 1, . . . , 1).

We also introduce the positive definite symmetric matrix M = LLT

with elements

MMN = −LM
mLNm + LM

aLNa . (4)
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We can trade LM
m for the antisymmetric SU(4) tensors

LM
ij = −LM

ji , i , j = 1, . . . , 4, defined by

LM
ij = Γm

ijLM
m, (5)

where Γm
ij are six antisymmetric 4×4 matrices that realize the

isomorphism between the fundamental representation of SO(6) and
the twofold antisymmetric representation of SU(4).

Pseudoreality : LMij = (LM
ij)∗ =

1

2
ϵijklLM

kl (6)
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Fermionic fields

Field SO(2) charge

ψi
µ −1

2

χi +3
2

λai +1
2

γ5ψ
i
µ = ψi

µ, γ5χ
i = −χi , γ5λ

ai = λai . (7)

ψiµ = (ψi
µ)

c , χi = (χi )c and λ
a
i = (λai )c have opposite SO(2)

charges and chiralities.
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Symplectic frames

The Lagrangian describing the ungauged four-dimensional N = 4
Poincaré supergravity coupled to n vector multiplets contains n+ 6
abelian vector fields AΛ

µ, Λ = 1, . . . , n + 6, referred to as electric
vectors.

These fields combine with their magnetic duals, AΛµ, into an
SL(2,R) × SO(6,n) vector AM

µ = AMα
µ , which is also a symplectic

vector of Sp(2(n + 6),R)⊃ SL(2,R) × SO(6,n).
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Every electric/magnetic split AM
µ = AMα

µ = (AΛ
µ,AΛµ) such that

the symplectic form

CMN = CMαNβ ≡ ηMNϵαβ (8)

decomposes as

CMN =

(
CΛΣ CΛ

Σ

CΛ
Σ CΛΣ

)
=

(
0 δΛΣ

−δΣΛ 0

)
, (9)

defines a symplectic frame and any two symplectic frames are
related by a symplectic rotation that is an element of
Sp(2(n + 6),R).

13 / 50



Introduction
The Ingredients of D = 4, N = 4 Supergravity

Gauging the Scaling Symmetry
Supersymmetry Transfromation Rules

Equations of Motion
Maximally Symmetric Solutions

Conclusion

Embedding tensor
Quadratic constraints
Gauge covariant field strengths
Scalar sector

Gauging the Scaling Symmetry

The on-shell global symmetry group of the ungauged D = 4,
N = 4 supergravity coupled to n vector multiplets is

G = SL(2,R)× SO(6, n)× R+ , (10)

where R+ denotes the scaling (or trombone) symmetry of the
equations of motion, under which the various fields transform as

δgµν = 2λgµν , δAM
µ = λAM

µ , (11)

δτ = 0 , δϕam = 0 , (12)

δψi
µ =

1

2
λψi

µ , δχi = −1

2
λχi , δλai = −1

2
λλai , (13)
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Generators of G :
tÂ = (t0, tA) , (14)

t0 : generator of R+,
tA : generators of SL(2,R)× SO(6, n),

where A = ([MN], (αβ)) is an index labeling the adjoint
representation of SL(2,R)×SO(6,n).
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Embedding tensor

In the embedding tensor formalism [Nicolai and Samtleben (2001),
de Wit, Samtleben and Trigiante (2003,2005,2007)], the
generators of the gauge group, Gg ⊂ G , are expressed as

XM = Θ̂M
ÂtÂ = Θ̂M

0t0 + Θ̂M
AtA , (15)

where Θ̂M
Â is the embedding tensor.

We also introduce vector gauge fields AM
µ = AMα

µ , and the gauge
covariant exterior derivative

d̂ = d − gAMXM , (16)

where g is the gauge coupling and AM = AM
µ dxµ.
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Ansatz for embedding tensor [LeDiffon and Samtleben (2009)]:

Θ̂M
NP = ΘM

NP + ζ1(t
NP)M

QθQ , (17)

Θ̂M
βγ = ΘM

βγ + ζ2(t
βγ)M

QθQ , (18)

Θ̂M
0 = θM , (19)

where

ΘM
A = (ΘM

NP ,ΘM
βγ) is the embedding tensor

parametrizing the standard gaugings of D = 4, N = 4
supergravity, which do not involve the scaling symmetry. It is
built out of fαMNP = fα[MNP] and ξαM [Schön and Weidner
(2006)].

ζ1 and ζ2 are real constants.

(tPQ)Mα
Nβ = δN[PηQ]Mδ

β
α , (tγδ)Mα

Nβ = δβ(γϵδ)αδ
N
M .
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The non-abelian two-form field strengths HM of the vector gauge
fields AM involve Stueckelberg-type terms of the form [de Wit,
Samtleben (2005)]

HP ⊃ gZP
MNBMN , (20)

where BMN = B(MN ) are two-form gauge fields and

ZP
MN ≡ X(MN )

P , (21)

where

XMN
P ≡ Θ̂M

Â(tÂ)N
P = −θMδPN + Θ̂M

A(tA)N
P . (22)
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ZP
MN must project onto the adjoint representation of SL(2,R) ×

SO(6,n), (3, 1)+
(
1, 12(n+ 6)(n+ 5)

)
, in its lower indices, (MN ).

Since the two-fold symmetric tensor product of the fundamental
representation of SL(2,R) × SO(6,n), (2,n+ 6), decomposes as

((2,n+ 6)× (2,n+ 6))sym.

=

(
3,

1

2
(n+ 6)(n+ 7)− 1

)
+ (3, 1) +

(
1,

1

2
(n+ 6)(n+ 5)

)
, (23)
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the projection of ZP
MN onto the representation(

3, 12(n+ 6)(n+ 7)− 1
)
must vanish, i.e.

ZPγ
(M(α|N)β) −

1

n + 6
ηMNη

RSZPγ
R(α|S |β) = 0 , (24)

which is satisfied if
ζ1 + ζ2 = −2 . (25)

Without loss of generality, we set ζ1 = ζ2 = −1.
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Then,

Θ̂αM
NP = fαM

NP + δ
[N
M ξP]

α + δ
[N
M θP]

α , (26)

Θ̂αM
βγ = δ(βα ξ

γ)
M − δ(βα θ

γ)
M , (27)

Θ̂αM
0 = θαM , (28)

XMαNβ
Pγ =− δγβfαMN

P +
1

2
(δPMδ

γ
βξαN − δPNδ

γ
αξβM

− ηMNδ
γ
βξ

P
α + δPNϵαβξ

γ
M)

− δPNδ
γ
βθαM +

1

2
(δPMδ

γ
βθαN + δPNδ

γ
αθβM (29)

− ηMNδ
γ
βθ

P
α − δPNϵαβθ

γ
M) .
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ZP
MN = ZPA(tA)MN , (30)

where

ZMαNP =− 1

2
ΘαMNP +

3

2
ηM[N|θα|P], (31)

ZMαβγ =
1

2
ϵα(β

(
ξγ)M + θγ)M

)
. (32)
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Quadratic constraints

The embedding tensor Θ̂M
Â must be gauge invariant [LeDiffon

and Samtleben (2009)]:

0 = Θ̂M
ÂtÂθN = XMN

PθP , (33)

0 = Θ̂M
ÂtÂΘN

B = XMN
PΘP

B + Θ̂M
AΘN

C fAC
B , (34)

fAB
C : the structure constants of the Lie algebra of

SL(2,R)× SO(6, n).

The constraints (33) and (34) imply the closure of the gauge
algebra:

[XM,XN ] = −XMN
PXP , (35)
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and are equivalent to the following quadratic constraints on fαMNP ,
ξαM and θαM :

ϵαβξα(M|θβ|N) = 0 , (36)

ϵαβ
(
θPα fβMNP + ξα[M|θβ|N] − 3 θαMθβN

)
= 0 , (37)

θP(αfβ)MNP + ξ(α[Mθβ)N] = 0 , (38)

ξM(αθβ)M + θMα θβM = 0 , (39)

ξP(αfβ)MNP − ξ(α[Mθβ)N] = 0 , (40)

ξM(αθβ)M + ξMα ξβM = 0 , (41)

ϵαβ
(
ξPα fβMNP + ξαMξβN − 3ξα[M|θβ|N]

)
= 0 , (42)

3fα[MN|R fβ|PQ]
R + 2ξ(α[M fβ)NPQ] + 2θ(α[M fβ)NPQ] = 0 , (43)

ϵαβθα[M|fβ|NPQ] = 0 , (44)
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ϵαβ(fαMNR fβPQ
R − ξα[M|fβ|N]PQ + ξα[P|fβ|Q]MN

+θα[M|fβ|N]PQ − θα[P|fβ|Q]MN

+ξα[M|ξβ[PηQ]N] − ξα[M|θβ[PηQ]N] (45)

+ξα[P|θβ[MηN]Q] − 3θα[M|θβ[PηQ]N]) = 0 .

For θαM = 0, the quadratic constraints (36)-(45) consistently
reduce to those of [Schön and Weidner (2006)].
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Gauge covariant field strengths

Gauge covariant 2-form field strengths of vector gauge fields [de
Wit, Samtleben and Trigiante (2005)]:

HMα = dAMα +
g

2
XNβPγ

MαANβ ∧ APγ + gZMαABA

= dAMα +
g

2
XNβPγ

MαANβ ∧ APγ (46)

− g

2
ΘαM

NPB
NP +

3

2
gθαNB

MN +
g

2

(
ξMβ + θMβ

)
Bαβ,

where BMN = B [MN] and Bαβ = B(αβ) are 2-form gauge fields in
the adjoint representations of SO(6,n) and SL(2,R) respectively.
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Scalar sector

gauged SL(2,R)/SO(2) zweibein : P̂ =
i

2
ϵαβVαd̂Vβ , (47)

gauged SO(2) connection : Â = −1

2
ϵαβVαd̂V∗

β , (48)

where

d̂Vα ≡ dVα +
1

2
g (ξαM − θαM)AMβVβ

+
1

2
g
(
ξβM − θβM

)
AMαVβ . (49)
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gauged SO(6, n)/(SU(4)× SO(n))

vielbein : P̂a
ij = LMad̂LM

ij , (50)

gauged SU(4) connection : ω̂i
j = LMik d̂LMjk , (51)

gauged SO(n) connection : ω̂a
b = LMad̂LM

b, (52)

where
d̂LM

M ≡ dLM
M + gANαΘ̂αNM

PLP
M . (53)
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Supersymmetry Transfromation Rules

The N = 4 local supersymmetry transformations of the bosonic
fields eaµ, Vα, LMij , LMa and AMα

µ are the same as in the ungauged
theory [Dall’Agata, Liatsos, Noris and Trigiante (2023)]:

δϵe
a
µ = ϵ̄iγaψiµ + ϵ̄iγ

aψi
µ , (54)

δϵVα =V∗
αϵ̄iχ

i , (55)

δϵLMij = LMa(2ϵ̄[iλ
a
j] + ϵijkl ϵ̄

kλal) , (56)

δϵLM
a =2LM

ij ϵ̄iλ
a
j + c .c . , (57)

δϵA
Mα
µ =(Vα)∗LMij ϵ̄

iγµχ
j − VαLMaϵ̄iγµλai

+ 2VαLMij ϵ̄
iψj
µ + c .c . , (58)
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while the corresponding transformations of the linear combinations

BMα
µν ≡ −1

2
ΘαM

NPB
NP
µν +

3

2
θαNB

MN
µν +

1

2

(
ξMβ + θMβ

)
Bαβµν (59)

of the antisymmetric tensor gauge fields read
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δϵB
Mα
µν = − 4iZMαNPLN

aLP
ij ϵ̄iγµνλaj

+
1

2

(
ξMβ + θMβ

)
(Vα)∗(Vβ)∗ϵ̄iγµνχi

+ 4iZMαNPLN
aLPij ϵ̄

iγµνλ
j
a

+
1

2

(
ξMβ + θMβ

)
VαVβ ϵ̄iγµνχi (60)

+ 8iZMαNPLN
ikLPjk

(
ϵ̄jγ[µ|ψi |ν] + ϵ̄iγ[µψ

j
ν]

)
+
(
ξMβ + θMβ

)
Mαβ

(
ϵ̄iγ[µ|ψi |ν] + ϵ̄iγ[µψ

i
ν]

)
+ 2ZMα

NPϵβγA
Nβ
[µ δϵA

Pγ
ν] −

(
ξMβ + θMβ

)
ηNPA

N(α|
[µ δϵA

P|β)
ν] .
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To write the local supersymmetry transformation rules for the
fermionic fields in a manifestly SL(2,R)× SO(6, n)-covariant form,
we introduce the symplectic vector GMα

µν = (HΛ
µν ,GΛµν), where

GΛµν ≡ RΛΣH
Σ
µν −

1

2
ϵµνρσIΛΣHΣρσ + fermions , (61)

where RΛΣ and IΛΣ are real symmetric matrices that depend on
the choice of symplectic frame and are defined by

MMN ≡ MMNMαβ =

(
MΛΣ MΛ

Σ

MΛ
Σ MΛΣ

)

=

(
−(I +RI−1R)ΛΣ (RI−1)Λ

Σ

(I−1R)ΛΣ −(I−1)ΛΣ

)
. (62)
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Up to terms quadratic in the fermions, we have

δϵψiµ = D̂µϵi −
i

8
VαLMijGMα

νρ γ
νργµϵ

j

− 1

3
gĀ1ijγµϵ

j +
g

2
ϵijklB

klγµϵ
j , (63)

δϵχi =− i

4
V∗
αLMijGMα

µν γ
µνϵj + P̂∗

µγ
µϵi

+
2

3
gĀ2ijϵ

j − gB̄ijϵ
j , (64)

δϵλai =
i

8
V∗
αLMaGMα

µν γ
µνϵi − P̂aijµγ

µϵj

+ gĀ2a
j
iϵj −

1

4
gB̄aϵi , (65)
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where the fermion shift tensors are defined by

Aij
2 = fαMNPVαLMklL

NikLPjl +
3

2
ξαMVαLMij , (66)

A2ai
j = fαMNPVαLMaL

N
ikL

Pjk − 1

4
δji ξαMVαLMa , (67)

Aij
1 = fαMNP(Vα)∗LMklL

NikLPjl , (68)

B ij = θαMVαLMij , (69)

Ba = θαMVαLMa, (70)
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and

D̂µϵi ≡ ∂µϵi +
1

4
ωµab(e,A, ψ)γ

abϵi −
i

2
Âµϵi − ω̂i

j
µϵj

− g

2
θαMAMα

µ ϵi , (71)

where

ωµ
ab(e,A, ψ) = 2eν[a∂[µe

b]
ν] − eν[aeb]ρecµ∂νe

c
ρ

+ ψ̄i
µγ

[aψ
b]
i + ψ̄i [aγb]ψiµ + ψ̄i [aγµψ

b]
i (72)

− 2ge [aµ e
b]νθαMAMα

ν .
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Fermionic field equations
Bosonic field equations

Equations of Motion

Since four-dimensional N = 4 matter-coupled supergravity with
local scaling symmetry does not admit an action, it must be
constructed directly on the level of the equations of motion.

36 / 50



Introduction
The Ingredients of D = 4, N = 4 Supergravity

Gauging the Scaling Symmetry
Supersymmetry Transfromation Rules

Equations of Motion
Maximally Symmetric Solutions

Conclusion

Fermionic field equations
Bosonic field equations
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E.o.m. for the dilatini:

(Eχ)i ≡− γµD̂µχi + γµγνψiµP̂
∗
ν

− i

4
V∗
αLMijGMα

νρ γ
µγνρψj

µ +
i

4
V∗
αLMaGMα

µν γ
µνλ

a
i

+
2

3
gĀ2ijγ

µψj
µ − 2gĀ2

aj
iλaj + 2gĀ2

aj
jλai (73)

− gB̄ijγ
µψj

µ +
5

2
gB̄aλai = 0 ,

where

D̂µχi ≡ ∂µχi +
1

4
ωµ

ab(e,A, ψ)γabχi +
3i

2
Âµχi − ω̂i

j
µχj

+
g

2
θαMAMα

µ χi . (74)
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E.o.m. for the gaugini:

(Eλ)ai ≡− γµD̂µλai − γµγνψj
µP̂aijν +

i

8
V∗
αLMaGMα

νρ γ
µγνρψiµ

+
i

4
V∗
αLMijGMα

µν γ
µνλja +

i

8
VαLMaGMα

µν γ
µνχi

+ gĀ2a
j
iγ
µψjµ − gA2ai

jχj + gA2aj
jχi

+ 2gĀabijλ
bj +

2

3
gĀ2(ij)λ

j
a (75)

− g

4
B̄aγ

µψiµ − 2gB̄ijλ
j
a −

3

4
gBaχi = 0 ,

where
Aab

ij ≡ fαMNPVαLMaL
N
bL

Pij , (76)
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and

D̂µλai ≡ ∂µλai +
1

4
ωµ

ab(e,A, ψ)γabλai +
i

2
Âµλai

− ω̂i
j
µλaj + ω̂a

b
µλbi +

g

2
θαMAMα

µ λai . (77)

E.o.m. for the gravitini:

(Eψ)iν ≡− γµρ̂iµν + P̂νχi + 2P̂aijνλ
aj − i

8
VαLMijGMα

ρσ γµγρσγνψ
j
µ

− i

8
VαLMaGMα

µρ γ
µργνλ

a
i +

i

8
V∗
αLMijGMα

µρ γ
µργνχ

j

+ gĀ1ijψ
j
ν −

g

3
Ā1ijγµνψ

jµ +
g

3
Ā2jiγνχ

j + gA2ai
jγνλ

a
j

− 3

2
gϵijklB

klψj
ν +

g

2
ϵijklB

klγµνψ
jµ (78)

− 3

2
gB̄ijγνχ

j +
7

4
gBaγνλai = 0 ,
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where

ρ̂iµν ≡ 2∂[µ|ψi |ν] +
1

2
ω[µ|

ab(e,A, ψ)γabψi |ν] − iÂ[µ|ψi |ν]

− 2ω̂i
j
[µ|ψj |ν] − gθαMAMα

[µ| ψi |ν]. (79)

In the presence of a gauging of the scaling symmetry (θαM ̸= 0),
there is no action that reproduces the above equations of motion
via the variational principle.
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Indeed, the fermion mass matrices that can be read off from the
fermionic field equations are not symmetric:

(M 3
2
)ij = −2

3
g

(
Ā1ij −

3

2
ϵijklB

kl

)
, (80)

(M 1
2
)ij =0 , (81)

(M 1
2
)i
aj =−

√
2gĀ2

aj
i +

√
2gδji Ā2

ak
k +

5
√
2

4
gδji B̄

a, (82)

(M 1
2
)ai j =−

√
2gĀ2

ai
j +

√
2gδij Ā2

ak
k −

3
√
2

4
gδij B̄

a, (83)

(M 1
2
)ai ,bj =2gAabij +

2

3
gδabA

(ij)
2 − 2gB ijδab. (84)
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Bosonic field equations

The equations of motion for the bosonic fields follow from the
requirement that the fermionic field equations be invariant under
local supersymmetry transformations:

δϵ(Eχ)i = δϵ(Eλ)ai = δϵ (Eψ)iν = 0 . (85)
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E.o.m. for the complex scalar of the N = 4 supergravity multiplet:

E ≡ − e−1D̂µ
(
e(P̂µ)∗

)
+

1

8
V∗
αV∗

βMMNGMα
µν GNβµν

+ g2

(
− 2

9
Aij
1 Ā2ij +

1

9
ϵijkl Ā2ij Ā2kl −

1

2
Ā2

ai
j Ā2a

j
i (86)

− 3

8
ϵijkl Ā2ij B̄kl +

1

8
Ā2a

i
i B̄

a +
3

16
ϵijkl B̄ij B̄kl

)
= 0 ,

where

D̂µ
(
e(P̂µ)∗

)
≡ ∂µ

(
e(P̂µ)∗

)
+ 2ieÂµ(P̂

µ)∗

− 2geθαMAMα
µ (P̂µ)∗. (87)
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E.o.m. for the scalars of the vector multiplets:

Eaij ≡ e−1D̂µ
(
eP̂aij

µ
)
− 1

2
MαβLMaLNijGMα

µν GNβµν

+ g2

(
Caij +

1

2
ϵijkl C̄akl

)
= 0 , (88)

where

D̂µ
(
eP̂aij

µ
)
≡ ∂µ

(
eP̂aij

µ
)
+ eω̂a

b
µP̂bij

µ + 2eω̂[i |
k
µP̂a|j]k

µ

− 2geθαMAMα
µ P̂aij

µ, (89)

Caij =− 2

3
Ā2a

k
[i Ā1j]k −

1

6
A2a[i

k Ā2j]k −
1

2
A2a[i |

k Ā2k|j]

+ Āab[i |kA2
b
|j]

k +
1

3
A2ak

k Ā2[ij] +
5

2
A2a[i

k B̄j]k (90)

+
1

2
A2ak

k B̄ij −
1

4
ĀabijB

b − 1

4
Ā2[ij]Ba +

1

8
B̄ijBa .
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Einstein equations:

(EEinstein)µν ≡ R̂(µν) − 2P̂(µP̂
∗
ν) − P̂aijµP̂

aij
ν −

1

2
MMNMαβGMα

µρ GNβ
ν
ρ

+ g2

(
1

3
Aij
1 Ā1ij −

1

9
Aij
2 Ā2ij −

1

2
A2ai

j Ā2
ai
j (91)

+
1

6
Aij
2 B̄ij −

3

2
B ij B̄ij +

1

8
BaB̄a

)
gµν = 0 ,

where

R̂µν = 2eaνe
ρ
b(∂[µωρ]

ab(e,A, ψ) + ω[µ
ac(e,A, ψ)ωρ]c

b(e,A, ψ)) .

Effective cosmological constant:

Λ =g2

(
− 1

3
Aij
1 Ā1ij +

1

9
Aij
2 Ā2ij +

1

2
A2ai

j Ā2
ai
j

− 1

6
Aij
2 B̄ij +

3

2
B ij B̄ij −

1

8
BaB̄a

)
. (92)
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E.o.m. for the vector fields:

(Evector)Mαµ ≡ 1

2
ϵµνρσD̂νGMα

ρσ + 2gZMαNPLNaLPij P̂
aijµ

− i

2
g
(
ξMβ + θMβ

)
VαVβ(P̂µ)∗ (93)

+
i

2
g
(
ξMβ + θMβ

)
(Vα)∗(Vβ)∗P̂µ = 0 ,

where D̂µGMα
νρ ≡ ∂µGMα

νρ + gXNβPγ
MαANβ

µ GPγ
νρ .
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Maximally Symmetric Solutions

A solution to the field equations with constant scalar and vanishing
vector, two-form and fermionic fields satisfies the following two
conditions:

− 2

9
Aij
1 Ā2ij +

1

9
ϵijkl Ā2ij Ā2kl −

1

2
Ā2

ai
j Ā2a

j
i

− 3

8
ϵijkl Ā2ij B̄kl +

1

8
Ā2a

i
i B̄

a +
3

16
ϵijkl B̄ij B̄kl = 0 , (94)

and

Caij +
1

2
ϵijkl C̄akl = 0 . (95)

For the standard gaugings, for which θαM = 0, these conditions
reproduce the extremization conditions of the scalar potential
[Dall’Agata, Liatsos, Noris and Trigiante (2023)].
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The squared mass matrix of the fluctuations of the scalar fields
around maximally symmetric solutions of the field equations is not
symmetric =⇒ it cannot arise from a scalar potential.
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Conclusion

Determination of the algebraic stucture of the embedding
tensor that parametrizes the gaugings of D = 4, N = 4
supergravity that involve the scaling symmetry and of the
quadratic consistency constraints on its irreducible
components.

Explicit derivation of the equations of motion of the most
general half-maximal supergravity with local scaling symmetry
in four dimensions, which cannot be obtained from an action.
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