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Introduction

Introduction

The first instances of four-dimensional pure N' = 4 supergravities
were constructed more than 40 years ago by [Das (1977), Cremmer
and Scherk (1977), Cremmer, Scherk and Ferrara (1978),
Freedman and Schwarz (1978)].

The coupling of N' = 4 supergravity to vector multiplets, as well as
some of its gaugings, were analyzed a few years later, by [de Roo
(1985), Bergshoeff, Koh and Sezgin (1985), de Roo and
Wagemans (1985), Perret (1988)].

More recently, various gauged A = 4 supergravity models
originating from orientifold compactifications of type IIA or 1IB
supergravity were studied [D'Auria, Ferrara and Vaula (2002),
D’Auria, Ferrara, Gargiulo, Trigiante and Vaula (2003),
Angelantonj, Ferrara and Trigiante (2003,2004), Dall'Agata,
Villadoro and Zwirner (2009)].
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Introduction

A systematic parametrization of all the consistent gaugings of
four-dimensional N' = 4 matter-coupled supergravity is provided by
[Schon and Weidner (2006)] by means of an appropriately
constrained embedding tensor.

The full Lagrangian for the most general gauged D = 4, N' =4
matter-coupled supergravity in an arbitrary symplectic frame is
given by [Dall’Agata, Liatsos, Noris and Trigiante (2023)].

Objective: construction of all possible gaugings of D =4, N' = 4
supergravity coupled to an arbitrary number n of vector multiplets
that involve the global scaling symmetry R of the equations of
motion of the ungauged theory, in addition to a subgroup of

SL(2,R) x SO(6, ).
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Introduction

Earliest instance of a supergravity theory with local scaling
symmetry: massive 10D IIA theory constructed by [Howe,
Lambert and West (1998), Lavrinenko, Lu and Pope (1998)] by a
generalized dimensional reduction [Scherk and Schwarz (1979)] of
11D supergravity, different from Romans' massive IIA
supergravity [Romans (1986)].

Later, 9D and 6D supergravity theories with local scaling
symmetry were constructed by [Bergshoeff, de Wit, Gran, Linares
and Roest (2002)] and [Kerimo and Lu (2003), Kerimo, Liu, Lu
and Pope (2004)] respectively.
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Introduction

A general framework for the construction of supergravity theories
with local scaling symmetry that makes use of the embedding
tensor formalism was established by [Le Diffon and Samtleben
(2009)]. Such theories do not posses an action.

We use this formalism to construct the most general

D = 4, N = 4 supergravity theory coupled to n vector multiplets
with a gauge symmetry that is the direct product of a subgroup of
SL(2,IR) x SO(6, n) and the on-shell scaling symmetry of the
corresponding ungauged theory.
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The Ingredients of D = 4, N = 4 Supergravity tor of the sug

tor of the vec

The Ingredients of D = 4, N' = 4 Supergravity

N = 4 supergravity multiplet:

@ graviton g,
e 4 gravitini Y, i=1,...,4
@ 6 vector fields AZ = —Aﬂ

@ 4 spin-1/2 fermions x' (dilatini)
@ 1 complex scalar 7

n vector multiplets:
@ n vector fields A7, a=1,...,n
o 4n gaugini A

@ 6n real scalar fields ¢2™, m=1,...,6
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The Ingredients of D = 4, N = 4 Supergravity The scalar sector of the supergravity multiplet

of the vector multiplets

The scalar sector of the supergravity multiplet

The complex scalar of the N/ = 4 supergravity multiplet
parametrizes the coset space SL(2,R)/SO(2).

Coset representative: complex SL(2,R) vector V,, a = +, —,
which satisfies
VoV — VaVs = —2icap, (1)

where €,53 = —€go and €, = 1.
Vo carries SO(2) charge +1.

We also define
Mus = Re(VaV;;). (2)
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The Ingredients of D = 4, N = 4 Supergravity The scalar sector of the supergravity multiplet

The sca tor of the vector multiplets
Fermionic fields
Symplectic frames

The scalar sector of the vector multiplets

The 6n real scalars of the n vector multiplets parametrize the coset

space SO(6,n)/(SO(6)xSO(n)).

Coset representative: (n+6) x (n+ 6) matrix L with entries
LM = (Lp™, Lpg2), where M=1,...,n+6, m=1,...,6,
a=1,...,n, which is an element of SO(6,n):

v = L™y = LM iym = L™ Lym + Lvlna,  (3)
where nyy = nuy = diag(-1,-1,-1,-1,-1,-1,1,...,1).
We also introduce the positive definite symmetric matrix M = LLT
with elements
MMN = —L/\/]ELNm =+ LMQLNé . (4)
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The Ingredients of D = 4, N = 4 Supergravity

The scalar sector of the supergravity multiplet
The scalar sector of the vector multiplets
Fermionic fields

Symplectic frames

We can trade L™ for the antisymmetric SU(4) tensors
Ly =—Lp' i, j=1,...,4, defined by

Ly =T L™, (5)
where ', are six antisymmetric 4x4 matrices that realize the

isomorphism between the fundamental representation of SO(6) and
the twofold antisymmetric representation of SU(4).

- 1
Pseudoreality : Ly = (Ly")* = EGUkILMkI (6)
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The Ingredients of D = 4, N = 4 Supergravity 5 tor of the suf
tor of the vec
Fermionic fields
Symplectic frames

Fermionic fields

Field | SO(2) charge
Vi —é
X' +5
3 ="
WU, =V, X ==X, AT = A2 (7)

Vi = (¥}, xi = (X')€ and A7 = (A2')¢ have opposite SO(2)
charges and chiralities.
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The Ingredients of D = 4, N = 4 Supergravity The scalar sector of the supergravity multiplet
or of the vector multiplets

Fermionic fields

Symplectic frames

Symplectic frames

The Lagrangian describing the ungauged four-dimensional N' = 4
Poincaré supergravity coupled to n vector multiplets contains n+ 6
abelian vector fields Al/), AN=1,...,n+ 6, referred to as electric
vectors.

These fields combine with their magnetic duals, Ay, into an

SL(2,R) x SO(6,n) vector Aﬁ" = Al’f’a, which is also a symplectic
vector of Sp(2(n+ 6),R)D SL(2,R) x SO(6,n).
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The Ingredients of D = 4, N = 4 Supergravity

or of the supergravity multiplet
or of the vector multiplets
Fermionic fields
Symplectic frames

Every electric/magnetic split Aﬁ/‘ = Af/a = (AQ, Apy) such that
the symplectic form

(CMN CMQNB MNeaB (8)

=1

decomposes as

AL A A
M= gy e o) =( % %), )
(C/\ C/\): —5/\ 0
defines a symplectic frame and any two symplectic frames are

related by a symplectic rotation that is an element of
Sp(2(n + 6),R).
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Gauging the Scaling Symmetry ints

nt field strengths

Gauging the Scaling Symmetry

The on-shell global symmetry group of the ungauged D = 4,
N = 4 supergravity coupled to n vector multiplets is

G =SL(2,R) x SO(6,n) x RT | (10)

where R™ denotes the scaling (or trombone) symmetry of the
equations of motion, under which the various fields transform as

5g,u1/ = 2>\gm/a 6A//LM = )\A;/}/la (11)
5r—0, S¢Pm—o0, (12)

1 1 Ly
U =M, = o A= (13)
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Gauging the Scaling Symmetry

Generators of G:

t; = (to, ta), (14)
to : generator of R™,
ta : generators of SL(2,IR) x SO(6, n),

where A = ([MN], (a3)) is an index labeling the adjoint
representation of SL(2,R)xSO(6,n).
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. . tensor
Gauging the Scaling Symmetry —— .

eld strengths

Embedding tensor

In the embedding tensor formalism [Nicolai and Samtleben (2001),
de Wit, Samtleben and Trigiante (2003,2005,2007)], the
generators of the gauge group, Gg C G, are expressed as

Xm = éMAtA = O, t + O M"ta, (15)
where C:)MA is the embedding tensor.

We also introduce vector gauge fields A//f‘ = A/’y“, and the gauge
covariant exterior derivative

d=d— gA"Xp, (16)

where g is the gauge coupling and AM = Aﬁ’ldx“.
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Embedding tensor
Qua straints
nt field strengths

Gauging the Scaling Symmetry

Ansatz for embedding tensor [LeDiffon and Samtleben (2009)]:

O MNP =0 + 1 (tVP) 1900, (17)
@)MBV — @MB7+Cz(t57)MQHQ, (18)
oM’ =00, (19)

where

o OpA = (OMNP,04%7) is the embedding tensor
parametrizing the standard gaugings of D = 4, N =4
supergravity, which do not involve the scaling symmetry. It is

built out of f,pnp = fa[MNp] and &, [Schon and Weidner
(2006)].

@ (7 and (3 are real constants.
o (tpQ)ma’ = 5[’)5770]/\/155 (ts)maVP = 5365)045/\'\2-
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Embedding tensor
Gauging the Scaling Symmetry Quadr g”mstrﬂnts

ant field strengths

The non-abelian two-form field strengths HM of the vector gauge
fields AM involve Stueckelberg-type terms of the form [de Wit,
Samtleben (2005)]

HP > gZP v BMY, (20)
where BMN = BMN) are two-form gauge fields and

77w = Xoun s (21)

Xvn” = Ot = —0mdN + Oa(ta)n” (22)
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Gauging the Scaling Symmetry

ZP v must project onto the adjoint representation of SL(2,R) x
SO(6,n), (3,1)+ (1, 2(n + 6)(n + 5)), in its lower indices, (MN).

Since the two-fold symmetric tensor product of the fundamental
representation of SL(2,R) x SO(6,n), (2,n + 6), decomposes as

((2,n+6) x (2,n+6))sym.
1
= (3, E(n +6)(n+7)— 1>

Lns6)n+ 5)) , (23)

+(3,1)+ (1,2(
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Embedding tensor
Quadrati ints
riant field strengths

Gauging the Scaling Symmetry

the projection of Z” yq\r onto the representation
(3,3(n+6)(n+7) — 1) must vanish, i.e.

1 RSZP’y

zh -— =0
(M(a|N)B) n+ 677MN77 R(a|S|B) )

which is satisfied if
G+G=-2.

Without loss of generality, we set (; = (, = —1.

(24)

(25)
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Gauging the Scaling Symmetry

Then,

éa NP _ g NP+5[N£P] +5£\I/\/9§]’
éa 5(557) 597)

A

@aM = eaM )

Xptang"? = — (nyaMN +5 (6I\/l5ﬂ/£aN SNOLE M
- ?7MN57§Q + 5N6a5§/\//)
— 6NO}0am + = (6M5’Y0aN + 5n020sm

- nMN(SgHa - 5N6aﬁ0/\/l) .

(26)
(27)
(28)
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Embedding tensor
onstraints
iant field strengths

Gauging the Scaling Symmetry

2" pn = ZPA(ta)

where

FMane _ L gamne n §nM[N\6a\P]
2 2 ’

FMapy _ %Ea(ﬁ (@)M n m)"/’> ,

(30)

(31)

(32)
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. . Embedding tensor
Gauging the Scaling Symmetry Gued® L‘constraints

nt field strengths

Quadratic constraints

The embedding tensor O A must be gauge invariant [LeDiffon
and Samtleben (2009)]:

0= Ot ts00 = Xnin"0p (33)
0= éMAtA@N’B = XMNP@pB + éMA@NCfACBv (34)

fag€: the structure constants of the Lie algebra of
SL(2,R) x SO(6, n).

The constraints (33) and (34) imply the closure of the gauge
algebra:

[XM7 X/\/] = _XMNPXP ) (35)
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Gauging the Scaling Symmetry

and are equivalent to the following quadratic constraints on f,pnp,
faM and ea,\/,:

eeamsivy =0, (36

c*? (‘9§fBMNP + &afm|Osn) — 3 9aM9,3N) =0, (37
9(Paf5)MNP +&ambpny =0, (38

Eabsm +0405m =0, (39

5(’;7%)MNP — &(ambpyny =0,

Eobpm +E'éam =0, (41

o (&Cfg/\//NP + Eamépn — 3§a[M|05|N]) =0,

(
3fa[MN|RfB|PQ]R + 2§(amfaynpq) + 20(amfanee =0, (43
(

—~
N
(=)

N N N N N N N N N

€O fainpg =0,

24 /50



cddlm_ tensor
constraints
sariant field strengths

Gauging the Scaling Symmetry

e’ (famnr f3pQ" — Eapmi faimpe + Eatpifa Qv
F0amifsinPQ — Oatp) f31QMN
HEamIEs1PMQIN — Eaim|P8[PTIQIN] (45)
+Ealpfsmnn@) — 3barm fsiPnqIng) = O-

For 6,0 = 0, the quadratic constraints (36)-(45) consistently
reduce to those of [Schon and Weidner (2006)].
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. . Embedding tensor
Gauging the Scaling Symmetry QuedlE = .

Gauge nt field strengths
Scalar sector

Gauge covariant field strengths

Gauge covariant 2-form field strengths of vector gauge fields [de
Wit, Samtleben and Trigiante (2005)]:

HM = dAM® + 2 Xysp, M AN N AP + gZMoAB,
— dAMe | %XWPV’W‘“AW A APY (46)
3
- %@C“MNPB’VP + EgG%BMN + % (5@” + 6}}”) BB,

where BMN — BIMN] 3nd B8 = B(@6) are 2-form gauge fields in
the adjoint representations of SO(6,n) and SL(2,R) respectively.
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Embedding tensor
straints
g ariant field strengths
Scalar sector

Gauging the Scaling Symmetry

Scalar sector

gauged SL(2,R)/SO(2) zweibein : P = éeaﬁvac?vg, (47)
gauged SO(2) connection : A = —%eaﬁvach);, (48)
where
dVa =dVa + %g (€am — Oam) AMPY;

1
+ 58 (&M = 0°M) AaVs (49)
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Gauging the Scaling Symmetry

ariant field strengths

Scalar sector

gauged SO(6, n)/(SU(4) x SO(n))
vielbein : P,7 = (M dL 7,
gauged SU(4) connection : d;ij = LMideLMjk,

gauged SO(n) connection : &,2 = LMQQLMQ,

where
dLy/~ = dLMM + gANa@aNMPLpM.

(50)
(51)
(52)
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Supersymmetry Transfromation Rules

Supersymmetry Transfromation Rules

The N = 4 local supersymmetry transformations of the bosonic
fields ej, Vo Lmij, Lma and Al’\f’a are the same as in the ungauged
theory [Dall'Agata, Liatsos, Noris and Trigiante (2023)]:

b€l =&y i, + &7y, (54)
0Vo = Vo&ixX's (55)
SeLmip = Lma(2A + €& A?) (56)
Selpg? :2LM"J'g,-AJ?+ c.c., (57)

S A = (V) MyE = VLM,
+ 2V MyEY + cc., (58)
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Supersymmetry Transfromation Rules

while the corresponding transformations of the linear combinations

3

1 1
Bl = 20 My BN + SORBMN + o (e + i) B (59)

of the antisymmetric tensor gauge fields read
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Supersymmetry Transfromation Rules

5 BN = — 4iZMNPL 2L pUE,0 )
3 (6 4+ 0Y) ) 0P e
+ 4izMeNP L 23] pEiy ) N
+ % (5}{’ + eg”) VOVBE i (60)
+ 8iZMNP LKLy (EJV[NWHV] + 5:'7[#1/),'; )

+ (ég” + 9[}”) Me? (€i7[u\¢i|y] + E,-’Y[u%])

+22M peg, AN S AL — (€41 + 041) e Al 6. AT,

[w v] V]

[u
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Supersymmetry Transfromation Rules

To write the local supersymmetry transformation rules for the
fermionic fields in a manifestly SL(2,R) x SO(6 n)-covariant form,
we introduce the symplectic vector g[)”@ =( W,QAW) where

1
Gnuw = RasHy,, — Eewaz,\z H*P° + fermions, (61)

where Ray and Zay are real symmetric matrices that depend on
the choice of symplectic frame and are defined by

Mps  Mp*

MAZ M/\Z

 (~@+RITR)as (RI-1)p™
(IflR)’\z _(Ifl)AZ ’

Mmn = MynMeog = (
(62)
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Supersymmetry Transfromation Rules

Up to terms quadratic in the fermions, we have

5etbip = Bei — 2V LGy P

8
1 - . )
— ggAl,-j’y“eJ + %e,jk/Bkl’y“eJ, (63)
deXi=— éV;LMUQMO‘W“”eJ + P e
> _ _

+ ggAZijEJ - gB,'jej, (64)
5t = SV LyaGMor ¥ e; — Pyt
eNaj = atMa Y€ aiju”)" €

8 m

_ 1 -
+ gAxs i€j — Zngﬂ, (65)
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Supersymmetry Transfromation Rules

where the fermion shift tensors are defined by
AY = fupnp VLM g LV LPIT 4 gganaLMU,
Asail = Fapanp VLM LN LPIK — %5{§QMV%M§,
Aij — Foanp(VE)F LM LNk Pl
BY = GomV* LM,

B2 = fmV* LM,
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Supersymmetry Transfromation Rules

and
A 1 o i
Duej =0u€i + Zwuab(ev A )y — 5,4“6; — @7 i€
— 2 0amAer, (71)
where

w, (e, A b)) = 2e”["8[ﬂef]] - e”[aeb]pecuaye;

+ DAY g lanlyy, 4 glay, pfl(72)
- 2ge/[j’eb]”«9aMA£/’a.
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ermionic field equations
X . ic field equations
Equations of Motion i

Equations of Motion

Since four-dimensional A/ = 4 matter-coupled supergravity with
local scaling symmetry does not admit an action, it must be
constructed directly on the level of the equations of motion.
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Fermionic field equations
A . Bosonic field equations
Equations of Motion i

Fermionic field equations

E.o.m. for the dilatini:
(Ex)i = =" Duxi + "7 Vin P}
— VLG Vel usG N
+ ggﬂz,-fw% — 28 A ¥\, + 28 A% i\ (73)
— gByy" i, + ggéékéi =0,

where

R 1 3i 4 o
Duxi =0.xi + wab(e, A ) vabXi + 5 Auxi = G

g o
+ Eea,\/,Af[’ Xi- (74)
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Fermionic field equations
Bosonic field equations

Equations of Motion

E.o.m. for the gaugini:

A . i
(EX)ai = — Y Durai — Y*v" Y, Paij + gszmégﬂf,av“”y””wm
i * vyJ i v
+ ZVQLM,-J-Q,%%“ N+ gvaLMgg,%%“ Xi

+ g Vi — 8A2aP Xj + 8A2a7 Xi
_ 0 .
+ 2gALbUAbJ + ggAz(U)AJé (75)

_ _ .3
- %Bﬁ“wm —2gBjN, — ZgBaXi =0,

where ) )
A’ = funnp VLM LN, LFT (76)
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Fermionic field equations
Bosonic field equations

Equations of Motion

and
Durai =000 + %wlf’b(e, A, D) YabAai + éfmé,-
— O Agj + O b+ %QQMA,’Y’O‘A@ - (77)
E.o.m. for the gravitini:
(Ep)iv =— Wﬁi,w +Pxi + 2ﬁ)aiju)\§j — éVaLMUQ%O‘W’YW%%

V LMag%a’Y'up’Yu)\ + V*LMUgMp ’Y ’YVX

8 8
+ gAl, — Al,mww’ + 3A2ﬂux + gA2a’ %A
3 .
- Egﬁijk/Bklll){, + §€ijkIBkI7;w1/)m (78)

3 - 7
— 58Binx’ + 8B nAa =0,
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Fermionic field equations
Bosonic field equations

Equations of Motion

where
R 1 .2
Piw = 200 Yin) + Ewwab(e, A, ) Vabil) — 1A Vil
A ] M«
= 207 i) — 8Oam AL Vi)- (79)

In the presence of a gauging of the scaling symmetry (6,0 # 0),
there is no action that reproduces the above equations of motion
via the variational principle.
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Fermionic field equations
Bosonic field equations

Equations of Motion

Indeed, the fermion mass matrices that can be read off from the

fermionic field equations are not symmetric:

2 — 3
(Ms)j; = —38 (Alij — 2€ijk/BkI> ;

(M1); =0,
(M) = — V2g A% + V2g8/ A + S\fg(sjféa,
(M) = - ﬁgﬁzé’j Vot At~ 2V gt
(M) =2gA%T + 2g 2 g0 A — 2gBisab.

(80)

(81)
(82)
(83)

(84)
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Fermionic field equations

i . Bosonic field equations
Equations of Motion g

Bosonic field equations

The equations of motion for the bosonic fields follow from the
requirement that the fermionic field equations be invariant under
local supersymmetry transformations:

0e(Ex)i = 0e(Ex)ai = Oe (gw),'l, =0. (85)
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Fermionic field equations
Bosonic field equations

Equations of Motion

E.o.m. for the complex scalar of the N' = 4 supergravity multiplet:

N [ oa 1
E=-e1D, (e(P“)*) + VIV My G Mo g

8 14
2 2 iz kg z laiz j
+&°( = gATA + g AsijAan — 5 A% A (86)
3 .- = 1- . - 3 ikl B B
— gEUkIAg,'jBk/ + §/£\2gliBa + 16€JkIBijBkI> = 07

where
ﬁu (e(ﬁ“)*) =9, (e(ﬁ“)*) + 2ieflu(,‘5“)*
— 2ge0aMAl’y°‘(15“)*. (87)
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Fermionic field equations
Bosonic field equations

Equations of Motion

E.o.m. for the scalars of the vector multiplets:

1A (LB 1 y
52,']' =e IDH (ePé,-j“> — 5 aﬁLMgLNUg,%agNﬁ“

g° (c, - ;e,jk,c‘a"’> =0, (88)
where
Dy (e'f)aiju> =0y (e’ééff#> + €02 P + 2ey; uPayj”
— 2gelamAY* Pyt (89)
Coi = = 3 gk — ¢ Aoai* Ao — 5 st ok

3
1-

_2

3

1 .- 5

+ Aapli A2 + 3A2ak Aagi + 5 Ao B (90)
1 1.

+ 5 A2ak" By — 3 AabijB® — J AggjyBa+ 5

1=
~B;B,.
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Fermionic field equations
Bosonic field equations

Equations of Motion

Einstein equations:

N 1
(Eeinstein) = Ry = 2P(uP5) = PaijuP?y — S MunMasGl 67,7

1= iz 1, j7ai
+ g2 <3AfA1U — §Aé’A2U — EAQQ,JAQ*J' (91)
1 ;= 3 .- 1
+ 6A2JBU — EBUBU + 8BaBa>gMV = 0,

where

I%/w = 2eaueg(8[uwp]ab(e7 A) + w[uac(ev A, w)wp]cb(eu A ).

Effective cosmological constant:

1 1 1
A:g2<_3AUAlu+ 9A A2I_]+ A2a A2 J

1 . L _
— SAYB; + gB’J Bi — 8/3353). (92)

45 /50



Fermionic field equations
Bosonic field equations

Equations of Motion

E.o.m. for the vector fields:
(Evector) " = %e“”p" D,GMe + 2gZMoNP [y, L py PRIK
- ég (52” + 0['}/’) VaVs(pHry* (93)
+ 2 (e + o) vy 2y B =0,

where ﬁug%‘l = BMQVAZO‘ + gXngvMaA,lyﬁgfpw-
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Maximally Symmetric Solutions

Maximally Symmetric Solutions

A solution to the field equations with constant scalar and vanishing
vector, two-form and fermionic fields satisfies the following two

conditions:
2 1 ..,- - 1- . - .
- §Alj_lA2ij + §€UkIA2ijA2kI - §A2§’jA2§Ji
3 - = 1- . = 3 4= =
— gfuk/AQ,’jBk/ + §A2§I’.B§ + EeukIBUBkI = Oa (94)
and 1
Caij + SeiCa’ = 0. (95)

For the standard gaugings, for which 6.y, = 0, these conditions
reproduce the extremization conditions of the scalar potential
[Dall'Agata, Liatsos, Noris and Trigiante (2023)].
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Maximally Symmetric Solutions

The squared mass matrix of the fluctuations of the scalar fields
around maximally symmetric solutions of the field equations is not
symmetric = it cannot arise from a scalar potential.
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Conclusion

Conclusion

@ Determination of the algebraic stucture of the embedding
tensor that parametrizes the gaugings of D =4, N/ =4
supergravity that involve the scaling symmetry and of the
quadratic consistency constraints on its irreducible
components.

@ Explicit derivation of the equations of motion of the most
general half-maximal supergravity with local scaling symmetry
in four dimensions, which cannot be obtained from an action.
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Conclusion
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