

SUSY in ATLAS and CMS

Yuya Mino, Kyoto University On behalf of the ATLAS and CMS collaborations 28 August 2024 Corfu 2024 : Workshop on the Standard Model and Beyond

Supersymmetry

Supersymmetry: SUSY

- Symmetry between bosons and fermions
- Introduce superpartners for each SM particle *

Minimal SUSY Standard Model : MSSM

for each SM particle and two Higgs doublets

Motivation of SUSY

- Explains observed Higgs mass near the electroweak scale Hierarchy problem
- Unifies coupling constants at high-energy scales
- ③ Lightest SUSY Particle (LSP) becomes a good dark matter candidate <u>Dark matter</u>

- **Grand unification**

Large Hadron Collider

Large Hadron Collider : LHC

- Proton-proton collider with a circumference of 27 km *
- LHC Run 2 period (2015 2018) operated with a *

center-of-mass energy of **13 TeV**

LHC Run 3 period (2022 - 2025) has started in 2022, *

increasing the center-of-mass energy to 13.6 TeV

SUSY Searches in LHC

- *

Broad program of searches targetting different production modes & final states

Long Lived Particles

- * Many BSM theories predict new particles with long lifetime due to
 - 1) Limited decay phase space
 - Highly virtual intermediate states (2)
 - ③ Small couplings
- Long-lived particles produce unconventional signatures, which are extremely challenging
 - MC simulations not accurate
 - Dedicated triggers are required
 - Require special reconstruction methods
 - Unusual backgrounds

STRONG PRODUCTION

Stop to Top/Charm + Missing Transverse Momentum

- * Naturalness arguments favour light stops ($\tilde{t}_L, \tilde{t}_R \implies \tilde{t}_1, \tilde{t}_2$)
- Non-minimal flavour violation extension of the MSSM considered
 - \tilde{t}_1 can decay into a top or charm quark ($\tilde{t}_1 \rightarrow c \, \tilde{\chi}_1^0 / t \, \tilde{\chi}_1^0$)
 - Consider decays with on-shell top quarks $(\Delta m(\tilde{t}_1, \tilde{\chi}_1^0) \ge 175 \text{ GeV})$

- Common event selection : top-tagged la b- or charm-tagged jets, large E^{miss}_T
- First exploration of signature with top- an
 - Analysis-specific charm-tagging algorith
 developed based on b-tagging algorithm

JHEP 07 (2024) 250

arge-Rjets,	b-tagging working point				
	b-jet efficiency	c-jet misidentification	light-jet misidentificat		
nd charm-iets	77% 20%		0.9%		
n (DL1r _c)	c-tagging working point				
	c-jet efficiency	b-jet rejection	light-jet reject		
	20%	29	57		

Stop to Top/Charm + Missing Transverse Momentum

- SRs targetting high mass splitting (compressed) regime, observe excesses/deficits but all within 2σ
- Stop mass excluded up to

<u>JHEP 07 (2024) 250</u>

Stop Search with many Light Flavor Jets and Leptons

- - RPV : Lightest SUSY particle allowed to decay to SM particles (e.g. $\tilde{\chi}_1^0 \rightarrow uds$)

Search for stop production in R-parity violating (RPV) and Stealth SUSY (SYY) models • SYY : Hidden sector with mass degenerate scalar particle (S) and its superpartner (\tilde{S})

These scenarios lead to final states without large missing transverse momentum

Light flavor jet

top quark (⇒ lepton)

Gravitino (but very soft)

Stop Search with many Light Flavor Jets and Leptons

- Final state : 2 top quarks + multiiple jets Main background : tt + jets *

 - Estimated by a data-driven method (ABC<u>DisCo</u>TEC method)

ABCDisCoTEC method

- ABCD method requires two independent variables *
- Train two NNs with classifier loss term and *
 - Distance correlation loss term (DisCo) (1)
 - Non-closure loss term (2)
 - **NN scores forced to be independent**

Top quark pair production with jets from initial- and final-state radiation (ISR and FSR)

Distance Correlation : statistical measure of nonlinear dependence

Yuya Mino

10

Stop Search with many Light Flavor Jets and Leptons

- *
- *
 - Stop mass in RPV (SSY) model excluded up to 700 (930) GeV

Vertical dashed line : Transition from low-mass optimization to high-mass optimization ABCD boundaries

Lower boundary of output scores (S_{NN,1} & S_{NN,2}) optimized for low- and high-mass Good agreement between observed data and prediction by ABCDisCoTEC method

Yuya Mino

11

ELECTROWEAK PRODUCTION

- *Compressed* mass spectra motivated by Bino coannihilation, nearly pure higgsino etc.

- Event kinematic variable reconstructed with **Recursive Jigsaw Reconstruction (RJR) algorithm**
 - Impose a decay tree on the events
 - Recursively iterate through rest frames
 - ③ Specify four-vectors of each frame

CMS-PAS-SUS-23-003

- - Wino (Higgsino) limits extending to 300 GeV (180 GeV)
 - Slepton limits extending to 275 GeV

Sensitivity extended to higher masses especially in compressed mass regime

- Sensitivity extended to higher masses especially in compressed mass regime Wino (Higgsino) limits extending to 300 GeV (180 GeV)
- - Slepton limits extending to 275 GeV **+ Limits extended to wide range of** $\Delta m(\tilde{\ell}, \tilde{\chi}_1^0)$

SUSY in ATLAS and CMS

Compressed Higgsinos with Mildly-Displaced Tracks Phys. Rev. Lett.

In the compressed Higgsino regime, $\tilde{\chi}_1^{\pm}$ acquire a lifetime of order $c\tau \sim O(1)$ mm

- * $\tilde{\chi}_1^{\pm}$ decay produce tracks with increased impact parameters (d_0)
- * Identify $\tilde{\chi}_1^{\pm}$ decay tracks by requiring a <u>"mildly displaced track"</u>: $S(d_0) = |d_0|/\sigma(d_0)$
 - Idea from the "cornering higgsino" paper [H. Fukuda et al., Phys. Rev. Lett. 124, 101801 (2020)]

SUSY in ATLAS and CMS

Compressed Higgsinos with Mildly-Displaced Tracks Phys. Rev. Lett.

No significant data excess in all SRs

- Covered the higgsino gap (0.3 GeV < $\Delta m(\tilde{\chi}_1^{\pm}, \tilde{\chi}_1^0) < 0.9$ GeV), with a maximum reach of 170 GeV in the chargino mass

SUSY in ATLAS and CMS

	SR-Low	SR-High	
Observed data	35	15	
SM prediction	37 ± 4	14.8 ± 2.0	
QCD track	14.0 ± 1.7	10.0 ± 1.6	
$W(\rightarrow \tau_{\ell} \nu)$ +jets	9.6 ± 1.6	2.0 ± 0.6	
$W(\rightarrow \tau_h \nu)$ +jets	10.6 ± 2.0	1.9 ± 0.8	
Others	3.2 ± 0.7	0.8 ± 0.4	

LONG-LIVED PARTICLE SEARCH

LLPs with Large Ionization Energy Loss <u>CMS-PAS-EXO-18-002</u>

- * Heavy stable charged particles have a small relative velocity ($\beta \equiv v/c$)
 - Can be detected by higher rate of ionization energy loss (dE/dx)

Two methods developed to cross-check any potential excess in the data A simple, very inclusive search - **Ionization method** (1)More exclusive channel Mass method (2)

• Target : **long-lived gluino, stop, stau particles** & fourth generation lepton (τ)

Yuya Mino

20

Inclusive Ionization method

✓ Use two uncorrelated *dE/dx* discriminant
 measured in pixel & strip detectors
 → Probability that a track is not a MIP (*F*^{Pixels} & *G*^{Strips})

Exclusive mass method

*

Probable value of dE/dx estimated by squared harmonic mean

Mass of candidate particle can be calculated by approximating Bethe-Bloch formula

- No significant excess in both approaches *
 - Gluinos excluded up to 2.03 TeV (2.13 TeV) for ionization (mass) method

 The mass method provides stronger limits for signals with large mass (> 600 GeV) due to small background <u>CMS-PAS-EXO-18-002</u>

Displaced Leptons

- Gauge-Mediated SUSY Breaking model as benchmark
 - Long lifetime due to small gravitational coupling
- Performed search with <u>full Run 2</u> + <u>early Run 3</u> data 140 fb⁻¹
- Two approaches : ABCD analysis & EM-BDT analysis
- <u>ABCD analysis (Run 2 + Run 3)</u>
 - Focus on dilepton events (ee, $\mu\mu$, $e\mu$)
- <u>EM-BDT analysis (Run 3)</u> 2
 - Focus on displaced e/γ final states (1e, $e\gamma$, $\gamma\gamma$)
 - Electrons with no tracks will be reconstructed as photons
 - Identify displaced (delayed) e/γ using ML techniques
 - <u>Use Liquid Argon (LAr) calorimeter timing as input</u>

Displaced Leptons

- No significant data excess in all SRs *
- Improvement in sensitivity due to *
 - smuon
 - selectron : <u>New LRT-based trigger</u> + <u>EM-BDT analysis</u>
 - : Benefits from all improvements above stau

: New LRT-based trigger + better trigger acceptance in forward region

Summary

- - SUSY results with early Run 3 data are also starting to come out

A	TLAS SUSY Sea	arches* - 95%	6 CL Lo	wer Limits	ATLAS Preliminary
	Model	Signatur	e $\int \mathcal{L} dt$ [Mass limit	Reference
Sé	$\tilde{q}\tilde{q}, \tilde{q} ightarrow q \tilde{\chi}_1^0$	$\begin{array}{ccc} 0 \ e, \mu & 2-6 \ { m jets} \\ { m mono-jet} & 1-3 \ { m jets} \end{array}$	$E_T^{ m miss}$ 140 $E_T^{ m miss}$ 140	<i>q</i>	2010.14293 2102.10874
arche	$\tilde{g}\tilde{g}, \tilde{g} { ightarrow} q \bar{q} \tilde{\chi}_1^0$	0 <i>e</i> , <i>µ</i> 2-6 jets	E_T^{miss} 140	$\begin{array}{c c} \tilde{s} & & & & \\ \hline \tilde{s} & & & Forbidden & & 1.15-1.95 \\ \hline \end{array} & & & & & & \\ m(\tilde{\chi}_1^0)=0 \text{GeV} & & & \\ m(\tilde{\chi}_1^0)=1000 \text{GeV} & & \\ \end{array}$	2010.14293 2010.14293
s Se	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow q\bar{q}W\tilde{\chi}_1^0$	1 e, μ 2-6 jets	140	ğ 2.2 m(k ₁ ⁰)<600 GeV ζ α α ²⁰ α ²⁰	2101.01629
sive	$gg, g \to qq(\ell\ell)\chi_1$ $\tilde{g}\tilde{g}, \tilde{g} \to agWZ\tilde{\chi}_1^0$	$0 e, \mu$ 7-11 jets	E_T 140 E_T^{miss} 140	\tilde{s} 2.2 m(t_1)<700 GeV \tilde{s} 1.97 m(t_1^0)<600 GeV	2008.06032
nclu	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	SS e, μ 6 jets	140	\tilde{g} 1.15 m(\tilde{g} -m(\tilde{k}_{1}^{0})=200 GeV	2307.01094
	$gg, g \rightarrow tt \chi_1$	$SS e, \mu$ $S b$	L _T 140	$\frac{z.45}{\tilde{s}} = \frac{2.45}{m(\tilde{s})-m(\tilde{t}_1)<500 \text{ GeV}}$	1909.08457
	$ ilde{b}_1 ilde{b}_1$	0 <i>e</i> , <i>µ</i> 2 <i>b</i>	E_T^{miss} 140	$ \begin{array}{c c} \bar{b}_1 & 1.255 & m(\bar{k}_1^0) < 400 {\rm GeV} \\ \bar{b}_1 & 0.68 & 10 {\rm GeV} < \Delta m(\bar{b}_1, \bar{k}_1^0) < 20 {\rm GeV} \\ \end{array} $	2101.12527 2101.12527
arks tion	$\tilde{b}_1 \tilde{b}_1, \tilde{b}_1 \rightarrow b \tilde{\chi}_2^0 \rightarrow b h \tilde{\chi}_1^0$	0 e, μ 6 b 2 τ 2 b	$E_T^{ m miss}$ 140 $E_T^{ m miss}$ 140	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1908.03122 2103.08189
sque	$\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow t \tilde{\chi}_1^0$	0-1 $e, \mu \ge 1$ jet	E_T^{miss} 140	\tilde{t}_1 1.25 m(\tilde{t}_1^0)=1 GeV	2004.14060, 2012.03799
en. E pro	$\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow W b \bar{\chi}_1^0$ $\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow \tilde{t}_2, b \chi, \tilde{\tau}_1 \rightarrow \tau \tilde{C}$	$1 e, \mu$ 3 jets/1 b 1-2 τ 2 jets/1 b	E_T^{miss} 140 E^{miss} 140	\vec{t}_1 Forbidden 1.05 m(\vec{k}_1^*)=500 GeV \vec{t}_2 Total Scheme 1.0 m(\vec{k}_1^*)=500 GeV	2012.03799, 2401.13430
s rd ge direct	$\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow \tilde{t}_1 \tilde{b} \tilde{v}, \tilde{t}_1 \rightarrow \tilde{t} \tilde{b} \tilde{c}$ $\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow c \tilde{\chi}_1^0 / \tilde{c} \tilde{c}, \tilde{c} \rightarrow c \tilde{\chi}_1^0$	$0 e, \mu$ $2 c$	E_T 140 E_T^{miss} 36.1 F^{miss} 140	\tilde{c} 0.85 $m(\tilde{c}) = 0.60$	1805.01649
	$\tilde{t}, \tilde{t}, \tilde{t}, \rightarrow t \tilde{Y}_{0}^{0}, \tilde{Y}_{0}^{0} \rightarrow Z/b \tilde{Y}_{0}^{0}$	1-2 e. µ 1-4 h	E_T 140 E_m^{miss} 140	i 0.067-1.18 m(μ ²)-500 GeV	2006.05880
	$\tilde{t}_2 \tilde{t}_2, \tilde{t}_2 \rightarrow \tilde{t}_1 + Z$	$3 e, \mu$ 1 b	E_T^{miss} 140	\tilde{t}_2 Forbidden 0.86 $m(\tilde{x}_1^0)=360 \text{ GeV}, m(\tilde{t}_1)-m(\tilde{x}_1^0)=40 \text{ GeV}$	2006.05880
	$ ilde{\chi}_1^{\pm} ilde{\chi}_2^0$ via WZ	$\begin{array}{ll} \text{Multiple } \ell/\text{jets} \\ ee, \mu\mu & \geq 1 \text{ jet} \end{array}$	E_T^{miss} 140 E_T^{miss} 140	$ \begin{array}{ccc} \bar{\chi}_{1}^{*}/\bar{\chi}_{2}^{0} & \textbf{0.96} \\ \bar{\chi}_{1}^{*}/\bar{\chi}_{2}^{0} & \textbf{0.205} \end{array} \\ \end{array} \\ \begin{array}{cccc} m(\tilde{\chi}_{1}^{*}) = 0, \text{ wino-bino} \\ m(\tilde{\chi}_{1}^{*}) = n(\tilde{\chi}_{1}^{*}) = 5 \text{ GeV, wino-bino} \end{array} $	2106.01676, 2108.07586 1911.12606
	$\tilde{\chi}_{1}^{\pm}\tilde{\chi}_{1}^{\mp}$ via WW	2 <i>e</i> , <i>µ</i>	E_T^{miss} 140	\tilde{X}_{1}^{\pm} 0.42 m(\tilde{X}_{1}^{0})=0, wino-bino	1908.08215
	$\tilde{\chi}_1^{\pm}\tilde{\chi}_2^0$ via Wh	Multiple <i>l</i> /jets	E_T^{miss} 140	$\tilde{x}_1^* / \tilde{x}_2^0$ Forbidden 1.06 m(\tilde{x}_1^0)=70 GeV, wino-bino	2004.10894, 2108.07586
ot <	$\chi_1 \chi_1 \text{ via } \ell_L / \tilde{v}$	2 e, µ 2 z	E_T^{miss} 140 E^{miss} 140	χ_1^{-} 1.0 $m(\ell, \bar{\nu})=0.5(m(\chi_1^{-})+m(\chi_1^{-})))$	1908.08215
dire	$\tilde{\tau}\tau, \tau \to \tau \lambda_1$ $\tilde{\ell}_{\mathrm{L,R}}\tilde{\ell}_{\mathrm{L,R}}, \tilde{\ell} \to \ell \tilde{\chi}_1^0$	$2 e, \mu$ 0 jets	E_T^{miss} 140 $E_{T_{int}}^{\text{miss}}$ 140	\tilde{t} 0.7 $m(\tilde{t}_1)=0$	1908.08215
		$ee, \mu\mu \ge 1$ jet	E_T^{miss} 140	ι 0.26 m(ℓ)-m(ℓ) m(ℓ) m 0.01	1911.12606
	$HH, H \rightarrow hG/ZG$	$\begin{array}{ccc} 0 & e, \mu & \geq 3 & b \\ 4 & e, \mu & & 0 & \text{jets} \end{array}$	$E_{T_{inss}}^{E_{T_{inss}}}$ 140 $E_{T_{inss}}^{E_{T_{inss}}}$ 140	H 0.94 BR($X_{1}^{-} \rightarrow hG$)=1 \tilde{H} 0.55 BR($\tilde{X}_{1}^{-} \rightarrow Z\tilde{G}$)=1	2401.14922 2103.11684
		$0 \ e, \mu \ge 2$ large jet	E_T^{miss} 140	\tilde{H} 0.45-0.93 BR $(\tilde{\chi}_1^0 \to Z\tilde{G})$ =1	2108.07586
		$2 e, \mu \ge 2 \text{ Jets}$	L _T 140	H = 0.11 BH($x_1 \rightarrow ZG$)=BH($x_1 \rightarrow hG$)=0.5	2204.13072
P (Direct $\tilde{\chi}_1^+ \tilde{\chi}_1^-$ prod., long-lived $\tilde{\chi}_1^\pm$	Disapp. trk 1 jet	E_T^{miss} 140		2201.02472 2201.02472
live cles	Stable g R-hadron	pixel dE/dx	E_T^{miss} 140	<i>ĝ</i> 2.05	2205.06013
ng- arti	Metastable \tilde{g} R-hadron, $\tilde{g} \rightarrow qq \tilde{\chi}_1^0$	pixel dE/dx	E_T^{miss} 140 E^{miss} 140	\tilde{g} [$\tau(\tilde{g}) = 10 \text{ ns}$] 2.2 m($\tilde{\chi}_1^0$)=100 GeV	2205.06013
D g	$tt, t \rightarrow tG$	pixel dF/dx	E_T 140 F^{miss} 140	$\tilde{\tau}$ 0.36 $\tau(\tilde{\ell}) = 0.1$ ns $\tilde{\tau}$ 0.36 $\tau(\tilde{\ell}) = 0.1$ ns	ATLAS-CONF-2024-011 ATLAS-CONF-2024-011 2205.06013
		pinor de, dir	<i>L_T</i> 140		
	$\tilde{\chi}_1^{\pm}\tilde{\chi}_1^{\mp}/\tilde{\chi}_1^0, \tilde{\chi}_1^{\pm} \rightarrow Z\ell \rightarrow \ell\ell\ell$	$3 e, \mu$	140	$\tilde{\chi}_{1}^{\pi}/\tilde{\chi}_{1}^{0}$ [BR(Z τ)=1, BR(Z e)=1] 0.625 1.05 Pure Wino	2011.10543
	$\chi_1\chi_1/\chi_2 \to WW/Z\ell\ell\ell\ell\nu\nu$ $\tilde{a}\tilde{a} \tilde{a} \to aa\tilde{\chi}^0_1 \tilde{\chi}^0_1 \to aaa$	+ e,μ 0 jets >8 iets	L _T 140	$\chi_1/\chi_2 = [4_{i33} \neq 0, A_{12k} \neq 0]$ 0.95 1.55 m(χ_1)=200 GeV $\tilde{\varphi} = [m(\tilde{\chi}_1^0) = 50 \text{ GeV}]$ 1.6 2.34 Large χ'_{112}	2401.16333
>	$\widetilde{tt}, \widetilde{t} \rightarrow t\widetilde{\chi}_{1}^{0}, \widetilde{\chi}_{1}^{0} \rightarrow tbs$	Multiple	36.1	\tilde{i} [$\tilde{l}_{133}^{(i)}$ =2e-4, 1e-2] 0.55 1.05 m(\tilde{k}_{1}^{0})=200 GeV, bino-like	ATLAS-CONF-2018-003
dE	$\tilde{t}\tilde{t}, \tilde{t} \rightarrow b\tilde{\chi}_{1}^{\pm}, \tilde{\chi}_{1}^{\pm} \rightarrow bbs$	$\geq 4b$	140	\tilde{t} Forbidden 0.95 $m(\tilde{t}_1^+)=500 \text{ GeV}$	2010.01015
	$\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow bs$	2 jets + 2 b	36.7	<i>t</i> ₁ [<i>qq</i> , <i>bs</i>] 0.42 0.61	1710.07171
	$t_1 t_1, t_1 \rightarrow q \ell$	$2 e, \mu$ $2 b$ 1μ DV	140 136	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	2406.18367 2003.11956
	$\tilde{\chi}_1^{\pm}/\tilde{\chi}_2^0/\tilde{\chi}_1^0, \tilde{\chi}_{1,2}^0 \rightarrow tbs, \tilde{\chi}_1^+ \rightarrow bbs$	1-2 $e, \mu \ge 6$ jets	140	\$\tilde{X}_1^0\$ 0.2-0.32 Pure higgsino	2106.09609
*Onlv	a selection of the available ma	ass limits on new state	s or	10^{-1} 1 Moon coole (To)//	,
		limite are beend as			

ATLAS SUSY public results

phenomena is shown. Many of the limits are based on simplified models, c.f. refs. for the assumptions made.

Many new results published with full Run 2 data (Including many results not covered today) Large sensitivity improvement not only by statistics, but also by new analysis methods

Run 3 ongoing with exciting developments that will enhance the discovery potential

CMS SUSY public results

Selection of observed exclusion limits at 95% C.L. (theory uncertainties are not included). The y-axis tick labels indicate the studied long-lived particle.

Yuya Mino

	132 fb ⁻¹
	36 fb ⁻¹
m	13 fb ⁻¹
m	13 fb ⁻¹
n	39 fb ⁻¹
m	39 fb ⁻¹
m	39 fb ⁻¹
	140 fb ⁻¹
	137 fb ⁻¹
	137 fb ⁻¹
	137 fb ⁻¹
	138 fb ⁻¹
	138 fb ⁻¹
	77 fb ⁻¹
	118 fb ⁻¹
	98 fb ⁻¹
	101 fb ⁻¹
	20 fb ⁻¹ (8 TeV)
	118 fb ⁻¹
	132 fb ⁻¹
	117 fb ⁻¹
	137 fb ⁻¹
	137 fb ⁻¹
	138 fb ⁻¹
	138 fb ⁻¹
	35 fb ⁻¹ (13.6 TeV)
	35 fb ⁻¹ (13.6 TeV)
	35 fb ⁻¹ (13.6 TeV)
	(

140 fb⁻

132 fb⁻¹

140 fb⁻¹ 132 fb⁻¹

36 fb⁻¹ 118 fb⁻¹

132 fb⁻¹

132 fb⁻¹

137 fb⁻¹

BACKUP

Stop to Top/Charm + Missing Transverse Momentum

Variable	SRA	SRB	SRC	T,				
				Ť	Variable	SRD	CRttD	CRV
(R = 1.0)	≥ 1	= 0	≥ 1		E ^{miss} _T [GeV]		≥ 250	
$m_{\text{T2}}(j_{R=1.0}^{b}, c)$ [GeV]	≥ 450 *	≥ 150	[200, 450]		$p_{\mathrm{T}}(j_1)$ [GeV]	•	≥ 100	

Orthogonal selections

Insure orthogonality using

- Number of top-tagged large-R jets **Stransverse mass (** m_{T2} **)**
- : Compressed region Require ISR jet to boost neutralinos

Initial-state radiation jet (ISR) selection

Stop to Top/Charm + Missing Transverse Momentum

Stransverse mass

*

$$m_{\text{T2}}(\vec{p}_{\text{T}}^{1}, \vec{p}_{\text{T}}^{2}, \vec{p}_{\text{T}}^{\text{miss}}) = \min_{\vec{q}_{\text{T}}^{1} + \vec{q}_{\text{T}}^{2} = \vec{p}_{\text{T}}^{\text{miss}}} \{\max[m_{\text{T}}(\vec{p}_{\text{T}}^{1}, \vec{q}_{\text{T}}^{1}), m_{\text{T}}(\vec{p}_{\text{T}}^{2}, \vec{q}_{\text{T}}^{2})]\}$$

Generalization of the transverse mass when there are two semi-invisibly decaying particles

JHEP 07 (2024) 250

Decompose the missing transverse momentum $(\vec{p}_{T}^{\text{miss}})$ into two

vectors and assign to each top- or charm-tagged jet

2 Calculate transverse mass for each top- or charm-tagged jet

3 Select trial vector which minimizes larger transverse mass

tbar background dramatically drop-off at the top quark mass

- * Results using only pixel dE/dx information \Rightarrow Observed 3.6 σ (local) excess

New analysis using both pixel dE/dx & calorimeter time-of-flight (ToF) information

chargino interpretation

Compressed SUSY Results : Wino

SUSY in ATLAS and CMS

Compressed SUSY Results : Higgsino

SUSY in ATLAS and CMS

Compressed SUSY Results : Slepton

SUSY in ATLAS and CMS

Higgsino Searches by Collider Experiments

<u>Compressed higgsino states explored by existing searches (Soft 2L + Disappearing track)</u>

- Soft 2-lepton : Leptons too soft to be reconstructed
- * Disappearing track : $\tilde{\chi}_1^{\pm}$ lifetime is too short to pass enough inner detector layers

New analysis method required to cover the compressed mass region ("Higgsino gap")

