Search for physics beyond the Standard Model at NA62

Michal Zamkovsky

CERN

August 26, 2024

Michal Zamkovsky

▶ ▲ 볼 ▶ 볼| ¥ ● ○ ○

Outline

Main goal of the NA62 experiment:

- Measurement of the Branching fraction of the ${\cal K}^+ \to \pi^+ \nu \bar{\nu}$ decay
 - Golden mode of the flavour physics, sensitive to BSM
 - Reinterpretation for ${\cal K}^+ o \pi^+ X$ search

BSM searches in the kaon mode:

- Search for Heavy Neutral Leptons in $K^+ \to e^+ N$, $K^+ \to \mu^+ N$ decays
- LFV, LNV studies in $K^+ \rightarrow \pi^- \ell^+ \ell^+$, $K^+ \rightarrow \mu^- \nu e^+ e^+$ and $K^+ \rightarrow \pi^0 \pi \mu e$ decays
- Search for $K^+ \rightarrow \pi^+ e^+ e^- e^+ e^-$ decay

BSM searches in the beam dump mode:

- Searches for $A' \to \ell^+ \ell^-$
- \bullet Searches for Dark Scalars and ALPs $_{\scriptscriptstyle (\!\mathcal{B}\!)}$,

E ► E = 900

NA62 experiment at CERN

NA62: ~300 participants, ~ 30 institutes

Image: Image:

NA62 Detector layout

SPS Beam:

- 400 GeV/c protons
- $1.9 \times 10^{12} \text{ p/spill}$
- 3.5 s spill
- $\sim 10^{18} \text{ POT/year}$

Secondary beam:

- 75 GeV/c momentum, 1% RMS
- 100 µrad divergence (RMS)
- $60 \times 30 \text{ mm}^2$ transverse size
- $K^+(6\%)/\pi^+(70\%)/p(24\%)$
- 450 MHz of particles at GTK3

Decay Region

- 60 m long fiducial region
- \sim 3 MHz K^+ decay rate
- Vacuum $O(10^{-6})$ mbar

EL OQO

[The NA62 Collaboration, JINST 12 (2017) P05025]

4 / 24

NA62 Detector layout

Upstream detectors (K^+)

- **KTAG:** differential Cherenkov counter for *K*⁺ ID
- GTK: Si pixel beam tracker
- CHANTI: Anti-counter for inelastic beam-GTK3 interactions

Downstream detectors (π^+)

- STRAW: track momentum spectrometer
- CHOD: scintillator hodoscopes
- LKr/MUV1/MUV2: Calorimeters
- **RICH**: Cherenkov counter for $\pi/\mu/e$ ID
- LAV/SAC/IRC: Photon veto detectors
- MUV3: Muon detector

[The NA62 Collaboration, JINST 12 (2017) P05025]

Corfu 2024

5 / 24

$K ightarrow \pi u ar{ u}$: Theoretical motivation - Standard Model

• FCNC loop process

• s \rightarrow d coupling and highest CKM suppression (BR $\sim |V_{ts} \times V_{td}|^2$)

• Very clean theoretically

- Short distance contribution and no hadronic uncertainties
- Hadronic matrix element extracted from well-known decay $K^+ \rightarrow \pi^0 e^+ \nu^+$
- Theoretical error budget dominated by CKM parameters

• SM predictions

$$\begin{aligned} & [Buras et al., JHEP 1511 (2015) 033] \\ & \text{BR}(\kappa^+ \to \pi^+ \nu \bar{\nu}) = (8.39 \pm 0.30) \cdot 10^{-11} \left(\frac{|V_{cb}|}{0.0407}\right)^{2.8} \left(\frac{\gamma}{73.2^\circ}\right)^{0.74} = (8.4 \pm 1.0) \cdot 10^{-11} \\ & \text{BR}(\kappa_L^0 \to \pi^0 \nu \bar{\nu}) = (3.36 \pm 0.05) \cdot 10^{-11} \left(\frac{|V_{ub}|}{0.00388}\right)^2 \left(\frac{|V_{cb}|}{0.0407}\right)^2 \left(\frac{\sin \gamma}{\sin 73.2}\right)^2 = (3.4 \pm 0.6) \cdot 10^{-11} \\ & \text{Michal Zamkovsky} \qquad \text{Corfu 2024} \qquad 6/24 \end{aligned}$$

$K ightarrow \pi u ar{ u}$: Theoretical motivation - Beyond the SM

- Simplified Z, Z' models [Buras, Buttazzo, Knegjens, JHEP 1511 (2015) 166]
- Littlest Higgs with T-parity [Blanke, Buras, Recksiegel, EPJ C76 (2016) no.4 182]
- Custodial Randall-Sundrum [Blanke, Buras, Duling, Gemmler, Gori, JHEP 0903 (2009) 108]
- MSSM non-MFV [Blazek, Matak Int.J.Mod.Phys.A29 (2014) 1450162; Isidori et al. JHEP 0608 (2006) 064]
- LFU violation models [Isidori et. al., Eur. Phys. J. C (2017) 77]
- Leptoquarks [S. Fajfer, N. Košnik, L. Vale Silva, arXiv:1802.00786v1 (2018)]
- Constraints from existing measurements (correlations model dependent): Kaon mixing and CPV, CKM fit, K,B rare meson decays, NP limits from direct searches
- $K \rightarrow \pi \nu \bar{\nu}$ can discriminate among different new physics scenarios

Michal Zamkovsky

Corfu 2024

7 / 24

$K^+ \rightarrow \pi^+ \nu \bar{\nu}$: Analysis strategy

Kaon decays in flight

- Signal: Time and space $K^+ \pi^+$ matching
- Regions defined by: $m_{miss}^2 = (P_K P_\pi)^2$
- The analysis is mostly cut based
- Blind analysis: Signal and background ctrl regions are kept blind throughout the analysis

Main background sources

Decay mode	BR	Main rejection tools	
$K^+ o \mu^+ \nu(\gamma)$	63%	$\mu - ID + kinematics$	
$K^+ o \pi^+ \pi^0(\gamma)$	21%	γ -veto $+$ kinematics	
$K^+ o \pi^+ \pi^+ \pi^-$	6%	mu ti+kinematics	
$K^+ ightarrow \pi^+ \pi^0 \pi^0$	2%	γ -veto $+$ kinematics	
$K^+ ightarrow \pi^0 e^+ u_e$	5%	$e{-}ID + \gamma{-}veto$	
$K^+ o \pi^0 \mu^+ u_\mu$	3%	$\mu - ID + \gamma$ -veto	

Requirements

- O(100) ps timing between sub-detectors
- $O(10^4)$ background suppression with kinematics

• > (10⁷)
$$\pi^{0}$$
-suppression
($\mathcal{K}^{+} \rightarrow \pi^{+}\pi^{0}$, $\pi^{0} \rightarrow \gamma\gamma$)

(目) ▲ (目) ▲ (日) ● ▲ (日) ● ▲ (日)

$K^+ \rightarrow \pi^+ \nu \bar{\nu}$: Event selection

Signal regions

 Three different ways to calculate m_{miss} to avoid mis-reconstruction:

•
$$m_{miss}^2 = (STRAW, GTK)$$

• $m_{miss}^2 = (RICH, GTK)$
• $m_{miss}^2 = (STRAW, Beam)$

Selection

- Single track in final state topology matched with upstream K⁺
- π^+ identification
- Photon rejection
- Multi-track rejection
- $105 < Z_{vertex} < 165$ m
- $15 < P_{\pi^+} < 35 \text{ GeV}/c \text{ in R1}$ $15 < P_{\pi^+} < 45 \text{ GeV}/c \text{ in R2}$ (best μ/π discrimination in RICH & to leave at least 30 GeV of E_{miss})

Performance

•
$$arepsilon(\mu)=1\cdot 10^{-8}$$
 (64% π^+ efficiency)

•
$$\varepsilon(\pi^0) = (1.4 \pm 0.1) \cdot 10^{-8}$$

•
$$\sigma(m_{miss}) = 1 \cdot 10^{-3} \text{ GeV}^2/c^4$$

Michal Zamkovsky

▶ ◀ 프 ▶ 프 I = 𝒴 𝔄 𝔄

$K^+ \rightarrow \pi^+ \nu \bar{\nu}$: 2018 background validation

Background expectation validated using control regions.

Observed (expected) events in control regions. Signal Regions are masked!

Validation: expected vs observed background events in control regions in bins of π^+ momentum

In 2018 collimator was replaced to remove early decays mechanism and data are split in subsets S1/S2 ($\sim 20\%/80\%$ of 2018 data).

$BR(K^+ \rightarrow \pi^+ \nu \bar{\nu})$: Run1 final result

	2016 data	2017 data	2018 S1 data	2018 S2 data
$SES imes 10^{10}$	3.15 ± 0.24	$0.39\!\pm\!0.02$	0.54 ± 0.04	0.14 ± 0.01
$A_{\pi u u} imes 10^2$	4 ± 0.4	3 ± 0.3	4 ± 0.4	6.4 ± 0.6
Expected SM signal	0.27 ± 0.04	2.16 ± 0.13	1.56 ± 0.10	6.02 ± 0.39
Expected background	0.15 ± 0.090	1.46 ± 0.30	$1.11^{+0.40}_{-0.22}$	$4.31^{+0.91}_{-0.72}$
Observed events	1	2	2	15
	[PLB 791	[JHEP 11	[JHEP 06 (2021) 093]	
	(2019) 156-166]	(2020) 042]		

 $BR(K^+ \to \pi^+ \nu \bar{\nu}) = (10.6^{+4.0}_{-3.4}|_{stat} \pm 0.9_{syst}) \times 10^{-11}$ (3.4 σ significance)

Interpretation of result

Large deviations from SM BR($K^+ \rightarrow \pi^+ \nu \bar{\nu}$) are excluded \rightarrow high precision measurement needed

Search for $K^+ \rightarrow \pi^+ X$ (invisible)

0.3 ×10⁻⁹

0.25

0.2

Observed UI

Expected UL

 $\pm 1\sigma$

±2σ

- Search for X particle production in $K^+ \rightarrow \pi^+ X$ decays
- Technique: peak searching using the m_{miss}^2 observable for m_X in the 0-260 MeV/ c^2 range
- Background shapes taken from the $K^+ \rightarrow \pi^+ \nu \bar{\nu}$ analysis including the shape of the SM $K^+ \rightarrow \pi^+ \nu \bar{\nu}$ process itself
- 90% Upper limits on BR($K^+ \to \pi^+ X$) in $(10^{-11} 10^{-10})$ range [JHEP 06 (2021) 093]

Run2 upgrade and Single Event Sensitivity (S.E.S.)

- ε_{RV} Random Veto efficiency loss due to accidental activity
- Ratio of $\pi \nu \nu$ and $\pi^+ \pi^0$ acceptances allows cancellation of systematic effects
- Computation in bins of π^+ momentum and instantaneous beam intensity

$K^+ \rightarrow \pi^+ \nu \bar{\nu}$: Preliminary values for Run2

	2021 ($t > 2$ s)	2022	21+22	2018
$\varepsilon_{trigger}$	$(83.5 \pm 1.3)\%$	$(86.3 \pm 1.5)\%$	$(85.8 \pm 1.4)\%$	$(89.5 \pm 1)\%$
ε _{RV}	$(63.0 \pm 0.5)\%$	$(63.8 \pm 0.5)\%$	$(63.6 \pm 0.5)\%$	$(66\pm1)\%$
$A_{\pi^+\pi^0}$	$(13.525\pm0.005)\%$			$(11.77 \pm 0.18)\%$
$A_{\pi\nu\nu}$	$(7.7 \pm 0.2)\%$			$(6.4 \pm 0.6)\%$
$N_{\pi\nu\nu}^{SM,exp}$	1.80 ± 0.06	8.28 ± 0.24	10.07 ± 0.31	7.58 ± 0.40
$N_{\pi u u}^{SM, exp}$ per burst	$1.7 imes10^{-5}$	$2.5 imes10^{-5}$	2.3×10^{-5}	$1.7 imes10^{-5}$

- Improvements in LKr reconstruction
- "Bayesian" $K^+ \pi^+$ matching
- Increased signal yield
- More precise $\varepsilon_{trigger}$ and ε_{RV} evaluation
- Checks ongoing about scaling of backgrounds with intensity

Nbackground	
0.86 ± 0.06	
0.93 ± 0.20	
$0.84^{+0.35}_{-0.28}$	
0.11 ± 0.03	
0.01 ± 0.01	
< 0.001	
$8.0^{+2.2}_{-1.9}$	
$10.8^{+2.2}_{-1.9}$	

Corfu 2024

15/24

Results of HNL search

- Improvement over earlier production searches by up to two orders of magnitude in terms of $|U_{\ell4}|^2$.
- For |U_{e4}|², the BBN-allowed range excluded up to 350 MeV.
 [NPB 590 (2000) 562]
- For $|U_{\mu4}|^2$, reached BNL-E949 sensitivity, and extended the HNL mass range to 384 MeV.
- New upper limit at 90% CL: BR($K^+ \rightarrow \mu^+ \nu \nu \nu$) < 1.0 × 10⁻⁶. Similar limits on BR($K^+ \rightarrow \mu^+ \nu X$), with X = invisible.

[Theory: PRL 124 (2020) 041802]

Full Run 1 data set.

NP searches in kaon decays

• Search for Majorana neutrinos in LNV $K^+ o \pi^- \ell^+ \ell^+$ decays

[Asaka-Shaposhnikov model (v MSM) [PLB 620 (2005) 17]]

- DM + Baryon Asymmetry + low mass of SM ν can be explained by adding three sterile Majorana neutrinos to the SM
- Searches for LNV in 3-track decays:
- LNV decays improving over PDG limits: $BR(K^+ \to \pi^- e^+ e^+) < 5.3 \times 10^{-11} @ 90\% CL \qquad [PLB 830 (2022) 137172]$ $BR(K^+ \to \pi^- \pi^0 e^+ e^+) < 8.5 \times 10^{-10} @ 90\% CL \qquad [PLB 797 (2019) 134794]$ $BR(K^+ \to \mu^- \nu e^+ e^+) < 8.1 \times 10^{-11} @ 90\% CL \qquad [PLB 838 (2023) 137679]$ • Search for LNV/LFV in $K^+ \to \pi \mu e$, $K^+ \to \pi^0 \pi \mu e$ decays
 - Experimental signature: 3 charged tracks with $\pi^{\pm}\mu^{\mp}e^{+}$ • BR measured relative to normalization channel $K^{+} \rightarrow \pi^{+}\pi^{+}\pi^{-}$ BR $(K^{+} \rightarrow \pi^{-}\mu^{+}e^{+}) < 4.2 \times 10^{-11}$ BR $(K^{+} \rightarrow \pi^{+}\mu^{-}e^{+}) < 6.6 \times 10^{-11}$ BR $(\pi^{0} \rightarrow \mu^{-}e^{+}) < 3.2 \times 10^{-10}$ [PRL 127 (2021) 131802] $\rightarrow \sigma \rightarrow z + z + z + z = 29$ Michal Zamkovsky Coff 2024 17/24

$$K^+
ightarrow \mu^- \nu e^+ e^+$$

 $K^+ \rightarrow \pi^0 \pi \mu e$

Expected bkg Observed UL of \mathcal{BR} at 90% CL Decay mode $K^+ \rightarrow \pi^0 \pi^- \mu^+ e^+$ 0.33 ± 0.07 2.9×10^{-10} 0 $K^+ \rightarrow \pi^0 \pi^+ \mu^- e^+$ 3.1×10^{-10} 0.004 ± 0.003 0 $K^+ \rightarrow \pi^0 \pi^+ \mu^+ e^ 5.0 \times 10^{-10}$ 0.29 ± 0.07 0 [First presented at BEACH 2024, paper in preparation] ◆□ > ◆母 > ◆臣 > ◆臣 > 国日 のへで Corfu 2024 19/24Michal Zamkovsky

$$K^+ o \pi^+ e^+ e^- e^+ e^-$$
 ($K_{\pi 4 e}$)

• Theory:

• SM allowed BR= $7.2\pm0.7 imes10^{-11}$ (outside π^0 pole)

• Dark sector probe: [arXiv:2012.02142]

• $K^+ \rightarrow aa$ with $a \rightarrow e^+e^-$ QCD axion, e.g. $m_a = 17$ MeV BR= 1.7×10^{-5} • $K^+ \rightarrow \pi^+S$, $S \rightarrow A'A'$ dark scalar and $A' \rightarrow e^+e^-$ dark photon $m_S > 2m_{A'}$

NA62 Beam Dump mode

NA62 beam-dump setup:

- The Be target is lifted; the protons hit directly the 3.2 m Cu-Fe dump
- Primary proton beam operating at $1.7 \times$ nominal intensity

Data sample:

POT

1.0

\$ 0.6

0.4

0.2

0.8.0

- Beam dump data from 2021
- Collected (1.4 \pm 0.28) \times 10^{17}

Dark Photon A' model:

- New vector field $F'_{\mu
 u}$ feebly interacting with SM fields
- Free parameters: mass $m_{A'}$, coupling ε
- For $m_A <$ 600 MeV/ c^2 , $A'
 ightarrow \ell^+ \ell^-$ decays dominate

BSM physics models:

- New scalar S or pseudoscalar a coupled with SM fields
- Free parameters: masses and coupling constants

0.6 M₄ [GeV/c²] Searches for $A' \rightarrow \ell^+ \ell^-$

$$A' \rightarrow \mu^+ \mu^-$$

1 event observed in the SR Corresponding to 2.4σ global significance

$$A'
ightarrow e^+ e^-$$

0 events observed in the SR

Excluded new regions in the $m_{A'}, \varepsilon$ parameter space [JHEP 09 (2023) 035], [2312.12055]

Michal Zamkovsky

Corfu 2024

22/24

イロト (母) (ヨト (ヨト) ヨヨ ののの

Searches for DS or ALP via Hadronic Decay Modes

Axion-Like Particle Studied modes: $\pi^+\pi^-\gamma$, $\pi^+\pi^-\pi^0$, $\pi^+\pi^-\pi^0\pi^0$, $\pi^+\pi^-\eta$, $K^+K^-\pi^0$ **0** events observed in the SR

Excluded new regions in the mass-coupling parameter space

[Talk at Moriond EW 2024]

Michal Zamkovsky

Corfu 2024

23/24

◆□ > ◆母 > ◆臣 > ◆臣 > 国日 のへで

Conclusion

- Complete result for $K^+ \rightarrow \pi^+ \nu \bar{\nu}$ from Run 1 (2016+2017+2018):
 - observed: 20 events; expected background: ~7 events [JHEP 06 (2021) 093] • BR $(K^+ \to \pi^+ \nu \bar{\nu}) = (10.6^{+4.0}_{-3.4}|_{stat} \pm 0.9_{svst}) \times 10^{-11}$ at 68% CL (3.4 σ)
- Run2 result of $K^+ \to \pi^+ \nu \bar{\nu}$ is coming soon! Expected signal to be doubled
- BSM physics in kaon decays:
 - Searches for $K^+ \rightarrow \ell^+ N$ and $K^+ \rightarrow \mu^+ \nu X$ decays [PLB 816 (2021) 136259]
 - LFV/LNV searches in $K^+ \to \pi^- \ell^+ \ell^+$, [PLB 830 (2022) 137172], [PLB 797 (2019) 134794] $K^+ \to \mu^- \nu e^+ e^+ \& K^+ \to \pi^0 \pi \mu e$ decays [PLB 838 (2023) 137679], [PRL 127 (2021) 131802]
 - $K^+ \rightarrow \pi^+ e^+ e^- e^+ e^-$ analysis & $K^+ \rightarrow aa (a \rightarrow e^+ e^-)$ interpretation (PLB 846 (2023) 1381931
- BSM physics in beam-dump mode:
 - Studies of $A' \to \ell^+ \ell^-$ decays [JHEP 09 (2023) 035], [2312.12055]
 - Searches for Dark Scalar or Axion-Like Particle via Hadronic Decay Modes
 - Presented results obtained from data collected in 2021
 - $\bullet\,$ Extended 90% CL exclusion regions in the mass–coupling parameter space
- Next steps:
 - Data taking on-going with upgraded detector

Spares

Michal Zamkovsky

Corfu 2024

1/3

きょう きょう きょう きょう きょう

Upstream background

Background source if:

- a kaon decays upstream, and only a pion enters in the decay region;
- there is an in-time pileup beam particle (in KTAG and GTK);
- the upstream generated pion enters in the decay region and is scattered in the first STRAW chamber.

In 2018 collimator was replaced to remove early decays mechanism and data are split in subsets S1/S2 (Old/New collimator, $\sim 20\%/80\%$ of 2018 data). It allows to relax some cuts for S2, while keeping the S/B ratio same as for S1.

Background from kaon decays

Control $K^+ \to \pi^+ \pi^0$ data used to study the tails of the m_{miss^2} distribution one