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Lie-Poisson electrodynamics: definition

e The starting point is an n-dimensional space R™ (not space-
timel!), equipped with a given Poisson bivector,

{aﬁa’,mb} = ©%(z) a,b=1,...,n,
Today the time-variable z0 is commutative.

e Poisson electrodynamics (PE) is a field theoretical model,
where the infinitesimal gauge transformations close the Pois-
son gauge algebra and reproduce the standard abelian gauge
transformations at the commutative limit ,

dr,00lAy =9 A, lim 6:A, = 0.f.
07,0914 = 05,3 A, Lim SpAu = Ouf

e The PE can be seen as a semiclassical limit (or the slowly vary-
ing field approximation) of the non-commutative gauge the-
ory [Kupriyanov, Vitale 2020] and [Kupriyanov, Szabo’ 2022],

[5f’ 59]14:“ — 5—i[f,g]*A,u7 Gl)ILnO 5fAH — 6,uf7 [f7 g]* ~ | {fv g} .



Lie-Poisson electrodynamics: definition

e Consider a class of Poisson bivectors, which are linear in co-
ordinates,

@a,b — gbwc.

The gantity © is a Poisson bivector iff constants fZ ab satisfy
the Jacobi identity,

. , L
P+ U+ Y =
T herefore these constants can be seen as the structure con-

stants of an n-dimensional Lie algebra, which we shall address
as g.

e [ he corresponding n-dimensional Lie group, which is unique
up to covering, will be addressed as G.

e [ he Poisson electrodynamics of this kind we call the Lie-
Poisson electrodynamics.



Lie-Poisson electrodynamics: basic setup

e I review the relevant elements of the construction, proposed
in [Kupriyanov, Sharapov, Szabo' 2024] in the context of the
symplectic groupoid approach. Consider the following (trivial)
fibre bundle

base space fiber

g =

e By construction, the phase space of a point-like particle is
given by the total space R"™ x G of this bundle. The group
G plays the role of the space of momenta conjugate to the
position coordinates z%. We will denote local coordinates on
G by p;. The momentum space may well be a manifold with
nontrivial topology, e.g. S3, when g = su(2).

e At any moment of time the spatial part A of the gauge field
A must be a section of this bundle. Simply speaking, both p
and A(x) live on G (but not on R").



Lie-Poisson electrodynamics: su(2)-noncommutativity

e [ he Poisson bivector is given by
@z'j(w) — 2€€z’jkxk’ f]ij — gsijk’
so the phase space of the point-like particle coincides with

that is R3 x S3. The radius of the momenta 3-sphere equals
to 1/¢ .

e By identifying the identity element of the group with the south-
ern pole of the 3-sphere, we introduce the local coordinates

p1, po and p3 in the southern hemisphere in the following way:
— _T__LR

e

e These coordinates obey the restriction p7 + p3 + p3 < 1/42.
The commutative limit ¢ — O for the space coordinates is
simultaneously the decompactification limit for the momentum
3-sphere S3.



Dynamics of the gauge fields: ingredients

e For any Lie algebra type noncommutativity the deformed gauge
transformations 5fA, which obey,

were constructed in [Kupriyanov, Szabo' 2022].

e Apart from that, we need the deformed field strength F, such
that

5ff/ﬂ/ — {‘F/ﬂ/7 f}, (l)'i)no ’FIL”/ — 8MAV — 81/Alu,

Finally, we need the deformed gauge covariant derivative D.
Vi (x), which transforms in a covariant way, d¢p = {f, ¢},

or (Duy) = {Duy, f} GIDIEQO Duyp = Ouh.

e For any Lie algebra type noncommutativity F and D were
constructed in [Kupriyanov, Kurkov, Vitale' 2022].



Dynamics of the gauge fields: the action principle

If the Poisson bivector, defining the non-commutativity, obeys
the compatibility condition,

8a@ab — O ( aab — ) 3
the gauge-invariant classical action can be easily constructed,

1
Sg — Rndnx £g £g —_— —Z F/J,]/ .FVV.

The Euler-Lagrange equations can be rewritten as follows
[Kupriyanov, Kurkov, Vitale’'2023],

1
Dy F"™" + = Fep 5P FHY — Fe, flP FV = 0.

The corresponding Hamiltonian analysis was performed in [Bas-
cone, Kurkov'2024]. There are two first-class constrains, whilst
the second-class constrains are absent. T herefore we have as
many physical degrees of freedom as there are present in the
Maxwell theory.



Particle in a gauge background: phase space

e Let v and 7, be bases of left-invariant vector fields and right-
invariant one-forms on G respectively.

Wyl = &5

e We assume that the local coordinates p, on G near its identity
element are chosen in such a way that

lim ~#(p) = 67, lim A% (p) = 7.
S50 b (P) b S50 b (P) b

e In these formulae ~{'(p) and 7' (p) denote the components of
~v% and 7, in the natural bases 8%{) and dpg |,

19, _ _
v = v?(p)a—m, Yy = 75 (p) dpa.

In our su(2)-example,

Vi(p) = /1 — 252 6} + £,




Particle in a gauge background: phase space

The Poisson brackets between the phase space variables are
defined as follows,

{z', 2} = ©Y (), {z',p;} = (p), {pi,p;} = 0.

The infinitesimal gauge transformations of x(t), p(t) read
[Kupriyanov, Sharapov, Szabo' 2024],

Spat = {f,2'} = -0"(z) O f (=),
Srpi = {f.pi} = (p) 0if (),
whilst the gauge field A transforms as follows,

5pAi = AF(A)oLf + {Ai fY,
6¢Ag = Oof +{Ao, f}-

These transformations close the Lie-Poisson gauge algebra

[67,09] = d¢ 1 g1
and exhibit correct commutative limits.
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Particle in a gauge background: gauge-invariant momenta

e [ he gauge-invariant momenta m;,
5f T, — 0
can be constructed as follows [Basilio, Kurkov, Kupriyanov'2024].

e One has to find a solution of the equation,
Vi (p) OFmi(p, A) + A (A) dfmi(p, A) = 0,
which exhibits the correct commutative limit,
(13@0 mi(p, A) = p; — A;.

e In our su(2)-example the gauge-invariant momenta can be cho-
sen as follows,

7(p, A) = pyJ1 — A2 — A1 - 2lp2 + 5% A
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Particle in a gauge background: dynamics

e By using the gauge-invariant momenta m(p,A(az)), we can
write down the Hamiltonian
[Basilio, Kurkov, Kupriyanov'2024],

H(z,p) = J(m) + Ap(z), vJ.

e T he gauge-invariant first-order action reads,

Se=— [ dt[piFi(p)a’ + H(z,p)] .

e [ he corresponding Hamiltonian equations of motion,

xZ:{xsz}’ and p’L:{p27H}7

respect the Lie-Poisson gauge symmetry.

12



Particle in a gauge background: dynamics

Various choices of the form factor J lead to models with the
desired commutative limits, e.g.

H = \/m2 + |®|° 4+ Ag(x), (relativistic commutative limit),
or

|7T|2

H = —|— Ap(x), (non-relativistic commutative limit).

In our su(2)-example the Hamiltonian
V1= 0277 1
H= -t 5+ Ao,

“m

is of a special interest. The outcomlng non-commutative Ke-
pler problem is super-integarble.

The commutative limit is the non-relativistic one,

iyt =+ o
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Intermediate summary: general setting

e The starting point is a Poisson bivector @9 = fabz¢ of the Lie
algebra type. By definition, the infinitesimal gauge transfor-
mations close the Lie-Poisson gauge algebra

[0f,09] = 01 g}

e By construction the phase space of the point-like particle is
R™ x G. The corresponding Poisson brackets read,

{z',27} = ©" (), {z',pj} = vi(p), {pi,pj} = 0.

e T he Lie-Poisson gauge transformations act on x, p and A.
The gauge-invariant classical action reads,

S[$7p7 A] — Sg _I_ SC)
where

1 -
Sy = /ndnaz (—Z]:,W]:VV), S, = —/dt [plv,g(p) xt + H(:U,p)} .
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Intermediate summary: su(2)-example

e [ he Poisson bivector is given by
OU(z) = 24k zk,
so the phase space of the point-like particle coincides with
that is R3 x S3.

e [ he Poisson brackets of the phase-space coordinates read,

{z', 27} = 20UkF
{a',p} = 1|26+ tiFpy,

e \We shall work with the Hamiltonian,

JI-272 1

#(p, A(z)) = py1— 2|42 - A1 - 2lp2 + 5 A.
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Non-commutative Kepler problem: the setup

e [ he standard Coulomb potential, i.e., the field configuration
A = 0 and Ag = C/|Z]|, solves the field equations of Poisson
electrodynamics with su(2) non-commutativity in the whole
space except the origin.

e In this case the following Hamiltonian describes the dynamics
of the test particle,

\/1—€2|ﬁ|2+ 1 C

H(:Uap) — — €2m £2m E

e [ he Hamiltonian dynamics,
x’L:{xsz}j and p’L:{p27H}7
is affected by the compactness of the momenta space, which
yields the boundedness of the kinetic energy. From now on
I follow the recent article [Kupriyanov, Kurkov, Sharapov’
2024]. The maximal or “critical” value of the Kinetic energy,

E. = 2/€2m IS achieved at the northern pole of the momenta
3-sphere.
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Non-commutative Kepler problem: conserved quantities

T he rotational invariance of the system gives rise to one more
conserved quantity, namely, the deformed angular momentum
vector

L=@xp)\1—Plp2+5x (& x D).

Besides the angular momentum, the system admits an addi-
tional conserved vector

— — C —
Q:ﬁxL-FmT(f—EL).
|Z|
T he square of this deformed Laplace—Runge—Lenz vector reads,
Q> =C?m?+2mL?H(1- H/E;).
T he conserved quantities close the following algebra w.r.t. the
Poisson brackets :

{Li, Lj} = eikly, {Qi, L} = €ij1Q

—2mH (1 — H/Ec) &Ly,
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Non-commutative Kepler problem: trajectories

All space trajectories are plane curves,
L -%=/¢L2.
The corresponding planes are orthogonal to the deformed an-

gular momentum L. The distance between the origin and the
trajectory plane is equal to ¢ L.

By introducing the Cartesian coordinates X and Y in the plane
of the orbit, we see that our trajectiories are conic sections,

w(X —Xg)°4+£Y2=1.

The parameters of the orbits depend on the energy in a non-
trivial way,
AE?(1 — E/E.)?
w p— , g p—
CQ
(1-2FE/E:)A

o>mE(l—E/E.)’

2>m E (1 — E/E.)
_ - |

s
[
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Non-commutative Kepler problem: repulsive potential

e [ he first novelty compared to the commutative case is the
possibility of bounded (elliptic or radial) motion for the repul-
sive potential (C > 0), when E > E..

e [ he energy region E > E. is perfectly accessible when the
particle is sufficiently close to the centre. Any trajectory that
passes through the ‘trapping region’

C={ZeR3||Z|<C/E.~0}, E;l~u¢,
IS bounded.

e Numerical illustration of this effect:
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Non-commutative Kepler problem: attractive potential

e Consider a radial motion, that is, L = 0. Another important
novelty: even though the potential is attractive, the particle
cannot fall to the centrel

e When |Z| — 0, the potential energy U(|Z|]) — —oco. Since the
total energy is constant, the Kinetic energy T' — +oc0. But this
is impossible, since T < 2/0?m.

e Numerical illustration of this effect:
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Summary

e [ he Lie-Poisson electrodynamics describes the semi-classical
approximation of the non-commutative U(1) gauge theory
with the Lie-algebra type non-commutativity.

e \We presented the classical action and the equations of motion
for both the gauge field and the charged particle. A compact
momenta space of the particle naturally arises in this formal-
iIsm.

e \We discussed a super-integrable non-commutative Kepler prob-
lem for the su(2) non-commutativity. The compactness of the
momenta-space vields rather unexpected physical phenomena
such as bounded motion for repulsive central force, and no-
fall-into-the-centre for attractive Coulomb potential.
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