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* Lie-Poisson electrodynamics

* Dynamics of the gauge fields

* Charged particle in a gauge background
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Lie-Poisson electrodynamics: definition

• The starting point is an n-dimensional space Rn (not space-
time!), equipped with a given Poisson bivector,

{xa, xb} = Θab(x) a, b = 1, ..., n,

Today the time-variable x0 is commutative.

• Poisson electrodynamics (PE) is a field theoretical model,
where the infinitesimal gauge transformations close the Pois-
son gauge algebra and reproduce the standard abelian gauge
transformations at the commutative limit ,

[δf , δg]Aµ = δ{f,g}Aµ, lim
Θ→0

δfAµ = ∂µf.

• The PE can be seen as a semiclassical limit (or the slowly vary-
ing field approximation) of the non-commutative gauge the-
ory [Kupriyanov, Vitale 2020] and [Kupriyanov, Szabo’ 2022],

[δf , δg]Aµ = δ−i[f,g]?Aµ, lim
Θ→0

δfAµ = ∂µf, [f, g]? ' i {f, g} .
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Lie-Poisson electrodynamics: definition

• Consider a class of Poisson bivectors, which are linear in co-
ordinates,

Θab = fabc xc .

The qantity Θ is a Poisson bivector iff constants fabc satisfy
the Jacobi identity,

fkli f
ja
l + f

jl
i f

ak
l + fali f

kj
l = 0 .

Therefore these constants can be seen as the structure con-
stants of an n-dimensional Lie algebra, which we shall address
as g.

• The corresponding n-dimensional Lie group, which is unique
up to covering, will be addressed as G.

• The Poisson electrodynamics of this kind we call the Lie-
Poisson electrodynamics.
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Lie-Poisson electrodynamics: basic setup

• I review the relevant elements of the construction, proposed
in [Kupriyanov, Sharapov, Szabo’ 2024] in the context of the
symplectic groupoid approach. Consider the following (trivial)
fibre bundle

G = Rn︸︷︷︸
base space

× G︸︷︷︸
fiber

.

• By construction, the phase space of a point-like particle is
given by the total space Rn × G of this bundle. The group
G plays the role of the space of momenta conjugate to the
position coordinates xa. We will denote local coordinates on
G by pi. The momentum space may well be a manifold with
nontrivial topology, e.g. S3, when g = su(2).

• At any moment of time the spatial part ~A of the gauge field
A must be a section of this bundle. Simply speaking, both ~p
and ~A(x) live on G (but not on Rn).
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Lie-Poisson electrodynamics: su(2)-noncommutativity

• The Poisson bivector is given by

Θij(x) = 2 ` εijkxk, f
ij
k = ` εijk,

so the phase space of the point-like particle coincides with
that is R3 × S3. The radius of the momenta 3-sphere equals
to 1/` .

• By identifying the identity element of the group with the south-
ern pole of the 3-sphere, we introduce the local coordinates
p1, p2 and p3 in the southern hemisphere in the following way:

• These coordinates obey the restriction p2
1 + p2

2 + p2
3 < 1/`2.

The commutative limit ` → 0 for the space coordinates is
simultaneously the decompactification limit for the momentum
3-sphere S3.
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Dynamics of the gauge fields: ingredients

• For any Lie algebra type noncommutativity the deformed gauge
transformations δfA, which obey,

[δf , δg]Aµ = δ{f,g}Aµ, lim
Θ→0

δfAµ = ∂µf,

were constructed in [Kupriyanov, Szabo’ 2022].

• Apart from that, we need the deformed field strength F, such
that

δfFµν = {Fµν, f}, lim
Θ→0

Fµν = ∂µAν − ∂νAµ,

Finally, we need the deformed gauge covariant derivative D.
∀ψ(x), which transforms in a covariant way, δfψ = {f, ψ},

δf (Dµψ) = {Dµψ, f} lim
Θ→0

Dµψ = ∂µψ.

• For any Lie algebra type noncommutativity F and D were
constructed in [Kupriyanov, Kurkov, Vitale’ 2022].
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Dynamics of the gauge fields: the action principle

• If the Poisson bivector, defining the non-commutativity, obeys
the compatibility condition,

∂aΘab = 0
(
faba = 0

)
,

the gauge-invariant classical action can be easily constructed,

Sg =
∫
Rn

dnxLg Lg = −
1

4
Fµν Fνν.

• The Euler-Lagrange equations can be rewritten as follows
[Kupriyanov, Kurkov, Vitale’2023],

DνFνµ +
1

2
Fξρ fξρν Fµν −Fξρ fµρν Fξν = 0.

• The corresponding Hamiltonian analysis was performed in [Bas-
cone, Kurkov’2024]. There are two first-class constrains, whilst
the second-class constrains are absent.Therefore we have as
many physical degrees of freedom as there are present in the
Maxwell theory.
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Particle in a gauge background: phase space

• Let γa and γ̄b be bases of left-invariant vector fields and right-
invariant one-forms on G respectively.

γ̄b[γ
a] = δab .

• We assume that the local coordinates pa on G near its identity
element are chosen in such a way that

lim
Θ→0

γab (p) = δab , lim
Θ→0

γ̄ab (p) = δab .

• In these formulae γab (p) and γ̄ab (p) denote the components of
γa and γ̄b in the natural bases ∂

∂pb
and dpa ,

γa = γab (p)
∂

∂pb
, γ̄b = γ̄ab (p) dpa.

In our su(2)-example,

γij(p) =
√

1− `2|~p|2 δij + ` εijkpk.
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Particle in a gauge background: phase space

• The Poisson brackets between the phase space variables are
defined as follows,

{xi, xj} = Θij(x) , {xi, pj} = γij(p) , {pi, pj} = 0 .

• The infinitesimal gauge transformations of x(t), p(t) read
[Kupriyanov, Sharapov, Szabo’ 2024],

δfx
i = {f, xi} = −Θil(x) ∂lf(x) ,

δfpi = {f, pi} = γli(p) ∂lf(x) ,

whilst the gauge field A transforms as follows,

δfAi = γki (A) ∂kf + {Ai, f} ,
δfA0 = ∂0f + {A0, f} .

• These transformations close the Lie-Poisson gauge algebra

[δf , δg] = δ{f,g},

and exhibit correct commutative limits.
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Particle in a gauge background: gauge-invariant momenta

• The gauge-invariant momenta πi,

δf πi = 0

can be constructed as follows [Basilio, Kurkov, Kupriyanov’2024].

• One has to find a solution of the equation,

γmk (p) ∂kpπi(p,A) + γmk (A) ∂kAπi(p,A) = 0 ,

which exhibits the correct commutative limit,

lim
Θ→0

πi(p,A) = pi −Ai.

• In our su(2)-example the gauge-invariant momenta can be cho-
sen as follows,

~π(p,A) = ~p
√

1− `2| ~A|2 − ~A
√

1− `2|~p|2 + ` ~p× ~A.
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Particle in a gauge background: dynamics

• By using the gauge-invariant momenta πi
(
p,A(x)

)
, we can

write down the Hamiltonian

[Basilio, Kurkov, Kupriyanov’2024],

H(x, p) = J(π) +A0(x) , ∀J.

• The gauge-invariant first-order action reads,

Sc = −
∫
dt
[
ṗl γ̄

l
i(p)xi +H(x, p)

]
.

• The corresponding Hamiltonian equations of motion,

ẋi = {xi, H} , and ṗi = {pi, H} ,

respect the Lie-Poisson gauge symmetry.
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Particle in a gauge background: dynamics

• Various choices of the form factor J lead to models with the
desired commutative limits, e.g.

H =
√
m2 + |~π|2 +A0(x) , (relativistic commutative limit),

or

H =
|~π|2

2m
+A0(x), (non-relativistic commutative limit).

• In our su(2)-example the Hamiltonian

H = −

√
1− `2|~π|2

`2m
+

1

`2m
+A0 ,

is of a special interest. The outcoming non-commutative Ke-
pler problem is super-integarble.

• The commutative limit is the non-relativistic one,

lim
`→0

H =

∣∣∣~p− ~A
∣∣∣2

2m
+A0.
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Intermediate summary: general setting

• The starting point is a Poisson bivector Θab = fabc x
c of the Lie

algebra type. By definition, the infinitesimal gauge transfor-
mations close the Lie-Poisson gauge algebra

[δf , δg] = δ{f,g}.

• By construction the phase space of the point-like particle is
Rn ×G. The corresponding Poisson brackets read,

{xi, xj} = Θij(x) , {xi, pj} = γij(p) , {pi, pj} = 0 .

• The Lie-Poisson gauge transformations act on x, p and A.
The gauge-invariant classical action reads,

S[x, p,A] = Sg + Sc,

where

Sg =
∫
Rn

dnx
(
−

1

4
Fµν Fνν

)
, Sc = −

∫
dt
[
ṗl γ̄

l
i(p)xi +H(x, p)

]
.
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Intermediate summary: su(2)-example

• The Poisson bivector is given by

Θij(x) = 2 ` εijkxk,

so the phase space of the point-like particle coincides with
that is R3 × S3.

• The Poisson brackets of the phase-space coordinates read,

{xi, xj} = 2 ` εijkxk ,

{xi, pj} =
√

1− `2|~p|2 δij + ` εijkpk ,

{pi, pj} = 0 .

• We shall work with the Hamiltonian,

H(x, p) = −

√
1− `2|~π|2

`2m
+

1

`2m
+A0(x) ,

~π(p,A(x)) := ~p
√

1− `2| ~A|2 − ~A
√

1− `2|~p|2 + ` ~p× ~A.
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Non-commutative Kepler problem: the setup

• The standard Coulomb potential, i.e., the field configuration
~A = 0 and A0 = C/|~x|, solves the field equations of Poisson
electrodynamics with su(2) non-commutativity in the whole
space except the origin.

• In this case the following Hamiltonian describes the dynamics
of the test particle,

H(x, p) = −

√
1− `2|~p|2

`2m
+

1

`2m
+

C

|x|
.

• The Hamiltonian dynamics,

ẋi = {xi, H} , and ṗi = {pi, H} ,
is affected by the compactness of the momenta space, which
yields the boundedness of the kinetic energy. From now on
I follow the recent article [Kupriyanov, Kurkov, Sharapov’
2024]. The maximal or “critical” value of the kinetic energy,
Ec = 2/`2m is achieved at the northern pole of the momenta
3-sphere.
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Non-commutative Kepler problem: conserved quantities

• The rotational invariance of the system gives rise to one more
conserved quantity, namely, the deformed angular momentum
vector

~L = (~x× ~p)
√

1− `2|~p|2 + ` ~p× (~x× ~p) .

• Besides the angular momentum, the system admits an addi-
tional conserved vector

~Q = ~p× ~L+
mC

|~x|

(
~x− ` ~L

)
.

The square of this deformed Laplace–Runge–Lenz vector reads,

Q2 = C2m2 + 2mL2H
(
1−H/Ec

)
.

• The conserved quantities close the following algebra w.r.t. the
Poisson brackets :

{Li, Lj} = εijkLk , {Qi, Lj} = εijkQk ,

{Qi, Qj} = −2mH
(
1−H/Ec

)
εijkLk .
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Non-commutative Kepler problem: trajectories

• All space trajectories are plane curves,

~L · ~x = `L2 .

The corresponding planes are orthogonal to the deformed an-
gular momentum ~L. The distance between the origin and the
trajectory plane is equal to ` L.

• By introducing the Cartesian coordinates X and Y in the plane
of the orbit, we see that our trajectiories are conic sections,

ω (X −X0)2 + ξ Y 2 = 1 .

• The parameters of the orbits depend on the energy in a non-
trivial way,

ω =
4E2(1− E/Ec)2

C2
, ξ = −

2mE (1− E/Ec)
L2

,

X0 =
(1− 2E/Ec)A

2mE (1− E/Ec)
.

18



Non-commutative Kepler problem: repulsive potential

• The first novelty compared to the commutative case is the
possibility of bounded (elliptic or radial) motion for the repul-
sive potential (C > 0), when E > Ec.

• The energy region E > Ec is perfectly accessible when the
particle is sufficiently close to the centre. Any trajectory that
passes through the ‘trapping region’

C = {~x ∈ R3 | |~x| < C/Ec ∼ `} , E−1
c ∼ `,

is bounded.

• Numerical illustration of this effect:
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Non-commutative Kepler problem: attractive potential

• Consider a radial motion, that is, L = 0. Another important

novelty: even though the potential is attractive, the particle

cannot fall to the centre!

• When |~x| → 0, the potential energy U(|~x|) → −∞. Since the

total energy is constant, the kinetic energy T → +∞. But this

is impossible, since T ≤ 2/`2m.

• Numerical illustration of this effect:
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Summary

• The Lie-Poisson electrodynamics describes the semi-classical

approximation of the non-commutative U(1) gauge theory

with the Lie-algebra type non-commutativity.

• We presented the classical action and the equations of motion

for both the gauge field and the charged particle. A compact

momenta space of the particle naturally arises in this formal-

ism.

• We discussed a super-integrable non-commutative Kepler prob-

lem for the su(2) non-commutativity. The compactness of the

momenta-space yields rather unexpected physical phenomena

such as bounded motion for repulsive central force, and no-

fall-into-the-centre for attractive Coulomb potential.
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