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Introduction

Noncommutative geometry a la Connes provides a unified description of

- the lagrangian of the Standard Model of fundamental interactions;

- minimally coupled to the Einstein-Hilbert action of general relativity;

- including right handed neutrinos; (Chamseddine, Connes, Lott, Marcolli)

- where the Higgs boson comes out naturally on the same footing as the other
bosons, that is the local expression of a connection 1-form.

(Dubois-Violette, Kerner, Madore)(Connes, Lot, Chamseddine)

Works well on riemannian manifolds: in 4D metric with euclidean signature
(+,+,+,+). The generalisation to lorentzian manifolds, with signature
(+,−,−,−), is far from obvious. Some attempts to implement lorentzian
signature from the beginning. (Barrett, Besnard, Eckstein, Franco, Wallet, Dungen, Bochniak, Sitarz etc)

Alternative way: starting in riemannian signature, and generating the lorentzian
structure by twisting the spectral triple.

▶ Unveils an unexpected interplay between torsion and change of signature.
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1. Standard model in noncommutative geometry

Spectral triple

An algebra A acting on a Hilbert space H together with selfadjoint operator D
with compact resolvent, such that

[D, a] is bounded ∀a ∈ A.

Graded spectral triple: there exists Γ = Γ∗, Γ2 = I, such that

{Γ,D} = 0, [Γ, a] = 0 ∀a ∈ A.

Real spectral triple: there exists antilinear operator J such that

J2 = ϵI, JD = ϵ′DJ, JΓ = ϵ′′ΓJ

where ϵ, ϵ′, ϵ′′ = ±1 define the KO-dimension k ∈ [0, 7].



Connes’ reconstruction theorem

Extra-conditions yield the following spectral characterization of manifolds:

▶ Closed Riemannian manifold M =⇒ spectral triple (C∞ (M) , L2(M,S), ∂/)

with C∞(M) the (commutative) algebra of smooth functions on M,
L2(M,S) the space of square integrable spinors on M, and

∂/ = −iγµ(∂µ + ωµ) with γµγν + γνγµ = 2gµνI (µ = 1, 2, 3, 4)

the Dirac operator, with (ωµ the lift of the Levi-Civita connection to the
spinor bundle.

▶ M such that A=C∞ (M) ⇐= (A,H,D) with A commutative, unital.

commutative spectral triple → noncommutative spectral triple

↕ ↓
Riemannian geometry non-commutative geometry



Connes’ reconstruction theorem

Extra-conditions yield the following spectral characterization of manifolds:

▶ Closed Riemannian manifold M =⇒ spectral triple (C∞ (M) , L2(M,S), ∂/)

with C∞(M) the (commutative) algebra of smooth functions on M,
L2(M,S) the space of square integrable spinors on M, and

∂/ = −iγµ(∂µ + ωµ) with γµγν + γνγµ = 2gµνI (µ = 1, 2, 3, 4)

the Dirac operator, with (ωµ the lift of the Levi-Civita connection to the
spinor bundle.

▶ M such that A=C∞ (M) ⇐= (A,H,D) with A commutative, unital.

commutative spectral triple → noncommutative spectral triple

↕ ↓
Riemannian geometry non-commutative geometry



Connes’ reconstruction theorem

Extra-conditions yield the following spectral characterization of manifolds:

▶ Closed Riemannian manifold M =⇒ spectral triple (C∞ (M) , L2(M,S), ∂/)

with C∞(M) the (commutative) algebra of smooth functions on M,
L2(M,S) the space of square integrable spinors on M, and

∂/ = −iγµ(∂µ + ωµ) with γµγν + γνγµ = 2gµνI (µ = 1, 2, 3, 4)

the Dirac operator, with (ωµ the lift of the Levi-Civita connection to the
spinor bundle.

▶ M such that A=C∞ (M) ⇐= (A,H,D) with A commutative, unital.

commutative spectral triple → noncommutative spectral triple

↕ ↓
Riemannian geometry non-commutative geometry



Standard Model

Product of a 4D riemannian closed spin manifold M with a finite dimensional
noncommutative spectral triple:

A = C∞ (M)⊗AF , H = L2(M,S)⊗HF , D = ∂/⊗ I96 + γ5 ⊗ DF

in which

AF = C⊕H⊕M3(C), HF = C96,DF

where ((
(e−, νe) + (u, d)× 3 colors

)
× 2 chiralites× 2

)
× 3 generations︸ ︷︷ ︸

(2+6)×2×2×3=96

is the number of particles of the Standard Model and DF is a 96× 96 matrix that
contains the parameter of the model (Yukawa couplings of fermions, Cabibbo
matrix, mixing parameters for neutrinos).

▶ sections of H → fermions.
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The bosons are obtained by fluctuation of the metric,

D → DA =: D + A+ J A J−1

with A a generalized 1-forms

Ω1
D(A) :=

{
ai [D, bi ], a

i , bi ∈ A
}
.

For the Standard Model:

A = C∞(M)⊗AF

H = L2(M,S)⊗HF

D = ∂/⊗ I96 + γ5 ⊗ DF

 =⇒ A = γ5 ⊗ H − i
∑
µ

γµ ⊗ Aµ.

▶ H: scalar field on M with value in AF → Higgs.
▶ Aµ: 1-form field with value in Lie(U(AF )) → gauge field.

The asymptotic expansion Λ → ∞ of the spectral action

Tr f (
D2

A

Λ2
)

(f a smooth approximation of the characteristic function of [0, 1]) yields the bosonic
Lagrangian of the Standard Model coupled with Einstein-Hilbert action in
euclidean signature.
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Problem with Lorentzian signature
The space L2(M,S) of square integrable spinors on a riemannian manifold M
with spin structure S is an Hilbert space with inner product

(ψ,φ) =

∫
M
ψ†φ νg ,

where
νg =

√
|g |dx1 ∧ ... ∧ dxn

is the volume form associated with the riemannian metric g on M.
The Dirac operator

∂/ = −iγµ(∂µ+ ωµ)

is (essentially) selfadjoint with respect to this product.

In lorentzian signature, the Dirac operator (built from lorentzian Dirac matrices)
is no longer selfadjoint. It is so with respect to the Krein product

(ψ,φ) =

∫
M
ψ†γ0φ νg .

But then L2(M,S) is no longer an Hilbert space.
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2. Twisted spectral triples & torsion

Twisted spectral triples

Given a triple (A,H,D), instead of asking the commutators [D, a] to be
bounded, one asks the boundedness of the twisted commutators Connes, Moscovici 2008

[D, a]ρ := Da− ρ(a)D for some fixed ρ ∈ Aut(A).

▶ Makes sense mathematically. Relevant to deal with type III algebras.

▶ Allows to build models with new bosons, leaving the fermionic sector
untouched.

Compatible with the real structure: twisted fluctutation

D → DAρ
:= D + Aρ + J Aρ J

−1

where Aρ is an element of the set of twisted 1-forms

Ω1
D(A, ρ) :=

{
ai [D, bi ]ρ, ai , bi ∈ A

}
.

Devastato, Landi, PM 2016/17
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Minimal twist of a spectral triple

Associate a twisted partner to any graded spectral triple (A π0−→ H,D), keeping
H,D untouched but doubling the algebra to A⊗ C2 by making each copy of A
act independently on the eigenspaces H± of the grading Γ. Landi, PM 2016.

Proposition Landi, PM 2016

The triple
(A⊗ C2,H,D), ρ

with representation

π((a, a′)) :=
1

2
(I+ Γ)π0(a) +

1

2
(I− Γ)π0(a)

and twisting automorphism

ρ((a, a′)) = (a′, a) ∀(a, a′) ∈ A⊗ C2

is a graded twisted spectral triple.

▶ fermionic content (i.e. D and H) preserved, but new bosonic fields allowed:

[D, a] = 0 ∀a ∈ A does not mean [D, (a, a′)]ρ = 0 ∀(a, a′) ∈ A⊗ C2.
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Example: minimal twist of a manifold M (closed, spin, riemannian, dim. 2m).

The eigenspaces of the grading γ2m+1 (which is γ5 in dimension 2m = 4) are the
left /right handed spinors, thus one obtains

A = C∞ (M)⊗C2, H = L2(M,S), D = ∂/; ρ

with

π(f , g) =

(
f I2m−1 0

0 gI2m−1

)
, ρ(f , g) = (g , f ) ∀(f , g) ∈ A.

▶ In KO-dimension 0, 4, there exist non-zero selfadjoint twisted fluctuations:

∂/→ DAρ = ∂/− i fµγ
µγ2m+1 with fµ ∈ C∞(M,R)

Devastato, Lizzi, Farnsworth, PM 2017

▶ In the non twisted case, such fluctuations vanish.

What is the meaning of the extra-term ifµγ
µγ2m+1 ?
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Torsion
The contorsion of an arbitrary connection ∇ on TM is the (2, 1) tensor field

K := ∇− ∇̄

where ∇̄ is the Levi-Civita connection. ∇ has the same geodesics as ∇̄ iff
K (X ,Y ) = −K (Y ,X ). It is orthogonal (i.e. compatible with the metric) iff

K ♭(X ,Y ,Z ) := g(Z ,K (X ,Y )) for X ,Y ,Z ∈ TM

is skew-symmetric in Z and Y .

▶ ∇ is orthogonal and geodesic preserving iff K ♭ is totally antisymmetric.

In that case K ♭ is the torsion 3-form.

Proposition Nieuviarts, Zeitoun, PM 2023

In dimension 4, the twisted covariant Dirac operator DAρ
is the lift to spinors of

an orthogonal and geodesic preserving connection, with torsion 3-form − ⋆ ωf .
More generally

i fµγ
µγ2m+1 =

(−i)m+1

2m
c(⋆ωf )

where
ωf := fµdx

µ.
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3. Twisted unitaries

Twisted product

The twisting automorphism

ρ(f , g) = (g , f ) ∀f , g ∈ C∞ (M)

extends to an inner automorphism of B(L2(M,S)):

ρ(O) = γ0Oγ0 ∀O ∈ B(H).

This induces a new inner product on L2(M,S):

⟨ψ,φ⟩γ0 := ⟨ψ, γ0φ⟩,

with respect to whom the adjoint of an operator O is

O+ := ρ(O)†.

▶ This is the Krein product for spinors in Lorentzian signature.
Devastato, Farsworth, Lizzi, PM (2018)
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Generating torsion by group action

The group of twisted unitaries is

Uρ : =
{
uρ ∈ C∞ (M)⊗ C2, u+ρ uρ = uρu

+
ρ = 1

}
,

= {h ∈ C∞ (M) , h(x) ̸= 0 ∀x ∈ M} .

Adjoint action:

Ad(uρ)ψ := uρJuρJ
−1 ψ ∀ψ ∈ L2(M,S).

Proposition Nieuviarts, PM (2024)

The conjugate action, with respect to the initial involution †, of Ad(uρ) generates
all the torsion terms with co-exact torsion form: given

Dωf
:= ∂/− ifµγ

µγ2m+1,

one has
Ad(uh)Dωf

Ad(uh)
† = Dωf ′ where ωf ′ = ωf + d(ln |h|2).

▶ In the non-twisted case, unitaries generate the fluctuations of the metric.
▶ Here, there is an intertwining of the two involutions + and †.
▶ When 2m = 4, the Lorentz group is a subgroup of the twisted unitaries of

B(L2(M,S)).
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4. Change of signature from the fermionic action

One defines the twisted fermionic action

S(Dωf
) := ⟨J ξ̃, γ0 Dωf

ξ̃⟩

for ξ ∈ H0 :=
{
ξ ∈ L2(M,S), γ0ξ = ξ

}
, and .̃ the Grassmann variables.

Devastato, Lizzi, Farnsworth, PM 2018

▶ The twisted product guarantees the invariance under twisted gauge
transformation.

▶ Restricting to H0 is to make the bilinear form antisymmetric.

Does it make sense physically ?
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Twisted riemannian manifold and Weyl lagrangian:

A = C∞ (M)⊗C2, H = L2(M,S), D = ∂/; ρ.

Twisted fluctuation:

DAρ
= ∂/− i fµγ

µγ2m+1 with fµ ∈ C∞(M,R).

The twisted fermionic action (in dimension 4) is

S f (Dωf
) = 2

∫
M

dµ ¯̃ζ†σ2 (if0I2 −
3∑

j=1

σj∂j) ζ̃ where ξ =

(
ζ
ζ

)
∈ H0.

▶ The ∂0 derivative is substituted with the component f0 of the fluctuation.

It reminds the Weyl lagrangian in lorentzian signature

ψ†
l σ̃

µ
M ∂µψl where σ̃µ

M := {I2,−σj} .

Tempting to identify ∂0ψl = if0ζ̃, that is

ζ̃(t, x) = ψl(t, x) = e itf0ψl(x).

But then it is not true that ¯̃ζ†σ2 ̸= ψ†
l .

Singh, PM, 2019
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The twist of a doubled manifold

A =
(
C∞(M)⊗ C2

)
⊗C2, H = L2(M,S)⊗ C2, D = ∂/⊗ I2

▶ H0 spanned by {ξ ⊗ e, ϕ⊗ ē} with ξ=

(
ζ
ζ

)
, ϕ=

(
φ
φ

)
, {e, ē} basis of C2.

The fermionic action is the integral of

Lf
ρ := ¯̃φ†σ2

(
if0 −

∑3
j=1 σj∂j

)
ζ̃, f0 ∈ C∞(M,R).

This yields the Weyl lagrangian identifying Ψl := ζ̃, Ψ†
l := −i ¯̃φ†σ2 and assuming

∂0Ψl = if0Ψl , that is
Ψl(x0, xj) = Ψl(xj)e

if0x0 .

▶ The twisted fermionic action for a twisted doubled riemannian manifold
describes a plane wave solution of Weyl equation (in lorentzian signature).
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(
ζ
ζ

)
, ϕ=

(
φ
φ

)
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Twist of electrodynamics

AED =
(
C∞(M)⊗ C2

)
⊗C2, H = L2(M,S)⊗ C4, D = ∂/⊗ I4 + γM ⊗ DF

v. Dungen, V. Suijlekom + PM, Singh

▶ The twisted fermionic action coincides with the Dirac action in lorentzian
signature.



Outlook

▶ Twisted fluctuations generate torsion in the spin connection.
• Pull it back to connections on the universal differential calculus ?

▶ It identifies with the 0th component of the lorentzian energy-momentum, for
the fermionic action of electrodynamics in euclidean signature.

• Similar results for the twist of the Standard Model.
• Spectral action ? As for usual spectral triples but with torsion ?

▶ Twisted unitaries generate torsion, and contain the Lorentz group.
• What is the full group of twisted unitaries ? “Lorentz” symmetry for arbitrary

spectral triple ?

▶ Link with thermal time hypothesis: in Connes-Moscovici, ρ = σi for a
1-parameter group of automorphism σs related to Tomita-Takesaki.

• Which (modular) group is behind the flip (f , g) 7→ (g , f ) ? Hints: for γ
matrices, Wick rotation

W (γ0) = γ0, W (γ i ) = iγ i

is the square root of the flip

ρ(γ0) = γ0, ρ(γ i ) = −γ i .
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Torsion and Lorentz symmetry from twisted spectral triples,
with G. Nieuviarts, R. Zeitoun, arXiv:2401.07848.

Lorentzian fermionic action by twisting euclidean spectral triples,
with D. Singh, Jour. Noncom. Geom. 16 2 (2022) 513-559.

Lorentz signature and twisted spectral triples,
with A. Devastato, F. Lizzi and S. Farnsworth, JHEP (2018).
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