Muon g-2 and lepton flavor violation in SUSY-GUT theories

Mario E. Gómez Departamento de Ciencias Integradas Universidad de Huelva, Spain

Colaboration with A. Tiwari, Q. Shafi, C. Ün, J. Ellis, S. Lola, Ruiz de Austri,JHEP 07 (2020) 07, 096 JHEP 09 (2020), Eur. Phys. J. C (2022) 82:561 + arXiv:2404.02337 [hep-ph]

OUTLINE

-GUT's and SUSY. -PS: SU(4)xSU(2)xSU(2)

-Fitting muon (g-2) in SU(4)xSU(2)xSU(2) models

- Muon (g-2) vs Neutralino relic density and DM detection.

- LFV vs LHC signals.

Conclusions.

.

Antipodes theory:

Popular debate in the Middle age.

09/09/24 M.E. Gómez, Physics BSM, Athens 4

Hierarchy Problem

Almost unification at \sim 10¹⁴ GeV

$$
\mu \frac{d\alpha_i(\mu)}{d\mu} = -\frac{1}{2\pi} \left[b_i + \frac{1}{4\pi} \sum b_{ij} \alpha_j(\mu) \right] \alpha_i^2(\mu)
$$

$$
b_i = (0, -22/3, -11) + N_F(4/3, 4/3, 4/3) + N_H(1/10, 1/6, 0)
$$

Divergent contribution to Higgs mass \uparrow with (m scale)²

Cancelation of quadratic divergences

One loop contribution to SM proc.

SM vs Experiment Discrepancies anomalous magnetic dipole moment (gμ-2)

Dark Matter problem

Rotation curve of spiral galaxy [M 33](https://en.wikipedia.org/wiki/Triangulum_Galaxy) (yellow and blue points with error bars), and a predicted one from distribution of the visible matter (white line). The discrepancy between the two curves can be accounted for by adding a dark matter halo surrounding the galaxy

Soft SUSY Breaking Terms

The soft SUSY breaking masses

$$
-L_{soft} = -\frac{1}{2} \left(M_3 \lambda_{\tilde{g}}^a \lambda_{\tilde{g}}^a + M_2 \lambda_{\tilde{W}}^i \lambda_{\tilde{W}}^i + M_1 \lambda_{\tilde{B}}^a \lambda_{\tilde{B}}^a + \text{h.c.} \right) + M_L^2 \widetilde{L}^\dagger \widetilde{L} + M_Q^2 \widetilde{Q}^\dagger \widetilde{Q} + M_U^2 \widetilde{U}^* \widetilde{U} + M_D^2 \widetilde{D}^* \widetilde{D} + M_E^2 \widetilde{E}^* \widetilde{E} + m_{H_d}^2 \widetilde{H}_d^\dagger \widetilde{H}_d + m_{H_u}^2 H_u^\dagger H_u - \left(B \mu \widetilde{H}_d^T H_u + \text{h.c.} \right) + \left(y_\ell A_\ell H_d^\dagger \widetilde{L} \widetilde{E} + y_d A_d H_d^\dagger \widetilde{Q} \widetilde{D} - y_u A_u H_u^\dagger \widetilde{Q} \widetilde{U} + \text{h.c.} \right),
$$

Inspired from supergravity assume universal soft breaking, L_{soft} :

$$
\sum_{f,H} m_0^2 \tilde{f} \tilde{f} + \sum_{\lambda} m_{\frac{1}{2}} \lambda \lambda + \sum_{f} A_0 Y_f \tilde{f} \tilde{F} H_f + B \mu H_u H_d
$$

 $m_0, m_{\frac{1}{2}}, A_0$, tan β , sign(μ)

 μ and A_0 can be complex, however their phases contraint to be < 0.2 rad by the bounds c the fermion EDM.

GUT initial conditions

Non Universal scenarios

PATI-SALAM Unification $G_{PS} \equiv SU(4) \times SU(2)_L \times SU(2)_R$ **HIGGS FIELDS** $4_c 2_L 2_R$ **MATTER FIELDS** H^c $\left[\begin{array}{c}u_H^c\d_F^c\end{array}\right],\ \left[\begin{array}{c}\nu_H^c\e_H^c\end{array}\right]$ $({\bf \bar 4},{\bf 1},{\bf 2})$ $\begin{pmatrix} d_r & -u_r \\ e_r & -u_r \end{pmatrix}$ $(\mathbf{4},\mathbf{2},\mathbf{1})$ F_r $\begin{array}{ccc} \bar{H}^c & \hspace{1.5cm} & \left(\begin{array}{cc} \bar{u}^c_H & \bar{d}^c_H \ \bar{\nu}^c_H & \bar{e}^c_H \end{array} \right) & \hspace{1.5cm} (4,1,2) \end{array} \nonumber$ $\left[\begin{array}{c} u_r^c \\ d^c \end{array}\right], \left[\begin{array}{c} \nu_r^c \\ e^c \end{array}\right].$ $({\bf \bar 4},{\bf 1},{\bf 2})$ F_r^c $\left(\begin{array}{cc} h_2^+ & h_1^0 \\ h_2^0 & h_1^- \end{array}\right)$ \boldsymbol{h} $(\mathbf{1},\mathbf{2},\mathbf{2})$ $\langle \nu_{\rm H}^c \rangle = \langle \nu_{\rm H}^c \rangle \sim M$ $G_{PS} \rightarrow SU(3)_C \otimes SU(2)_L \otimes U(1)_V$ **Non universal Higgs Mass terms due to D- terms**. $M_{4} = M_{3}$; $M_{2} = y_{LR} M_{2R}$ $M_{4} = M_{3}$; $M_{2} = y_{LR} M_{2R}$ $m_{H_{u,d}}^2 = m_{10}^2 \mp 2M_{D_1}^2$ Condition for gaugino masses.

PS(4-2-1) *LR Asymmetry*

MATTER FIELDS

$$
F_r \qquad \begin{pmatrix} d_r & -u_r \ d_r & -\nu_r \end{pmatrix} \qquad (4,2,1) \qquad \qquad \begin{array}{c} m_L \ m \\ m \end{array}
$$
\n
$$
F_r^c \qquad \begin{pmatrix} u_r^c \\ d_r^c \end{pmatrix}, \begin{pmatrix} \nu_r^c \\ e_r^c \end{pmatrix} \qquad (4,1,2) \qquad \qquad \begin{array}{c} m_R \end{array}
$$

Gaugino Masses

New Parameter

$$
X_{LR} = \frac{m_R}{m_L}
$$

$$
M_1 = \frac{3}{5} M_{2R} + \frac{2}{5} M_4 \; ,
$$

$$
M_{4} = M_{3}; M_{2} = y_{LR} M_{2R}
$$

Muon g-2 combining Fermilab + BNL data

$$
\Delta a_{\mu} \equiv a_{\mu}^{\rm exp} - a_{\mu}^{\rm SM} = (25.1 \pm 5.9) \times 10^{-10}
$$

SUSY Contribution to Muon g-2

Important contribution is in tension with the Higgs mass

$$
\begin{split} \Delta a_\mu^{\tilde{B}\tilde{\mu}_L\tilde{\mu}_R} &\simeq \frac{g_1^2}{16\pi^2}\frac{m_\mu^2 M_{\tilde{B}}(\mu\tan\beta - A_\mu)}{m_{\tilde{\mu}_L}^2 m_{\tilde{\mu}_R}^2} F_N\left(\frac{m_{\tilde{\mu}_L}^2}{M_{\tilde{B}}^2},\frac{m_{\tilde{\mu}_R}^2}{M_{\tilde{B}}^2}\right)\\[2ex] \Delta m_h^2 &\simeq \frac{m_t^4}{16\pi^2 v^2 \sin^2\beta} \frac{\mu A_t}{M_{\text{SUSY}}^2} \left[\frac{A_t^2}{M_{\text{SUSY}}^2} - 6\right]. \end{split}
$$

$$
\begin{split}\n\frac{dm_{\tilde{l}_{R_i}}^2}{dt} &= -\frac{1}{16\pi^2} \Big[2(Y_i^i)^2 P_i^i + g_1^2 \text{Tr}(Ym^2) - 4g_1^2 M_1^2 \Big] \\
\frac{dm_{\tilde{L}_i}^2}{dt} &= -\frac{1}{16\pi^2} \Big[(Y_i^i)^2 P_i^i - \frac{1}{2} g_1^2 \text{Tr}(Ym^2) - (g_1^2 M_1^2 + 3g_2^2 M_2^2) \Big] \\
\frac{dm_{\tilde{d}_{R_i}}^2}{dt} &= -\frac{1}{16\pi^2} \Big[2(Y_d^i)^2 P_{\tilde{d}}^i + \frac{1}{3} g_1^2 \text{Tr}(Ym^2) - \Big(\frac{4}{9} g_1^2 M_1^2 + \frac{16}{3} g_3^2 M_3^2 \Big) \Big] \\
\frac{dm_{\tilde{d}_{R_i}}^2}{dt} &= -\frac{1}{16\pi^2} \Big[2(Y_u^i)^2 P_{\tilde{u}}^i - \frac{2}{3} g_1^2 \text{Tr}(Ym^2) - \Big(\frac{16}{9} g_1^2 M_1^2 + \frac{16}{3} g_3^2 M_3^2 \Big) \Big] \\
\frac{dm_{\tilde{Q}_i}^2}{dt} &= -\frac{1}{16\pi^2} \Big[(Y_u^i)^2 P_{\tilde{u}}^i + (Y_d^i)^2 P_{\tilde{d}}^i + \frac{1}{6} g_1^2 \text{Tr}(Ym^2) - \Big(\frac{1}{9} g_1^2 M_1^2 + 3 g_2^2 M_2^2 + \frac{16}{3} g_3^2 M_3^2 \Big) \Big] \n\end{split}
$$

$$
m_{\tilde{u}_{iL}}^2 = m_{\tilde{q}_{i0}}^2 + m_{u_i}^2 + \tilde{\alpha}_G \left(\frac{8}{3} f_3 m_3^2 + \frac{3}{2} f_2 m_2^2 + \frac{1}{30} f_1 m_1^2 \right)
$$

\n
$$
m_{\tilde{u}_{iR}}^2 = m_{\tilde{u}_{i0}}^2 + m_{u_i}^2 + \tilde{\alpha}_G \left(\frac{8}{3} f_3 m_3^2 + \frac{8}{15} f_1 m_1^2 \right)
$$

\n
$$
m_{\tilde{e}_{iL}}^2 = m_{\tilde{\ell}_{i0}}^2 + m_{e_i}^2 + \tilde{\alpha}_G \left(\frac{3}{2} f_2 m_2^2 + \frac{3}{10} f_1 m_1^2 \right)
$$

\n
$$
m_{\tilde{e}_{iR}}^2 = m_{\tilde{e}_{i0}}^2 + m_{e_i}^2 + \tilde{\alpha}_G \frac{6}{5} f_1 m_1^2
$$

LFV violating through soft masses.

• LFV can be induced by a missalignement of leptosns and sleptons

- Flavor dependence on soft terms can be induced:
	- Above GUT by extra fields needed to explain fermion hierarchy.
	- Below GUT. Radiatively generated by the same mechanism that explain neutrino oscilations

• The superpotential for MSSM-Seesaw I can be written as

$$
W = W_{\text{MSSM}} + Y^{\text{ij}}_{\nu} \epsilon_{\alpha\beta} H^{\alpha}_{2} N^{\text{c}}_{i} L^{\beta}_{j} + \frac{1}{2} M^{\text{ij}}_{N} N^{\text{c}}_{i} N^{\text{c}}_{j}, \qquad (5)
$$

• The full set of soft SUSY-breaking terms is given by,

$$
-\mathcal{L}_{\text{soft,SI}} = -\mathcal{L}_{\text{soft}} + (m_{\tilde{\nu}}^2)^j_j \tilde{\nu}_{Ri}^* \tilde{\nu}_R^j + (\frac{1}{2} B_{\nu}^{ij} M_N^{ij} \tilde{\nu}_{Ri}^* \tilde{\nu}_{Rj}^* + A_{\nu}^{ij} h_2 \tilde{\nu}_{Ri}^* \tilde{l}_{Lj} + \text{h.c.}),
$$
\n(6)

$$
\mathcal{M}=\left(\begin{array}{cc}0&m_V^D\\m_V^{D^T}&M_R\end{array}\right)
$$

"See-Saw" explanation for tiny masses.

• The physical masses are:

$$
1. \ \ m_1 \equiv m_{light} \simeq \frac{(m_{\rm v}^D)^2}{M_R}
$$

2. $m_2 \simeq M_R$

• For $(m_v^D)_{33} \approx (200 \text{ GeV})$ $(\lambda_v \approx \lambda_t)$ and $M_{N_3} \approx O(10^{14} \text{ GeV}), m_{eff} \approx 0.05 \text{ eV}$

$$
W = W_{\text{MSSM}} + \frac{1}{2} (Y_{\nu} L H_2)^T M_N^{-1} (Y_{\nu} L H_2).
$$

$$
m_{\text{eff}} = -\frac{1}{2} v_u^2 Y_{\nu} \cdot M_N^{-1} \cdot Y_{\nu}^T, \qquad m_{\nu}^{\delta} = U^T m_{\text{eff}} U
$$

Slepton flavor mixings

$$
(m_{\tilde{L}}^2)_{ij} \sim \frac{1}{16\pi^2} (6m_0^2 + 2A_0^2) (Y_{\nu}^{\dagger} Y_{\nu})_{ij} \log\left(\frac{M_{\text{GUT}}}{M_N}\right)
$$

\n
$$
(m_{\tilde{e}}^2)_{ij} \sim 0
$$

\n
$$
(A_l)_{ij} \sim \frac{3}{8\pi^2} A_0 Y_{li} (Y_{\nu}^{\dagger} Y_{\nu})_{ij} \log\left(\frac{M_{\text{GUT}}}{M_N}\right)
$$

\nOrthogonal matrix
\n
$$
Y_{\nu} = \frac{\sqrt{2}}{v_u} \sqrt{M_R^{\delta} R \sqrt{m_{\nu}^{\delta}} U^{\dagger}}
$$

\n
$$
\text{Class + Ibarra}
$$

\n
$$
\text{Limit case of\n1E14 GeV}
$$

\n
$$
\text{Order 1}
$$

\n
$$
Y_{\nu}^{\dagger} Y_{\nu} = \frac{2}{v_u^2} M_R U m_{\nu}^{\delta} U^{\dagger}
$$

\n
$$
\text{Using neutrino data}
$$

\n
$$
\text{Crder 2}
$$

\n
$$
Y_{\nu}^{\dagger} Y_{\nu} = \frac{2}{v_u^2} M_R U m_{\nu}^{\delta} U^{\dagger}
$$

\n
$$
\text{Corrolled by MR}
$$

Slepton flavor mixing above GUT.

Generation of Yukawa textures using family symmetries, for example Abelian U(1)'s

$$
\Phi_i \Phi_j^c h \frac{\theta^{(q_i - q_j + q_h)}}{M}, \qquad \epsilon = \frac{\langle \theta \rangle}{M} \qquad Y_{IJ} \Phi_I \Phi_j^c h
$$

$$
Y_{IJ} \sim \epsilon^{(q_i - q_j + q_h)}
$$
Froggatt-Nilsen 1979

Soft terms: In SUGRA models, redefiniton of fields due to flavons results in non universal soft masses.

$$
m_f^2 = \begin{pmatrix} 1 & \epsilon^{q^{12}} & \epsilon^{q^{13}} \\ \epsilon^{q^{12}} & 1 & \epsilon^{q^{23}} \\ \epsilon^{q^{12}} & \epsilon^{q^{23}} & 1 \end{pmatrix} \times m_{f^0}^2,
$$

\nS. F. King et al 2005,
\nOlive+Velasco-Sevilla 2005
\nDas et al 2017

$$
m_{\tilde{Q}}^2 \sim m_L^2 + (k_3 \cdot M_3^2 + k_2 \cdot M_1^2 + \frac{1}{36} k_1 \cdot M_1^2) \times I,
$$

\n
$$
m_{\tilde{U}}^2 \sim m_R^2 + (k_3 \cdot M_3^2 + \frac{4}{9} k_1 \cdot M_1^2) \times I,
$$

\n
$$
m_{\tilde{D}}^2 \sim m_R^2 + (k_3 \cdot M_3^2 + \frac{1}{9} k_1 \cdot M_1^2) \times I,
$$

\n
$$
m_{\tilde{e}_L}^2 \sim m_L^2 + (k_3 \cdot M_3^2 + \frac{1}{9} k_1 \cdot M_1^2) \times I,
$$

\n
$$
m_{\tilde{e}_L}^2 \sim m_R^2 + (k_2 \cdot M_2^2 + \frac{1}{4} k_1 \cdot M_1^2) \times I,
$$

\n
$$
m_{\tilde{e}_R}^2 \sim m_R^2 + (k_1 \cdot M_1^2) \times I.
$$

ε = 0.05

ε = 0.2

LHC vs LFV

09/09/24 M.E. Gómez, DSU2024, Corfu 33

CONCLUSIONS

Susy Models with large gluino masses can explain the muon (g-2) discrepancy via a SUSY contribution mainting the prediction for the observed Higgs masses.

Models with Pati-Salam Unification, SU(4)xSU(2)xSU(2) can motivate gaugino nonuniversality (M₃>>M₂, M₁) and a L/R asymmetry on the scalars such that muon (g-2) can be explained while LSP that satisfies the relic abundance condition.

(g-2)+DM satisfaction implies chargino and slepton masses below the TeV range. However, the small mass difference neutralino-stau makes difficult the identification of the signal at LHC. But that may be at the reach of planned linear colliders.

When the model is complemented with a mechanism to explain lepton mass hierarchy BR(μ -> e γ) falls in the experimental range (i.e. MEG projected bound). Therefore, the observation of LFV can indicate the presence of SUSY particles that can not be detected at the LHC.

Efgaristó!