
Which dark matter topic do you want 
to hear about?

Freeze-in of asymmetric dark 
matter via scatterings

• Model building
• Feynman diagrams
• Lagrangian

Dark matter induced airglow in 
the Solar System giant planets

• Phenomenology
• Cute planet pictures
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Outline
Terminology
◦ Cogenesis
◦ Freeze-in

The model

How is the model interesting
◦ Constraints

Summary
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Cogenesis
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The only hint of SM ՞ DM connection



Freeze-in

UV freeze-in: ~ TRH

IR freeze-in: ~mdecaying
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0911.1120

freeze-in

freeze-out



Unitarity constraints on asymmetric 
freeze-in
It is difficult to do asymmetric freeze-in (e.g. not possible at                  )

interference of decay and scattering
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1105.3728



The model

is real and positive
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or more! 



Cosmological history
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The model (schematically)
Asymmetry source (tree x loop)
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Washout (tree)Symmetric source (tree)

plus terms which separately 
keep each sector in equilibrium



Constraints on the model

We can get viable χ with mass ~0.1 GeV to 
107 GeV
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Sakharov condition
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1. C and CP violation
◦ Chiral interactions
◦ Complex couplings 

2. Baryon number violation
◦  

3. Deviation from thermal equilibrium
◦  



Davidson-Ibarra bound
Typically:

Models where the lepton asymmetry is 
generated via the decay of a heavy Majorana 
neutrino can only give rise to the observed 
asymmetry if
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hep-ph/0202239

Washout (tree)



Dark sink
We need to get rid of this 
symmetric population
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2312.14152



Summary
What is this model?
• UV freeze-in dark matter
• Cogenesis via scattering

Why is this model interesting?
• Generates dark matter
• Generates the lepton asymmetry
• Is the first case of evading the Davidson-Ibarra bound
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Backup slides
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Available dark matter masses
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Results
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Summary
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Dark matter accumulation in planets

giant 
planets 

99%

terrestrial 
planets

1%

Mass Fraction

20Marianne Moore (MIT)    Giant planet airglow induced by dark matter annihilation

ca
pt

ur
e

lationannihi



aurora

aurora

Ultraviolet airglow
• The giant planets emit an isotropic airglow and                  

auroras
• Mostly produced by electron precipitation

• With contamination by solar radiation on dayside

• Focus on molecular hydrogen lines
• Clear relationship observed flux ֞ input electron power
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Ultraviolet airglow
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Wikipedia

Jupiter

Saturn

Uranus

Neptune aurora
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Dark matter-induced airglow
If dark matter annihilates to
• electrons

•  

• other charged final states
• The limit is reduced by a factor of a few

➢both can also lead to internal heating
• neutrinos

• no airglow, but IceCube limits from the Sun 
exist (see Aaron Vincent’s talk)
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Results: spin-independent
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Results: spin-dependent proton
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Our results vs previous constraints

• Atmospheric cooling by H3
+ 

(2312.06758)
• Anomalous heating of the 

planetary interior (e.g. 
0705.4298, 0808.2823, 
1909.11683, 2210.01812)

• Limits from the Galactic     
center
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https://arxiv.org/abs/2312.06758
https://arxiv.org/abs/0705.4298
https://arxiv.org/abs/0808.2823
https://arxiv.org/abs/1909.11683
https://arxiv.org/abs/2210.01812


Summary
Signal

Our constraints

Data

Competing constraints
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Summary

UV airglow is a promising avenue 
to search for dark matter
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UV airglow values
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Planet Pobserved
airglow (µW/m2) Space probe

Jupiter 0.31−0.15
+0.19 New Horizons

Saturn <1 Voyager 1

Uranus 4.6 Voyager 2

Neptune 1.9 ± 0.3 Voyager 2



Results: spin-dependent neutron
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Preliminary results: dark matter radial profile
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Preliminary results: evaporation
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Preliminary results: what about Earth?
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Preliminary results: heavy mediator annihilation
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Preliminary results: light mediator annihilation
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Why not Lyman-alpha?

Gladstone et al., GRL 2018

Non-negligible background 
on the nightside due to the 
interplanetary medium
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