Which dark matter topic do you want to hear about?

Freeze-in of asymmetric dark matter via scatterings

- Model building
- Feynman diagrams
- Lagrangian

Dark matter induced airglow in the Solar System giant planets

- Phenomenology
- Cute planet pictures

Freeze-in of asymmetric dark matter via scatterings

Marianne Moore

work with Pouya Asadi, David Morrissey, And Michael Shamma

241X.XXXXX

September 12, 2024

Fonds de recherche Nature et technologies Québec 🏘 🐐

Outline

Terminology

- Cogenesis
- Freeze-in

The model

How is the model interesting

• Constraints

Summary

Cogenesis

Freeze-in

Unitarity constraints on asymmetric freeze-in

It is difficult to do asymmetric freeze-in (e.g. not possible at $\mathcal{O}(\lambda^2)$)

interference of decay and scattering

1105.3728

The model

 $\mathcal{L} \supset y_{ia} H \ell_i N_a + \lambda_{\beta a} \phi \chi_\beta N_a + m_\chi \chi \chi^c + m_\phi \phi^\dagger \phi + M_a N_a N_a + \text{h.c.}$

$$a=\{1,2\}~~{\rm or\ more!}$$
 $i,\beta=1~~M_a~~{\rm is\ real\ and\ positive}$

 $M_a \gg T_{\rm RH} > m_\phi > m_\chi$

Cosmological history

The model (schematically)

Asymmetry source (tree x loop)

Symmetric source (tree)

Washout (tree)

 $\ell H \to \chi \phi$ $\ell^{\dagger} H^{\dagger} \to \chi \phi$ $\ell H \to \ell^{\dagger} H^{\dagger}$ $\chi \phi \to \chi^{\dagger} \phi^{\dagger}$

 $\ell H \to \chi \phi$ $\ell^{\dagger} H^{\dagger} \to \chi \phi$

 $\ell\phi \to \chi^{\dagger}H^{\dagger}$ $\ell\chi \to \phi^{\dagger}H^{\dagger}$ $\chi\chi \to \phi^{\dagger}\phi^{\dagger}$

plus terms which separately keep each sector in equilibrium

MARIANNE MOORE (MIT)

Constraints on the model

$$\xi = T_{\rm dark}/T_{\rm SM} \ll 1$$

$$m_{\nu}^{\rm SM} = \frac{|y^2|v_h^2}{M_N} > 0.1 \text{ eV}$$

We can get viable χ with mass ~0.1 GeV to $10^7~GeV$

Sakharov condition

- 1. C and CP violation
 - Chiral interactions
 - \circ Complex couplings $\,y,\lambda\,$
- 2. Baryon number violation
 - $^{\circ} \quad M_a \neq 0$
- 3. Deviation from thermal equilibrium
 - $\xi = T_{\rm dark}/T_{\rm SM} \ll 1$

Davidson-Ibarra bound

Typically:

Models where the lepton asymmetry is generated via the decay of a heavy Majorana neutrino can only give rise to the observed asymmetry if

 $T_{\rm RH} \gtrsim 10^9 {
m GeV}$

Washout (tree) $\ell \phi \rightarrow \chi^{\dagger} H^{\dagger}$ $\ell \chi \rightarrow \phi^{\dagger} H^{\dagger}$ $\chi \chi \rightarrow \phi^{\dagger} \phi^{\dagger}$

MARIANNE MOORE (MIT)

Summary

What is this model?

- UV freeze-in dark matter
- Cogenesis via scattering

Why is this model interesting?

- Generates dark matter
- Generates the lepton asymmetry
- Is the first case of evading the Davidson-Ibarra bound

Backup slides

$$\begin{split} &+ \int \Pi_{\chi H^{\dagger}}^{\ell \phi^{\dagger}} \left[|\mathcal{M}_{\chi H^{\dagger}}^{\ell \phi^{\dagger}}|^{2} f_{\ell} f_{\phi^{\dagger}} (1 - f_{\chi}) (1 + f_{H^{\dagger}}) - |\mathcal{M}_{\ell \phi^{\dagger}}^{\chi H^{\dagger}}|^{2} f_{\chi} f_{H^{\dagger}} (1 - f_{\ell}) (1 + f_{\phi^{\dagger}}) \right] \\ &+ \int \Pi_{\chi H}^{\ell^{\dagger} \phi^{\dagger}} \left[|\mathcal{M}_{\chi H}^{\ell^{\dagger} \phi^{\dagger}}|^{2} f_{\ell^{\dagger}} f_{\phi^{\dagger}} (1 - f_{\chi}) (1 + f_{H}) - |\mathcal{M}_{\ell^{\dagger} \phi^{\dagger}}^{\chi H^{\dagger}}|^{2} f_{\chi} f_{H} (1 - f_{\ell^{\dagger}}) (1 + f_{\phi^{\dagger}}) \right] \\ &+ \int \Pi_{\chi \ell^{\dagger}}^{H^{\dagger} \phi^{\dagger}} \left[|\mathcal{M}_{\chi \ell^{\dagger}}^{H^{\dagger} \phi^{\dagger}}|^{2} f_{H^{\dagger}} f_{\phi^{\dagger}} (1 - f_{\chi}) (1 - f_{\ell}) - |\mathcal{M}_{H^{\dagger} \phi^{\dagger}}^{\chi \ell^{\dagger}}|^{2} f_{\chi} f_{\ell} (1 + f_{H^{\dagger}}) (1 + f_{\phi^{\dagger}}) \right] \\ &+ \int \Pi_{\chi \ell^{\dagger}}^{H^{\phi^{\dagger}}} \left[|\mathcal{M}_{\chi \chi^{\dagger}}^{H^{\phi^{\dagger}}}|^{2} f_{H} f_{\phi^{\dagger}} (1 - f_{\chi}) (1 - f_{\ell^{\dagger}}) - |\mathcal{M}_{H^{\phi^{\dagger}}}^{\chi \ell^{\dagger}}|^{2} f_{\chi} f_{\ell^{\dagger}} (1 + f_{H}) (1 + f_{\phi^{\dagger}}) \right] \\ &+ \int \Pi_{\chi \chi^{\dagger}}^{\phi^{\phi^{\dagger}}} \left[|\mathcal{M}_{\chi \chi^{\dagger}}^{\phi^{\phi^{\dagger}}}|^{2} f_{\phi} f_{\phi^{\dagger}} (1 - f_{\chi}) (1 - f_{\chi^{\dagger}}) - |\mathcal{M}_{\phi^{\phi^{\dagger}}}^{\chi \chi^{\dagger}}|^{2} f_{\chi} f_{\chi^{\dagger}} (1 + f_{\phi}) (1 + f_{\phi^{\dagger}}) \right] \\ &+ \int \Pi_{\chi \nu^{\dagger}}^{\phi^{\dagger}} \left[|\mathcal{M}_{\chi \nu^{\dagger}}^{\phi^{\dagger}}|^{2} f_{\phi^{\dagger}} (1 - f_{\chi}) (1 - f_{\chi^{\dagger}}) - |\mathcal{M}_{\nu^{\dagger}}^{\chi \nu^{\dagger}}|^{2} f_{\chi} f_{\chi^{\dagger}} (1 + f_{\phi^{\dagger}}) \right] \\ &+ \int \Pi_{\chi \nu^{\dagger}}^{\phi^{\dagger}} \left[|\mathcal{M}_{\chi \nu^{\dagger}}^{\phi^{\dagger}}|^{2} f_{\phi^{\dagger}} (1 - f_{\chi}) (1 - f_{\nu^{\dagger}}) - |\mathcal{M}_{\phi^{\dagger}}^{\chi \nu^{\dagger}}|^{2} f_{\chi} f_{\nu^{\dagger}} (1 + f_{\phi^{\dagger}}) \right] \\ &+ \int \Pi_{\chi \nu^{\dagger}}^{\phi^{\dagger}} \left[|\mathcal{M}_{\chi \nu^{\dagger}}^{\phi^{\dagger}}|^{2} f_{\phi^{\dagger}} (1 - f_{\chi}) (1 - f_{\nu^{\dagger}}) - |\mathcal{M}_{\phi^{\dagger}}^{\chi \nu^{\dagger}}|^{2} f_{\chi} f_{\nu^{\dagger}} (1 + f_{\phi^{\dagger}}) \right] \\ &+ \int \Pi_{\chi \nu^{\dagger}}^{\phi^{\dagger}} \left[|\mathcal{M}_{\chi \nu^{\dagger}}^{\phi^{\dagger}}|^{2} f_{\phi^{\dagger}} (1 - f_{\chi}) (1 - f_{\nu^{\dagger}}) - |\mathcal{M}_{\phi^{\dagger}}^{\chi \nu^{\dagger}}|^{2} f_{\chi} f_{\nu^{\dagger}} (1 + f_{\phi^{\dagger}}) \right] \\ &+ \int \Pi_{\chi \nu^{\dagger}}^{\phi^{\dagger}} \left[|\mathcal{M}_{\chi \nu^{\dagger}}^{\phi^{\dagger}}|^{2} f_{\phi^{\dagger}} (1 - f_{\chi}) (1 - f_{\nu^{\dagger}}) \right] \\ &+ \int \Pi_{\chi \nu^{\dagger}}^{\phi^{\dagger}} \left[|\mathcal{M}_{\chi \nu^{\dagger}}^{\phi^{\dagger}}|^{2} f_{\phi^{\dagger}} (1 - f_{\chi}) (1 - f_{\nu^{\dagger}}) \right] \\ &+ \int \Pi_{\chi \nu^{\dagger}}^{\phi^{\dagger}} \left[|\mathcal{M}_{\chi \nu^{\dagger}}^{\phi^{\dagger}}|^{2} f_{\psi^{\dagger}} (1 - f_{\chi^{\dagger}}) \left] \right] \\ &+ \int \Pi_{\chi \nu^{\dagger}}^{\phi^{\dagger}} \left[|\mathcal{M}_{\chi \nu^{\dagger}}^{\phi^{\dagger}}|^{2} f_{\psi^{\dagger}} (1 - f_{\chi^{\dagger}}) \left] \right] \\ &+ \int \Pi_{\chi \nu^{\dagger}}^{\phi^{\dagger}} \left[|\mathcal{M}_{\chi \nu^{\dagger}}^{$$

$$\dot{n}_{\chi} + 3\mathbf{H}n_{\chi} = \int \Pi_{\chi\phi}^{\ell H} \left[|\mathcal{M}_{\chi\phi}^{\ell H}|^{2} f_{\ell} f_{H} (1 - f_{\chi}) (1 + f_{\phi}) - |\mathcal{M}_{\ell H}^{\chi\phi}|^{2} f_{\chi} f_{\phi} (1 - f_{\ell}) (1 + f_{H}) \right]$$
(53)
+
$$\int \Pi_{\chi\phi}^{\ell^{\dagger} H^{\dagger}} \left[|\mathcal{M}_{\chi\phi}^{\ell^{\dagger} H^{\dagger}}|^{2} f_{\ell^{\dagger}} f_{H^{\dagger}} (1 - f_{\chi}) (1 + f_{\phi}) - |\mathcal{M}_{\ell^{\dagger} H^{\dagger}}^{\chi\phi}|^{2} f_{\chi} f_{\phi} (1 - f_{\ell^{\dagger}}) (1 + f_{H^{\dagger}}) \right]$$
+
$$\int \Pi_{\chi\phi}^{\chi^{\dagger} \phi^{\dagger}} \left[|\mathcal{M}_{\chi\phi}^{\chi^{\dagger} \phi^{\dagger}}|^{2} f_{\chi^{\dagger}} f_{\phi^{\dagger}} (1 - f_{\chi}) (1 + f_{\phi}) - |\mathcal{M}_{\chi^{\dagger} \phi^{\dagger}}^{\chi\phi}|^{2} f_{\chi} f_{\phi} (1 - f_{\chi^{\dagger}}) (1 + f_{\phi^{\dagger}}) \right]$$
+
$$2 \int \Pi_{\chi\chi}^{\phi^{\dagger} \phi^{\dagger}} \left[|\mathcal{M}_{\chi\chi}^{\phi^{\dagger} \phi^{\dagger}}|^{2} f_{\phi^{\dagger}}^{2} (1 - f_{\chi})^{2} - |\mathcal{M}_{\phi^{\dagger} \phi^{\dagger}}^{\chi\chi}|^{2} f_{\chi}^{2} (1 + f_{\phi^{\dagger}})^{2} \right]$$

Available dark matter masses

Dark matter induced airglow in the Solar System giant planets

Marianne Moore

2408.15318

with Carlos Blanco, Rebecca Leane, and Joshua Tong

September 12, 2024

Fonds de recherche Québec 🏼 🖓

Outline

Dark matter accumulation Ultraviolet airglow Dark matter-induced airglow

Results

Previous constraints

Summary

Dark matter accumulation in planets

Ultraviolet airglow

- The giant planets emit an isotropic airglow and auroras
- Mostly produced by electron precipitation
 - With contamination by solar radiation on dayside
- Focus on molecular hydrogen lines
 - Clear relationship observed flux ⇔ input electron power

aurora

$$\mathrm{H}_2^* \to \mathrm{H}_2 + \mathrm{h}\nu$$

Dark matter-induced airglow

- If dark matter annihilates to
- electrons
 - $P_{\rm DM}^{\rm airglow} \leq P_{\rm observed}^{\rm airglow}$
- other charged final states
 - The limit is reduced by a factor of a few
- both can also lead to internal heating
- neutrinos
 - no airglow, but IceCube limits from the Sun exist (see Aaron Vincent's talk)

Results: spin-independent

Results: spin-dependent proton

Our results vs previous constraints

- Atmospheric cooling by H₃⁺ (2312.06758)
- Anomalous heating of the planetary interior (e.g. 0705.4298, 0808.2823, 1909.11683, 2210.01812)
- Limits from the Galactic center

Summary

Signal

Our constraints

Data 1997-01-22 Voyager 2 Saturn Vranus Neptune

Competing constraints

Giant planet airglow induced by dark matter annihilation

Summary

UV airglow is a promising ave to search for dark matter

Backup slides

UV airglow values

Planet	P _{observed} ^{airglow} (µW/m²)	Space probe
Jupiter	$0.31_{-0.15}^{+0.19}$	New Horizons
Saturn	<1	Voyager 1
Uranus	4.6	Voyager 2
Neptune	1.9 ± 0.3	Voyager 2

Results: spin-dependent neutron

Preliminary results: dark matter radial profile

Preliminary results: evaporation

Preliminary results: what about Earth?

Preliminary results: heavy mediator annihilation

Preliminary results: light mediator annihilation

Why not Lyman-alpha?

Non-negligible background on the nightside due to the interplanetary medium

Gladstone et al., GRL 2018