The W-boson mass : status and perspectives

M.Boonekamp, CEA/IRFU

Summer Institute 2024, Corfu

Prediction of m_w in the SM – a snapshot

$$m_W^2 = \frac{m_Z^2}{2} \left(1 + \sqrt{1 - 4 \frac{\pi \alpha}{\sqrt{2} G_\mu m_Z^2}} \frac{1}{1 - \Delta r} \right)$$

$$\gamma_{\mu\nu}(rt, q\bar{q}) \gamma_{\mu\nu}(tb, H, ...) \psi_{\mu\nu}(tb, H, ...) \psi_{\mu\nu}(tb,$$

Prediction of m_w in the SM – a snapshot

Prediction of m_w in the SM – a snapshot

• Incomplete kinematics (missing neutrino!)

•

- \rightarrow no invariant mass
- $\rightarrow\,$ rely on measured quantities, and exploit momentum conservation in the transverse plane
- Event representation :
- Main signature : single electron or muon $\vec{p}_T^{\ l}$
- Recoil : sum of "everything else" reconstructed

in the calorimeters; a measure of $\boldsymbol{p}_{T}^{w,z}$

$$\vec{u}_{\mathrm{T}} = \sum_{i} \vec{E}_{\mathrm{T},i}$$

Derived quantities :
$$\vec{p}_{\rm T}^{\rm miss} = -(\vec{p}_{\rm T}^{\,\ell} + \vec{u}_{\rm T})$$
 $m_{\rm T} = \sqrt{2p_{\rm T}^{\ell}p_{\rm T}^{\rm miss}(1 - \cos\Delta\phi)}$

 $p_T^{\tilde{l}}$

• Physics corrections : W width; QCD and QED ISR and FSR, PDFs, ...

 \rightarrow all carry uncertainties to be quantified!

• Physics corrections : W width; QCD and QED ISR and FSR, PDFs, ...

 \rightarrow all carry uncertainties to be quantified!

- Detector effects, also with uncertainties :
 - Lepton calibration and resolution; Missing E_T resolution ~ 5 15 GeV
 - Efficiencies and acceptance ~15% (with non-trivial kinematic dependence!)

• Mass measurement : produce models ("templates") of the final state distributions for different mass hypotheses; compare to data

Two slides on calibration

• Leptons calibration from "perfectly known" resonances

Two slides on calibration

 Recoil response & resolution calibrated using over-constrained kinematics in Z events

- Initial state radiation involves large corrections, and is in part non-perturbative. W events are only partly measured (neutrino!)
- Approach : adjust model parameters using Z events, which are close to W's and can be measured precisely; extrapolate to W production

• **Tevatron** : Z-based model tuning (Resbos); no extrapolation uncertainties, but validation with W events

- **ATLAS** : Z-based model tuning + $Z \rightarrow W$ extrapolation. Corresponding uncertainties :
 - Treatment of HQ mass and thresholds;
 - HQ PDFs

- LHCb
 - Z data
 - simultaneous fits to mW and pTW in W events
 - repeated for different theoretical models

Analytical resummation – now at approximate N4LO+N4LL

- Essentially removing any uncertainty in the W/Z pT distribution ratio
- However, analysis is not complete : flavour-dependent intrinsic kT; heavy-quark mass effects; process-dependent EWK effects... are not (yet) addressed

• LEP

 $m_{\rm W} = 80.376 \pm 0.025 (\text{stat.}) \pm 0.022 (\text{syst.}) \text{ GeV}$

Source	Systematic Uncertainty in MeV			
	on $m_{\rm W}$ on 1		on $\Gamma_{\rm W}$	
	$q\overline{q}\ell\nu_\ell$	$q\overline{q}q\overline{q}$	Combined	
ISR/FSR	8	5	7	6
Hadronisation	13	19	14	40
Detector effects	10	8	9	23
LEP energy	9	9	9	5
Colour reconnection	_	35	8	27
Bose-Einstein Correlations	_	7	2	3
Other	3	10	3	12
Total systematic	21	44	22	55
Statistical	30	40	25	63
Statistical in absence of systematics	30	31	22	48
Total	36	59	34	83

• Tevatron – D0

 $M_W = 80.375 \pm 0.011 \text{ (stat.)} \pm 0.020 \text{ (syst.)} \text{ GeV}$

 $= 80.375 \pm 0.023$ GeV.

~1.68M W \rightarrow ev candidate events

		ΔM_W (Me	V)
Source	m_T	p_T^e	E_T
Electron energy calibration	16	17	16
Electron resolution model	2	2	3
Electron shower modeling	4	6	7
Electron energy loss model	4	4	4
Hadronic recoil model	5	6	14
Electron efficiencies	1	3	5
Backgrounds	2	2	2
Experimental subtotal	18	20	24
PDF	11	11	14
QED	7	7	9
Boson p_T	2	5	2
Production subtotal	13	14	17
Total	22	24	29

• LHC – ATLAS 7 TeV

~15M W \rightarrow ev, $\mu\nu$ candidates

• LHC – LHCb 13 TeV

$$m_W = 80354 \pm 23_{\text{stat}} \pm 10_{\text{exp}} \pm 17_{\text{theory}} \pm 9_{\text{PDF}} \text{ MeV}.$$

~2.4M W $\rightarrow \, \mu \nu$ candidates

Source	Size [MeV]
Parton distribution functions	9
Theory (excl. PDFs) total	17
Transverse momentum model	11
Angular coefficients	10
QED FSR model	7
Additional electroweak corrections	5
Experimental total	10
Momentum scale and resolution modelling	7
Muon ID, trigger and tracking efficiency	6
Isolation efficiency	4
QCD background	2
Statistical	23
Total	32

• Tevatron – CDF

~4M W \rightarrow ev, $\mu\nu$ candidates

Table 2. Uncertainties on the combined M_W result.

Source	Uncertainty (MeV)
Lepton energy scale	3.0
Lepton energy resolution	1.2
Recoil energy scale	1.2
Recoil energy resolution	1.8
Lepton efficiency	0.4
Lepton removal	1.2
Backgrounds	3.3
$p_{\rm T}^{\rm Z}$ model	1.8
$p_{\rm T}^W/p_{\rm T}^Z$ model	1.3
Parton distributions	3.9
QED radiation	2.7
W boson statistics	6.4
Total	9.4

Overall picture

Combination

- Measurements performed at different times, using different baseline PDFs and QCD tools : existing result extrapolated to a common baseline
- Two-step procedure :
 - correct to common theory and modelling
 - combine including correlations (proton structure)

LHC-TeV MWWG

Combination

- PDF extrapolations
 - Large effects on separate experiments
 - Opposite trends stabilize combination

- ATLAS : re-analysis of 7 TeV data
 - extend study of PDF dependence of m_{w;} W-boson width; Improved statistical method
 - ... everything else unchanged (or almost)

• LHCb

(Miguel Ramos Pernas, Orsay, '23

Analysis strategy for the full Run 2 result

The overall strategy remains the same as for the 2016 analysis:

- Calibration using J/ψ , Y(1S) and Z decays:
 - Dedicated alignment and momentum scaling
 - Momentum smearing and selection efficiencies
- Reweighting the simulation at generator level in 5 dimensions
- Template fit to the muon transverse momentum using a Beeston-Barlow method in the minimization

Target sensitivity: $\sigma_{
m stat.}^{
m Run~2} \sim 14\,{
m MeV}$ $\sigma_{
m total}^{
m Run~2} \sim 20\,{
m MeV}$

- Low-pile-up data in ATLAS : compared to 7 TeV, the loss in statistics (/7) is good part compensated by the sensitivity per event (x3)
- 1 fb⁻¹ of such data would be an extremely good investment in this respect

• CMS

• CDF

A look back..

• Final measurement by UA2 :

Table 3 The size (in MeV) of the systematic uncertainties in measuring m_w and m_{2} .

	$\delta m_{\rm W}(m_{\rm T})$	$\delta m_{\rm W}(p_{\rm T}^{\rm e})$	$\delta m_{\rm W}(p_{\rm T}^{\rm v})$	$\delta m_{\rm Z}({\rm central})$	$\delta m_Z(p_T-con)$
structure function	85	135	105	-	-
electron energy resolution	75	100	75	35	35
neutrino scale	70	-	140	-	-
p_T^W and p_T^{had}	60	120	90	-	-
underlying event	30	50	-	50	50
itting procedure	30	40	40	-	-
adiative decays	30	50	20	50	50
electron efficiency versus p_T^e	30	40	30	-	-
4 effect	25	95	350	-	_
P _T constraint	-	-	_	-	100
otal systematic uncertainties	160	240	420	80	130

In combination with the m_z measurement from LEP, this gives

$$m_{\rm W} = 80.35 \pm 0.33 (\text{stat.}) \pm 0.17 (\text{syst.}) \text{ GeV}$$
. (9)

Conclusions

- m_W now an active field at the LHC... progress is still slow
- ~<10 MeV sensitivity per experiment not an unrealistic goal; ~5 MeV combined?
- Main challenge : theoretical and modelling accuracy of W production and decay
 - Perturbative accuracy keeps improving (\rightarrow A.Vicini's presentation Sat.)
 - measurements require a fully exclusive description of the final state (QCD and QED showers, underlying event) : MC's!
 - Proton structure uncertainties difficult to quantify (and discussions with the PDF groups do not progress very much...)
- The experimental situation is presently confused; forthcoming measurements will hopefully clarify the situation.

Thank you!

overflow

- ATLAS : re-analysis of 7 TeV data
- Sensitivity to the width :

Combination

• PDF uncertainties and correlations :

PDF set	D0	CDF	ATLAS	LHCb
CTEQ6	_	14.1	_	_
CTEQ6.6	15.1	_	—	—
CT10	_	_	9.2	_
CT14	13.8	12.4	11.4	10.8
CT18	14.9	13.4	10.0	12.2
ABMP16	4.5	3.9	4.0	3.0
MMHT2014	8.8	7.7	8.8	8.0
MSHT20	9.4	8.5	7.8	6.8
NNPDF3.1	7.7	6.6	7.4	7.0
NNPDF4.0	8.6	7.7	5.3	4.1

Sometime partial or negative correlations \rightarrow stabilizes PDF effects on combinations

• ATLAS : re-analysis of 7 TeV data

• Polarization

