

△ String Theory provides a robust framework to study Physics Phenomena in a vast range of Energies varying from Planck to minuscule scales!

^N Early (80s) phenomenological explorations focus mostly on model building of GUTs and SM (*still an active research area*)

- Remarkably, the ensuing years, the implications of String Theory for cosmology have been proved equally important!
- \blacktriangle In fact, in the study of effective field theory models, vital Physics issues near the Planck scale must be addressed!
- \triangle An important issue is that, in compactifications large numbers of massless scalar (moduli) fields appear, which must be stabilised!
- \triangle Then, under the right conditions, such fields can solve important problems in cosmology.

In this talk I will discuss :

△ Cosmological Inflation in Type IIB compactifications in the context of Large Volume Scenarios (LVS) (hep-th/0502058)

△ One of the most attractive inflationary models that can be realised in LVS is Fibre Inflation

 \blacktriangle In this context, two basic approaches will be analysed: Non Perturbative & Perturbative

- ▲ The role of Kähler Cone Constraints will be examined in the above two approaches
- N The merits and demerits of these scenarios will be discussed.

The main elements to be used (moduli, fluxes ...) (NS_{+}, NS_{+}) : graviton, dilaton and 2-form Kalb-Ramond-field:

 $g_{\mu\nu}, \phi, B_{\mu\nu} \rightarrow B_2$

(^R−, ^R−): scalar, 2- and 4-index fields (p*-form potentials*)

 $\mathbf{C_0}, C_{\mu\nu}, C_{\kappa\lambda\mu\nu} \to C_p, \ p = 0, 2, 4$

 $\blacktriangle C_0$, $\phi \rightarrow$ axion-dilaton *modulus:*

$$
S = C_0 + i e^{-\phi} \equiv C_0 + \frac{i}{g_s}
$$

^N *Field strengths/magnetic fluxes:*

 $F_p := d C_{p-1}, H_3 := d B_2, \Rightarrow G_3 := F_3 - S H_3$

Holomorphic $(3, 0)$ *-form* $\colon \Omega(U_a)$

A Let U^i complex-structure (CS) and T_α Kähler moduli $(T_s = c_s - i\tau_s)$

A Kähler form J expressed in terms of 2-cycle t^k , i.e., $J = J(t^k)$ is expanded in harmonic forms through definition of the basis

$$
\hat{D}_k, \ k = 1, 2, \dots, h^{1,1}
$$

$$
J = \sum_{k=1}^{h^{1,1}} t^k \hat{D}_k,
$$
 (1)

Volume of internal space

$$
\mathcal{V} = \frac{1}{3!} \int_{CY} J \wedge J \wedge J = \frac{1}{6} k_{ijk} t^i t^j t^k \tag{2}
$$

 \triangle Low energy dynamics of 4D effective SUGRA from type IIB compactified on CY orientifolds can be captured by ^a holomorphic superpotential W , and a real Kähler potential K

$$
\mathcal{W}_0 = \int \mathbf{G_3} \wedge \Omega(U_a) \tag{3}
$$

$$
\mathcal{K}_0 = -\log[-i(S - \bar{S})] - 2\log \mathcal{V} - \log[-i\int \Omega \wedge \bar{\Omega}] \qquad (4)
$$

 \blacktriangle The F-term contributions to the scalar potential of 4D $\mathcal{N} = 1$ from the type IIB encoded in

,

$$
V = e^{\mathcal{K}} (K^{\mathcal{A}\overline{\mathcal{B}}}(D_{\mathcal{A}}W)(D_{\overline{\mathcal{B}}} \overline{W}) - 3|W|^2)
$$

★ A) Non-Perturbative Moduli Stabilisation

Moduli stabilisation in 4D type IIB effective supergravity models follows ^a two-step procedure.

 \blacktriangle First, one fixes the CS moduli U^i and the axio-dilaton S by the leading order $W_0 \equiv W_{\text{flux}}$ induced by the 3-form fluxes (F_3, H_3) \triangle No-scale structure protects the Kähler moduli T_{α} which remain flat.

At ^a second step, they can be stabilised via non-perturbative corrections arising from the whole series of α' and string-loop (g_s) corrections:

$$
W = W_0 + W_{\rm np}(S, T_\alpha),
$$

\n
$$
K = K_{\rm cs} - \ln\left[-i(S - \bar{S})\right] - 2\ln \mathcal{Y},
$$
\n(5)

where generally $\mathcal Y$ function of $\mathcal V$, α' and string-loop corrections.

\star B) FIBRE INFLATION (FI)

FI models are built in the context of IIB orientifold flux compactifications (0808.0691, . . . , 1709.01518)

The generic geometric set up includes $D3/D7$ branes and $O(3)/O(7)$ planes

 \triangle The internal (CY) volume is of the generic form

$$
\mathcal{V} = f_{\frac{3}{2}}(\tau_i) - \sum_{j=1}^{N_s} \lambda_j \tau_j^{3/2}
$$
 (6)

• τ_i : "large" divisors $i = 1, 2, \ldots N_l$.

- τ_i : "small" blow-up rigid divisors $j = 1, 2, \ldots N_s$.
- $N_l + N_s = h^{1,1}.$
- $f_{\frac{3}{2}}$: degree $\frac{3}{2}$ homogeneous function of τ_i

Leading α'^3 corrections in the Kähler potential:

$$
\xi = -\frac{\zeta(3)}{4(2\pi)^3} \chi = \hat{\xi} \left(\frac{S - \bar{S}}{2i} \right)^{-3/2} \equiv \hat{\xi} g_s^{3/2} .
$$

The α' correction is incorporated into the Kähler potential through the shift:

$$
\hat{\mathcal{V}} \rightarrow \mathcal{U} = \hat{\mathcal{V}} + \frac{\hat{\xi}}{2} \equiv \hat{\mathcal{V}} + \frac{\xi}{2} \left(\frac{S - \bar{S}}{2i} \right)^{3/2} \equiv \hat{\mathcal{V}} + \frac{\xi}{2} \frac{1}{g_s^{3/2}} \; .
$$

Then, the α' corrected Kähler potential acquires the form:

$$
\mathcal{K}_{\alpha'} = -\log(-i(S - \bar{S})) - 2\log(\mathcal{U}) - \log(-i\int \Omega \wedge \bar{\Omega}), \quad (7)
$$

The GVW superpotantial W_0 given by

$$
\mathcal{W}_0 = \int G_3 \wedge \Omega(z_a) \,, \tag{8}
$$

is corrected by non-perturbative contributions.

 \triangle NP contributions can be generated by divisors which are stable under perturbations and have fixed complex structures, i.e., rigid ones, such as del Pezzo (dP) divisors. Thus, generically

$$
W = W_0 + \sum_k A_k e^{-a_k T_k}
$$
 (9)

which are generated by D-brane instantons and gaugino condensation.

The coefficients \mathcal{A}_k may depend on complex structure moduli, but in most cases they are considered constants.

Procedure and Conditions

Recall that:

$$
\mathcal{V} = f_{\frac{3}{2}}(\tau_i) - \sum_{j=1}^{N_s} \lambda_j \tau_j^{3/2}
$$

Step 1: Overall Volume $\mathcal V$ and volumes of N_s small blow-up divisors τ_i are stabilised by α'^3 corrections in K and NP-contributions in W .

 $N_l - 1 \equiv h^{1,1} - N_s - 1$ directions remain flat.

 \Rightarrow natural inflaton candidates

Step 2: Subleading $\mathcal{O}(g_s)$ corrections due to KK exchange and winding modes fix the remaining d.o.f. The potential for these moduli is flatter and thus suitable for slow roll inflation.

A simple model with $h^{1,1} = 3$ (see e.g. 1801.05434)

In suitable divisor basis \hat{D}_b , \hat{D}_f , \hat{D}_s with D_s 'diagonal' (i.e. only $k_{sss} \neq 0$, while $k_{ijs} = 0, \forall i \neq s \neq j$, the internal volume is:

$$
\mathcal{V}=\lambda_1\tau_b\sqrt{\tau_f}-\lambda_j{\tau_s}^{3/2}
$$

A Assuming only α'^3 corrections and

$$
W = W_0 + A_s e^{-ia_sT_s}, T_s = c_s - i\tau_s
$$

where c_s is the C_4 axion.

 \blacktriangle The scalar potential admits Large Volume minimum if: $1)\chi < 0$, which implies $h^{1,1} < h^{2,2}$ and $\xi > 0$.

2) The D_s divisor supports NP-effects

 \triangle This minimal case $h^{1,1} = 3$ leaves only one flat direction τ_f .

String Loop Effects (hep-th/0507131,...,0704.0737)

Subleading string-loop effects known as KK and winding types generate new $V_{g_s}^{KK} + V_{g_s}^{W}$ subleading potential terms for τ_f . Scalar potential to leading order in minimal FI model:

$$
V_{\text{LVS}} \approx \frac{|W_0|^2}{\mathcal{V}^2} \left(\frac{\beta_1}{\tau_f^2} - \frac{\beta_2}{\mathcal{V}\sqrt{\tau_f}} + \frac{\beta_3 \tau_f}{\mathcal{V}^2} \right) + V_{up}
$$

 $\beta_{1,2,3}$ positive constants, functions of (W_0, ξ, A_s, k_{sss}) and V_{up} uplift term required to achieve dS minimum.

Kähler Cone Constraints

The Kähler moduli space must be such so that ensures a positive definite Kähler form: $\int_{C_{\ell}} J > 0$

This Kähler Cone Condition (KCC) concerns all topologically non-trivial effective curves C_i in the internal manifold (*Mori Cone*). Thus, while at leading order τ_f remains flat, fixing of V and τ_s puts bound on field range of τ_f .

KCC translates to constraints of the form

$$
\sum_{\beta} n_{\alpha\beta} t^{\beta} > 0, \quad n_{\alpha\beta} \in \mathbf{Z}
$$

For $h^{1,1} = 3 \Rightarrow n_s t^s + n_b t^b + n_f t^f > 0$ which implies

$$
\frac{n_f}{\tau_f} \left(\mathcal{V} + \lambda_s \tau_s^{3/2} \right) + 2\sqrt{2} \lambda_b \, n_b \sqrt{\tau_f} > 3\lambda_s \, n_s \sqrt{\tau_s}.\tag{10}
$$

In the case of exceptional divisor, ∃ diagonal basis where the KCC condition becomes

 $t^s < 0 \leftrightarrow \tau_s > 0$

Generically, for admissible $\{n_b, n_f, n_s\}$ sets, there are corresponding upper bounds. For example, in ^a typical model one finds

 $6 < \tau_f < 208$

For the canonical field $\varphi \sim \sqrt{2}/3 \log(\tau_f)$, these bounds imply:

 $\varphi \lesssim 2.5$

Notice however, that for a successful slow roll we need

 $\varphi \sim \mathcal{O}(10)M_{Pl}$

The *perturbative LVS* (*Antoniadis et al 1909.10525*) provides ^a new way to realise LVS inflation, and in particular Fibre Inflation, without implementing non-perturbative effects.

Hence use of **rigid** exceptional divisors can be circumvented, and Kähler Cone Conditions do not put strong bound on the inflaton field's range.

We will demonstrate this feature by considering ^a compact connected manifold with smooth geometry, more concretely a K3-fibred CY orientifold with toroidal-like volume.

Global model:

We consider a CY₃ with $h^{1,1} = 3$ (polytope Id: 249 in the CY database of KS/hep-th 0002240)

It is described by the following toric data:

Hodge numbers $(h^{2,1}, h^{1,1}) = (115, 3),$

Euler number $\chi = -224$.

Stanley-Reisner ideal: $SR = \{x_1x_6, x_2x_5, x_3x_4x_7\}$

Analysis of the divisor topologies shows:

\n- **A** The first 6 toric divisors are **K3** surfaces
\n- **A** The 7th one is described by Hodge numbers
$$
\{h^{0,0} = 1, h^{1,0} = 0, h^{2,0} = 27, h^{1,1} = 184\}.
$$
\n- **A** In the divisor basis $\{\hat{D}_1, \hat{D}_2, \hat{D}_3\}$, the Kähler form is $J = t^1 \hat{D}_1 + t^2 \hat{D}_2 + t^3 \hat{D}_3$
\n

 \blacktriangle The only non-zero intersection is $k_{123} = 2$ leading to

$$
\mathcal{V} = 2 t^1 t^2 t^3 = \frac{1}{\sqrt{2}} \sqrt{\tau_1 \tau_2 \tau_3}
$$

 \blacktriangle The Kähler cone conditions are:

KCC:
$$
t^1 > 0
$$
, $t^2 > 0$, $t^3 > 0$. (11)

Subleading corrections

The divisor intersection analysis shows

All the three D7-brane stacks intersect at \mathbb{T}^2

 \triangle There are no non-intersection D7-brane stacks and the

O7-planes along without O3-planes present as well.

Therefore

▲ The model does not induce KK-type string-loop corrections to the Kähler potential.

A Absence of O3-planes \Rightarrow $\overline{D3}$ uplifting is not directly applicable

 \triangle Because D7-brane stacks intersect on non-shrinkable two-torii \exists string-loop effects of the winding-type $V_{a_s}^W = -\frac{\kappa |W|^2}{v^3} \sum_a \frac{C_a^w}{t^a}$

A K3 basis divisor implies non-zero second Chern number $\Rightarrow \exists$ higher derivative $V_{\mathbf{F}^4} \propto \Pi_{\alpha} t^{\alpha}$ corrections

All contributions give rise to the following scalar potential:

$$
V_{\text{eff}} \approx V_{\text{up}} + \frac{\mathcal{C}_1}{\mathcal{V}^3} \left(\hat{\xi} - 4 \hat{\eta} + 2 \hat{\eta} \ln \mathcal{V} \right) \tag{12}
$$

$$
+\frac{\mathcal{C}_2}{\mathcal{V}^4} \bigg(\mathcal{C}_{w_1} \tau_1 + \mathcal{C}_{w_2} \tau_2 + \mathcal{C}_{w_3} \tau_3 + \frac{\mathcal{C}_{w_4} \tau_1 \tau_2}{2(\tau_1 + \tau_2)} \tag{13}
$$

$$
+\frac{\mathcal{C}_{w_5}\tau_2\tau_3}{2(\tau_2+\tau_3)}+\frac{\mathcal{C}_{w_6}\tau_3\tau_1}{2(\tau_3+\tau_1)}\bigg)+\frac{\mathcal{C}_3}{\mathcal{V}^3}\left(\frac{1}{\tau_1}+\frac{1}{\tau_2}+\frac{1}{\tau_3}\right)(14)
$$

where

$$
\mathcal{C}_1 = \frac{3}{4} \kappa |W_0|^2 = \frac{3}{4} \mathcal{C}_2,
$$

$$
\mathcal{C}_3 = -24 \lambda \kappa^2 |W_0|^4 / g_s^{3/2}
$$
 (15)

Part (12) fixes the volume V (*Antoniadis, Chen, GKL 2018*). Parts (13) and (14) fix one more modulus. Then: V_{eff} depends on one modulus, $V_{\text{eff}} = V(\tau_3)$ which drives inflation Inflationary dynamics:

Define the canonically normalised fields,

$$
\varphi^{\alpha} = \frac{1}{\sqrt{2}} \ln \tau_{\alpha}, \ \alpha \in \{1, 2, 3\}, \text{ so that}
$$

$$
\mathcal{V} \propto e^{\frac{1}{\sqrt{2}} (\varphi^1 + \varphi^2 + \varphi^3)}
$$

The scalar potential takes the form

$$
V = C_0 \left(C_{\rm up} + \mathcal{R}_0 e^{-\gamma \phi} - e^{-\frac{\gamma}{2}\phi} + \mathcal{R}_1 e^{\frac{\gamma}{2}\phi} + \mathcal{R}_2 e^{\gamma \phi} \right), \qquad (16)
$$

 $\gamma = \frac{\sqrt{2}}{3}, \varphi = \langle \varphi \rangle + \phi$, and $C_{up} = 1 - \mathcal{R}_0 - \mathcal{R}_1 - \mathcal{R}_2$ is the required up-lift for dS vacuum. Notice $\overline{D3}$ up-lift not possible due to absence of $O(3)$ -planes Nevertheless, D7-brane or T-uplift (1512.04558) can be implemented.

A benchmark model:

$$
C_0 = 5.78 \times 10^{-10}, \ \mathcal{R}_1 = 5.00 \times 10^{-5}, \ \mathcal{R}_2 = 1.00 \times 10^{-7}
$$

which correspond to string parameters:

$$
|W_0| = 145, g_s = 0.3, \langle V \rangle = 1.5 \times 10^4
$$

Efolds, scalar perturbation amplitude, spectral index:

$$
N_e^*
$$
 = 51, $P_s = 2.1 \times 10^{-9}$, n_s^* = 0.966

Figure 1: Plot of spectral index n_s vs tensor-to scalar ratio r.

–28–

In this talk, I have presented the two basic directions that we have explored for ^a fully fledged stringy fibre inflation scenario:

- Realisation of Fibre Inflation in Perturbative LVS. (PLVS)
- It was shown that Kähler Cone Conditions are milder and easy to satisfy in PLVS.
- This gives the opportunity to construct a robust string scenario to realise FI
- \triangle Global Embedding within simple CYs having:
- minimal number of Kähler moduli to accommodate inflation
- simple toroidal volume $V = \sqrt{\tau_1 \tau_2 \tau_3}$.

