



▲ String Theory provides a robust framework to study Physics Phenomena in a vast range of Energies varying from Planck to minuscule scales!

▲ Early (80s) phenomenological explorations focus mostly on model building of GUTs and SM (*still an active research area*)

- ▲ Remarkably, the ensuing years, the implications of String Theory for cosmology have been proved equally important!
- ▲ In fact, in the study of effective field theory models, vital Physics issues near the Planck scale must be addressed!
- ▲ An important issue is that, in compactifications **large numbers** of massless scalar (moduli ) fields appear, which must be stabilised!
- ▲ Then, under the right conditions, such fields can solve important problems in cosmology.

In this talk I will discuss :

▲ Cosmological Inflation in Type IIB compactifications in the context of Large Volume Scenarios (LVS) (hep-th/0502058)

▲ One of the most attractive inflationary models that can be realised in **LVS** is **Fibre Inflation** 

▲ In this context, two basic approaches will be analysed: Non Perturbative & Perturbative

- ▲ The role of Kähler Cone Constraints will be examined in the above two approaches
- ▲ The merits and demerits of these scenarios will be discussed.



The main elements to be used (moduli, fluxes ...)  $(NS_+, NS_+)$ : graviton, dilaton and 2-form Kalb-Ramond-field:

 $g_{\mu\nu}, \phi, B_{\mu\nu} \to B_2$ 

 $(\mathbf{R}_{-}, \mathbf{R}_{-})$ : scalar, 2- and 4-index fields (*p*-form potentials)

 $\mathbf{C}_{\mathbf{0}}, C_{\mu\nu}, C_{\kappa\lambda\mu\nu} \to C_p, \ p = \mathbf{0}, 2, 4$ 

 $\land C_0, \phi \rightarrow$  axion-dilaton modulus:

$$S = C_0 + i e^{-\phi} \equiv C_0 + rac{i}{g_s}$$

▲ Field strengths/magnetic fluxes:

$$F_p := d C_{p-1}, \ H_3 := d B_2, \ \Rightarrow \mathbf{G_3} := F_3 - SH_3$$

 $\land Holomorphic (3,0)-form: \Omega(U_a)$ 

▲ Let  $U^i$  complex-structure (CS) and  $T_{\alpha}$  Kähler moduli  $(T_s = c_s - i\tau_s)$ 

▲ Kähler form J expressed in terms of 2-cycle  $t^k$ , i.e.,  $J = J(t^k)$  is expanded in harmonic forms through definition of the basis

$$\hat{D}_{k}, \ k = 1, 2, \dots, h^{1,1}$$

$$J = \sum_{k=1}^{h^{1,1}} t^k \hat{D}_k,$$
 (1)

Volume of internal space

$$\mathcal{V} = \frac{1}{3!} \int_{CY} J \wedge J \wedge J = \frac{1}{6} k_{ijk} t^i t^j t^k \tag{2}$$

▲ Low energy dynamics of 4D effective SUGRA from type IIB compactified on CY orientifolds can be captured by a holomorphic superpotential W, and a real Kähler potential K

$$\mathcal{W}_0 = \int \mathbf{G}_3 \wedge \Omega(U_a) \tag{3}$$

$$\mathcal{K}_0 = -\log[-i(S-\bar{S})] - 2\log\mathcal{V} - \log[-i\int\Omega\wedge\bar{\Omega}] \qquad (4)$$

▲ The F-term contributions to the scalar potential of 4D  $\mathcal{N} = 1$  from the type IIB encoded in

$$V = e^{\mathcal{K}} (K^{\mathcal{A}\overline{\mathcal{B}}}(D_{\mathcal{A}}W)(D_{\overline{\mathcal{B}}}\overline{W}) - 3|W|^2)$$

# $\star A$ ) <u>Non-Perturbative</u> Moduli Stabilisation

**Moduli stabilisation** in 4D type IIB effective supergravity models follows a **two-step procedure**.

▲ First, one fixes the CS moduli  $U^i$  and the axio-dilaton S by the leading order  $W_0 \equiv W_{\text{flux}}$  induced by the 3-form fluxes  $(F_3, H_3)$ ▲ No scale structure protects the Kähler moduli T, which remain

▲ No-scale structure protects the Kähler moduli  $T_{\alpha}$  which remain flat.

At a second step, they can be stabilised via non-perturbative corrections arising from the whole series of  $\alpha'$  and string-loop  $(g_s)$ corrections:

$$W = W_0 + W_{np}(S, T_{\alpha}),$$
  

$$K = K_{cs} - \ln\left[-i\left(S - \bar{S}\right)\right] - 2\ln\mathcal{Y},$$
(5)

where generally  $\mathcal{Y}$  function of  $\mathcal{V}$ ,  $\alpha'$  and string-loop corrections.

# $\star \mathcal{B}$ ) FIBRE INFLATION (FI)

**FI** models are built in the context of IIB orientifold flux compactifications  $(0808.0691, \ldots, 1709.01518)$ 

The generic geometric set up includes D3/D7 branes and O(3)/O(7) planes

 $\blacktriangle$  The internal (CY) volume is of the generic form

$$\mathcal{V} = f_{\frac{3}{2}}(\tau_i) - \sum_{j=1}^{N_s} \lambda_j \tau_j^{3/2} \tag{6}$$

•  $\tau_i$ : "large" divisors  $i = 1, 2, \ldots N_l$ .

- $\tau_j$ : "small" blow-up rigid divisors  $j = 1, 2, \ldots N_s$ .
- $N_l + N_s = h^{1,1}$ .
- $f_{\frac{3}{2}}$ : degree  $\frac{3}{2}$  homogeneous function of  $\tau_i$

Leading  ${\alpha'}^3$  corrections in the Kähler potential:

$$\boldsymbol{\xi} = -\frac{\zeta(3)}{4(2\pi)^3} \boldsymbol{\chi} = \hat{\xi} \left(\frac{S-\bar{S}}{2i}\right)^{-3/2} \equiv \hat{\boldsymbol{\xi}} g_s^{3/2}$$

The  $\alpha'$  correction is incorporated into the Kähler potential through the shift:

$$\hat{\mathcal{V}} \to \mathcal{U} = \hat{\mathcal{V}} + \frac{\hat{\xi}}{2} \equiv \hat{\mathcal{V}} + \frac{\xi}{2} \left(\frac{S-\bar{S}}{2i}\right)^{3/2} \equiv \hat{\mathcal{V}} + \frac{\xi}{2} \frac{1}{g_s^{3/2}}$$

Then, the  $\alpha'$  corrected Kähler potential acquires the form:

$$\mathcal{K}_{\alpha'} = -\log(-i(S-\bar{S})) - 2\log(\mathcal{U}) - \log(-i\int\Omega\wedge\bar{\Omega}), \quad (7)$$

The GVW superpotantial  $\mathcal{W}_0$  given by

$$\mathcal{W}_0 = \int G_3 \wedge \Omega(z_a) \,, \tag{8}$$

is corrected by non-perturbative contributions.

▲ NP contributions can be generated by divisors which are stable under perturbations and have fixed complex structures, i.e., **rigid** ones, such as del Pezzo (dP) divisors. Thus, generically

$$\mathcal{W} = \mathcal{W}_0 + \sum_k \mathcal{A}_k e^{-a_k T_k} \tag{9}$$

which are generated by D-brane instantons and gaugino condensation.

The coefficients  $\mathcal{A}_k$  may depend on complex structure moduli, but in most cases they are considered constants. Procedure and Conditions

Recall that:

$$\mathcal{V} = f_{\frac{3}{2}}(\tau_i) - \sum_{j=1}^{N_s} \lambda_j \tau_j^{3/2}$$

Step 1: Overall Volume  $\mathcal{V}$  and volumes of  $N_s$  small blow-up divisors  $\tau_j$  are stabilised by  $\alpha'^3$  corrections in K and NP-contributions in W.

 $N_l - 1 \equiv h^{1,1} - N_s - 1$  directions remain flat.

 $\Rightarrow$  natural inflaton candidates

Step 2: Subleading  $\mathcal{O}(g_s)$  corrections due to KK exchange and winding modes fix the remaining d.o.f. The potential for these moduli is flatter and thus suitable for slow roll inflation. **A simple model with**  $h^{1,1} = 3$  (see e.g. 1801.05434)

In suitable divisor basis  $\hat{D}_b, \hat{D}_f, \hat{D}_s$  with  $D_s$  'diagonal' (i.e. only  $k_{sss} \neq 0$ , while  $k_{ijs} = 0, \forall i \neq s \neq j$ ), the internal volume is:

$$\mathcal{V} = \lambda_1 \tau_b \sqrt{\tau_f} - \lambda_j \tau_s^{3/2}$$

 $\blacktriangle$  Assuming only  ${\alpha'}^3$  corrections and

$$W = W_0 + A_s e^{-ia_s T_s}, \ T_s = c_s - i\tau_s$$

where  $c_s$  is the  $C_4$  axion.

▲ The scalar potential admits Large Volume minimum if: 1) $\chi < 0$ , which implies  $h^{1,1} < h^{2,2}$  and  $\xi > 0$ .

2) The  $D_s$  divisor supports NP-effects

▲ This minimal case  $h^{1,1} = 3$  leaves only one flat direction  $\tau_f$ .

#### String Loop Effects (hep-th/0507131,...,0704.0737)

Subleading string-loop effects known as KK and winding types generate new  $V_{g_s}^{KK} + V_{g_s}^W$  subleading potential terms for  $\tau_f$ . Scalar potential to leading order in minimal FI model:

$$V_{\rm LVS} \approx \frac{|W_0|^2}{\mathcal{V}^2} \left( \frac{\beta_1}{\tau_f^2} - \frac{\beta_2}{\mathcal{V}\sqrt{\tau_f}} + \frac{\beta_3\tau_f}{\mathcal{V}^2} \right) + V_{up}$$

 $\beta_{1,2,3}$  positive constants, functions of  $(W_0, \xi, A_s, k_{sss})$  and  $V_{up}$  uplift term required to achieve dS minimum.

### Kähler Cone Constraints

The Kähler moduli space must be such so that ensures a positive definite Kähler form:  $\int_{C} J > 0$ 

This Kähler Cone Condition (KCC) concerns all topologically non-trivial effective curves  $C_i$  in the internal manifold (*Mori Cone*). Thus, while at leading order  $\tau_f$  remains flat, fixing of  $\mathcal{V}$  and  $\tau_s$ puts bound on field range of  $\tau_f$ .

KCC translates to constraints of the form

$$\sum_{\beta} n_{\alpha\beta} t^{\beta} > 0, \quad n_{\alpha\beta} \in \mathbf{Z}$$

For  $h^{1,1} = 3 \implies n_s t^s + n_b t^b + n_f t^f > 0$  which implies

$$\frac{n_f}{\tau_f} \left( \mathcal{V} + \lambda_s \tau_s^{3/2} \right) + 2\sqrt{2} \,\lambda_b \, n_b \sqrt{\tau_f} > 3\lambda_s \, n_s \sqrt{\tau_s}. \tag{10}$$

In the case of exceptional divisor,  $\exists$  diagonal basis where the KCC condition becomes

 $t^s < 0 \leftrightarrow \tau_s > 0$ 

Generically, for admissible  $\{n_b, n_f, n_s\}$  sets, there are corresponding upper bounds. For example, in a typical model one finds

 $6 < \tau_f < 208$ 

For the canonical field  $\varphi \sim \sqrt{2}/3 \log(\tau_f)$ , these bounds imply:

 $\varphi \lesssim 2.5$ 

Notice however, that for a successful slow roll we need

 $\varphi \sim \mathcal{O}(10) M_{Pl}$ 



The *perturbative LVS* (*Antoniadis et al 1909.10525*) provides a new way to realise LVS inflation, and in particular Fibre Inflation, without implementing non-perturbative effects.

▲ Hence use of **rigid** exceptional divisors can be circumvented, and Kähler Cone Conditions <u>do not put strong bound</u> on the inflaton field's range.

We will demonstrate this feature by considering a compact connected manifold with smooth geometry, more concretely a K3-fibred CY orientifold with toroidal-like volume.

#### Global model:

We consider a CY<sub>3</sub> with  $h^{1,1} = 3$  (polytope Id: 249 in the CY database of KS/hep-th 0002240)

It is described by the following toric data:

| Нур | $x_1$ | $x_2$ | $x_3$ | $x_4$ | $x_5$ | $x_6$ | $x_7$ |
|-----|-------|-------|-------|-------|-------|-------|-------|
| 4   | 0     | 0     | 1     | 1     | 0     | 0     | 2     |
| 4   | 0     | 1     | 0     | 0     | 1     | 0     | 2     |
| 4   | 1     | 0     | 0     | 0     | 0     | 1     | 2     |
|     | K3    | K3    | K3    | K3    | K3    | K3    | SD    |

Hodge numbers  $(h^{2,1}, h^{1,1}) = (115, 3),$ 

Euler number  $\chi = -224$ .

Stanley-Reisner ideal:  $SR = \{x_1x_6, x_2x_5, x_3x_4x_7\}$ 

Analysis of the divisor topologies shows:

▲ The first 6 toric divisors are K3 surfaces  
▲ The 7<sup>th</sup> one is described by Hodge numbers  
{
$$h^{0,0} = 1, h^{1,0} = 0, h^{2,0} = 27, h^{1,1} = 184$$
}.  
▲ In the divisor basis { $\hat{D}_1, \hat{D}_2, \hat{D}_3$ }, the Kähler form is

 $J = t^1 D_1 + t^2 D_2 + t^3 D_3$ 

▲ The only non-zero intersection is  $k_{123} = 2$  leading to

$$\mathcal{V} = 2 t^1 t^2 t^3 = \frac{1}{\sqrt{2}} \sqrt{\tau_1 \tau_2 \tau_3}$$

▲ The Kähler cone conditions are:

KCC: 
$$t^1 > 0, \quad t^2 > 0, \quad t^3 > 0.$$
 (11)

### Subleading corrections

The divisor intersection analysis shows

 $\blacktriangle$  All the three  $D7\text{-}\mathrm{brane}$  stacks intersect at  $\mathbb{T}^2$ 

 $\blacktriangle$  There are <u>no non-intersection *D7*-brane stacks</u> and the

O7-planes along without O3-planes present as well.

## Therefore

▲ The model does not induce KK-type string-loop corrections to the Kähler potential.

▲ Absence of O3-planes  $\Rightarrow \overline{D3}$  uplifting is not directly applicable

A Because *D7*-brane stacks intersect on <u>non-shrinkable</u> two-torii

- $\exists$  string-loop effects of the winding-type  $V_{g_s}^{\mathbf{W}} = -\frac{\kappa |W|^2}{\mathcal{V}^3} \sum_a \frac{C_a^w}{t^a}$
- ▲ K3 basis divisor implies non-zero second Chern number ⇒ ∃ higher derivative  $V_{\rm F^4} \propto \Pi_{\alpha} t^{\alpha}$  corrections

All contributions give rise to the following scalar potential:

$$V_{\text{eff}} \approx V_{\text{up}} + \frac{\mathcal{C}_1}{\mathcal{V}^3} \left( \hat{\xi} - 4\,\hat{\eta} + 2\,\hat{\eta}\,\ln\mathcal{V} \right) \tag{12}$$

$$+\frac{\mathcal{C}_2}{\mathcal{V}^4} \left( \mathcal{C}_{w_1} \tau_1 + \mathcal{C}_{w_2} \tau_2 + \mathcal{C}_{w_3} \tau_3 + \frac{\mathcal{C}_{w_4} \tau_1 \tau_2}{2(\tau_1 + \tau_2)} \right)$$
(13)

$$+\frac{\mathcal{C}_{w_5}\tau_2\tau_3}{2(\tau_2+\tau_3)}+\frac{\mathcal{C}_{w_6}\tau_3\tau_1}{2(\tau_3+\tau_1)}\right)+\frac{\mathcal{C}_3}{\mathcal{V}^3}\left(\frac{1}{\tau_1}+\frac{1}{\tau_2}+\frac{1}{\tau_3}\right)(14)$$

where

$$C_{1} = \frac{3}{4} \kappa |W_{0}|^{2} = \frac{3}{4} C_{2},$$

$$C_{3} = -24 \lambda \kappa^{2} |W_{0}|^{4} / g_{s}^{3/2}$$
(15)

Part (12) fixes the volume  $\mathcal{V}$  (*Antoniadis, Chen, GKL 2018*). Parts (13) and (14) fix one more modulus. Then:  $V_{\text{eff}}$  depends on one modulus,  $V_{\text{eff}} = V(\tau_3)$  which drives inflation Inflationary dynamics:

Define the canonically normalised fields,

$$\varphi^{\alpha} = \frac{1}{\sqrt{2}} \ln \tau_{\alpha}, \ \alpha \in \{1, 2, 3\}, \text{ so that}$$
$$\mathcal{V} \propto e^{\frac{1}{\sqrt{2}}(\varphi^{1} + \varphi^{2} + \varphi^{3})}$$

The scalar potential takes the form

$$V = \mathcal{C}_0 \left( \mathcal{C}_{up} + \mathcal{R}_0 e^{-\gamma\phi} - e^{-\frac{\gamma}{2}\phi} + \mathcal{R}_1 e^{\frac{\gamma}{2}\phi} + \mathcal{R}_2 e^{\gamma\phi} \right), \quad (16)$$

 $\gamma = \frac{\sqrt{2}}{3}, \varphi = \langle \varphi \rangle + \phi$ , and  $C_{up} = 1 - \mathcal{R}_0 - \mathcal{R}_1 - \mathcal{R}_2$ is the required up-lift for dS vacuum. Notice  $\overline{D3}$  up-lift not possible due to absence of O(3)-planes Nevertheless, D7-brane or *T*-uplift (1512.04558) can be implemented. A benchmark model:

 $C_0 = 5.78 \times 10^{-10}, \ \mathcal{R}_1 = 5.00 \times 10^{-5}, \ \mathcal{R}_2 = 1.00 \times 10^{-7}$ 

which correspond to string parameters:

$$|W_0| = 145, g_s = 0.3, \langle \mathcal{V} \rangle = 1.5 \times 10^4$$



Efolds, scalar perturbation amplitude, spectral index:

$$N_e^* = 51, P_s = 2.1 \times 10^{-9}, n_s^* = 0.966$$



Figure 1: Plot of spectral index  $n_s$  vs tensor-to scalar ratio r.



-28-

In this talk, I have presented the two basic directions that we have explored for a fully fledged stringy fibre inflation scenario:

- ▲ <u>Realisation of Fibre Inflation in Perturbative LVS.</u> (PLVS)
- It was shown that Kähler Cone Conditions are milder and easy to satisfy in PLVS.
- This gives the opportunity to construct a robust string scenario to realise FI
- ▲▲ Global Embedding within simple CYs having:
- minimal number of Kähler moduli to accommodate inflation
- simple toroidal volume  $\mathcal{V} = \sqrt{\tau_1 \tau_2 \tau_3}$ .

