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PRELUDE
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N String Theory provides a robust framework to study Physics

Phenomena in a vast range of Energies varying

from Planck to minuscule scales!

N Early (80s) phenomenological explorations focus mostly on

model building of GUTs and SM (still an active research area)

N Remarkably, the ensuing years, the implications of String

Theory for cosmology have been proved equally important!

N In fact, in the study of effective field theory models, vital Physics

issues near the Planck scale must be addressed!

N An important issue is that, in compactifications large numbers

of massless scalar (moduli ) fields appear, which must be

stabilised!

N Then, under the right conditions, such fields can solve important

problems in cosmology.
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In this talk I will discuss :

N Cosmological Inflation in Type IIB compactifications in the

context of Large Volume Scenarios (LVS) (hep-th/0502058)

N One of the most attractive inflationary models that can be

realised in LVS is Fibre Inflation

N In this context, two basic approaches will be analysed:

Non Perturbative & Perturbative

N The role of Kähler Cone Constraints will be examined in the

above two approaches

N The merits and demerits of these scenarios will be discussed.
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T YPE IIB SET UP
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The main elements to be used ( moduli, fluxes ...)

(NS+,NS+): graviton, dilaton and 2-form Kalb-Ramond-field:

gµν , φ, Bµν → B2

(R−,R−): scalar, 2- and 4-index fields (p-form potentials)

C0, Cµν , Cκλµν → Cp, p = 0, 2, 4

N C0, φ → axion-dilaton modulus:

S = C0 + i e−φ ≡ C0 +
i

gs

N Field strengths/magnetic fluxes:

Fp := dCp−1, H3 := dB2, ⇒G3 := F3 − SH3

N Holomorphic (3, 0)-form : Ω(Ua)
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N Let U i complex-structure (CS) and Tα Kähler moduli

(Ts = cs − iτs)

N Kähler form J expressed in terms of 2-cycle tk, i.e., J = J(tk) is

expanded in harmonic forms through definition of the basis

D̂k, k = 1, 2, . . . , h1,1

J =

h1,1

∑

k=1

tkD̂k, (1)

Volume of internal space

V =
1

3!

∫

CY

J ∧ J ∧ J =
1

6
kijkt

itjtk (2)
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N Low energy dynamics of 4D effective SUGRA from type IIB

compactified on CY orientifolds can be captured by a holomorphic

superpotential W , and a real Kähler potential K

W0 =

∫

G3 ∧ Ω(Ua) (3)

K0 = − log[−i(S − S̄)]− 2 logV − log[−i

∫

Ω ∧ Ω̄] (4)

N The F-term contributions to the scalar potential of 4D N = 1

from the type IIB encoded in

V = eK(KAB(DAW )(DBW )− 3|W |2)

,
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⋆ A) Non-Perturbative Moduli Stabilisation

Moduli stabilisation in 4D type IIB effective supergravity

models follows a two-step procedure.

N First, one fixes the CS moduli U i and the axio-dilaton S by the

leading order W0 ≡ Wflux induced by the 3-form fluxes (F3, H3)

N No-scale structure protects the Kähler moduli Tα which remain

flat.

At a second step, they can be stabilised via non-perturbative

corrections arising from the whole series of α′ and string-loop (gs)

corrections:

W = W0 +Wnp(S, Tα),

K = Kcs − ln
[

− i (S − S̄)
]

− 2 lnY, (5)

where generally Y function of V , α′ and string-loop corrections.
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⋆ B) FIBRE INFLATION (FI)

FI models are built in the context of IIB orientifold flux

compactifications (0808.0691, . . . , 1709.01518)

The generic geometric set up includes D3/D7 branes and

O(3)/O(7) planes

N The internal (CY) volume is of the generic form

V = f 3

2

(τi)−
Ns
∑

j=1

λjτj
3/2 (6)

• τi: “large” divisors i = 1, 2, . . .Nl.

• τj : “small” blow-up rigid divisors j = 1, 2, . . .Ns.

• Nl +Ns = h1,1.

• f 3

2

: degree 3
2 homogeneous function of τi
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Leading α′3 corrections in the Kähler potential:

ξ = − ζ(3)

4(2π)3
χ = ξ̂

(

S − S̄

2i

)−3/2

≡ ξ̂ g3/2s .

The α′ correction is incorporated into the Kähler potential

through the shift:

V̂ → U = V̂ +
ξ̂

2
≡ V̂ +

ξ

2

(

S − S̄

2i

)3/2

≡ V̂ +
ξ

2

1

gs3/2
.

Then, the α′ corrected Kähler potential acquires the form:

Kα′ = − log(−i(S − S̄))− 2 log(U)− log(−i

∫

Ω ∧ Ω̄), (7)
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The GVW superpotantial W0 given by

W0 =

∫

G3 ∧ Ω(za) , (8)

is corrected by non-perturbative contributions.

N NP contributions can be generated by divisors which are stable

under perturbations and have fixed complex structures, i.e., rigid

ones, such as del Pezzo (dP) divisors. Thus, generically

W = W0 +
∑

k

Ake
−akTk (9)

which are generated by D-brane instantons and gaugino

condensation.

The coefficients Ak may depend on complex structure moduli, but

in most cases they are considered constants.
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Procedure and Conditions

Recall that:

V = f 3

2

(τi)−
Ns
∑

j=1

λjτj
3/2

Step 1: Overall Volume V and volumes of Ns small blow-up

divisors τj are stabilised by α′3 corrections in K and

NP-contributions in W .

Nl − 1 ≡ h1,1 −Ns − 1 directions remain flat.

⇒ natural inflaton candidates

Step 2: Subleading O(gs) corrections due to KK exchange and

winding modes fix the remaining d.o.f.

The potential for these moduli is flatter and thus

suitable for slow roll inflation.
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A simple model with h1,1 = 3 (see e.g. 1801.05434)

In suitable divisor basis D̂b, D̂f , D̂s with Ds ‘diagonal’ (i.e. only

ksss 6= 0, while kijs = 0, ∀i 6= s 6= j), the internal volume is:

V = λ1τb
√
τf − λjτs

3/2

N Assuming only α′3 corrections and

W = W0 +Ase
−iasTs , Ts = cs − iτs

where cs is the C4 axion.

N The scalar potential admits Large Volume minimum if:

1)χ < 0, which implies h1,1 < h2,2 and ξ > 0.

2) The Ds divisor supports NP-effects

N This minimal case h1,1 = 3 leaves only one flat direction τf .
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String Loop Effects (hep-th/0507131,...,0704.0737)

Subleading string-loop effects known as KK and winding types

generate new V KK
gs + V W

gs subleading potential terms for τf .

Scalar potential to leading order in minimal FI model:

VLVS ≈ |W0|2
V2

(

β1

τf 2
− β2

V√τf
+

β3τf
V2

)

+ Vup

β1,2,3 positive constants, functions of (W0, ξ, As, ksss) and

Vup uplift term required to achieve dS minimum.
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Kähler Cone Constraints

The Kähler moduli space must be such so that ensures a positive

definite Kähler form:
∫

Ci

J > 0

This Kähler Cone Condition (KCC) concerns all topologically

non-trivial effective curves Ci in the internal manifold (Mori Cone).

Thus, while at leading order τf remains flat, fixing of V and τs
puts bound on field range of τf .

KCC translates to constraints of the form
∑

β

nαβt
β > 0, nαβ ∈ Z

For h1,1 = 3 ⇒ nst
s + nbt

b + nf t
f > 0 which implies

nf

τf

(

V + λsτ
3/2
s

)

+ 2
√
2λb nb

√
τf > 3λs ns

√
τs. (10)
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In the case of exceptional divisor, ∃ diagonal basis where the KCC

condition becomes

ts < 0 ↔ τs > 0

Generically, for admissible {nb, nf , ns} sets, there are corresponding

upper bounds. For example, in a typical model one finds

6 < τf < 208

For the canonical field ϕ ∼
√
2/3 log(τf ), these bounds imply:

ϕ . 2.5

Notice however, that for a successful slow roll we need

ϕ ∼ O(10)MPl
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PERT URBAT IVE FIBRE INFLAT ION
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The perturbative LVS (Antoniadis et al 1909.10525 ) provides a

new way to realise LVS inflation, and in particular

Fibre Inflation, without implementing non-perturbative effects.

N Hence use of rigid exceptional divisors can be circumvented,

and

Kähler Cone Conditions do not put strong bound on the

inflaton field’s range.

We will demonstrate this feature by considering a compact

connected manifold with smooth geometry, more concretely a

K3-fibred CY orientifold with toroidal-like volume.



–20–

Global model:

We consider a CY3 with h1,1 = 3 (polytope Id: 249 in the CY

database of KS/hep-th 0002240)

It is described by the following toric data:

Hyp x1 x2 x3 x4 x5 x6 x7

4 0 0 1 1 0 0 2

4 0 1 0 0 1 0 2

4 1 0 0 0 0 1 2

K3 K3 K3 K3 K3 K3 SD

Hodge numbers (h2,1, h1,1) = (115, 3),

Euler number χ = −224.

Stanley-Reisner ideal: SR = {x1x6, x2x5, x3x4x7}
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Analysis of the divisor topologies shows:

N The first 6 toric divisors are K3 surfaces

N The 7th one is described by Hodge numbers

{h0,0 = 1, h1,0 = 0, h2,0 = 27, h1,1 = 184}.
N In the divisor basis {D̂1, D̂2, D̂3}, the Kähler form is

J = t1D̂1 + t2D̂2 + t3D̂3

N The only non-zero intersection is k123 = 2 leading to

V = 2 t1 t2 t3 =
1√
2

√
τ1 τ2 τ3

N The Kähler cone conditions are:

KCC: t1 > 0, t2 > 0, t3 > 0. (11)
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Subleading corrections

The divisor intersection analysis shows

N All the three D7-brane stacks intersect at T2

N There are no non-intersection D7-brane stacks and the

O7-planes along without O3-planes present as well.

Therefore

N The model does not induce KK-type string-loop corrections to

the Kähler potential.

N Absence of O3-planes ⇒ D3 uplifting is not directly applicable

N Because D7-brane stacks intersect on non-shrinkable two-torii

∃ string-loop effects of the winding-type V W
gs = −κ|W |2

V3

∑

a
Cw

a

ta

N K3 basis divisor implies non-zero second Chern number ⇒ ∃
higher derivative VF4 ∝ Παt

α corrections
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All contributions give rise to the following scalar potential:

Veff ≈ Vup +
C1
V3

(

ξ̂ − 4 η̂ + 2 η̂ lnV
)

(12)

+
C2
V4

(

Cw1
τ1 + Cw2

τ2 + Cw3
τ3 +

Cw4
τ1τ2

2(τ1 + τ2)
(13)

+
Cw5

τ2τ3
2(τ2 + τ3)

+
Cw6

τ3τ1
2(τ3 + τ1)

)

+
C3
V3

(

1

τ1
+

1

τ2
+

1

τ3

)

(14)

where

C1 =
3

4
κ |W0|2 =

3

4
C2,

C3 = −24λκ2 |W0|4/g3/2s

(15)

Part (12) fixes the volume V (Antoniadis,Chen, GKL 2018).

Parts (13) and (14) fix one more modulus. Then:

Veff depends on one modulus, Veff = V (τ3) which drives inflation
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Inflationary dynamics:

Define the canonically normalised fields,

ϕα =
1√
2
ln τα, α ∈ {1, 2, 3}, so that

V ∝ e
1√
2
(ϕ1+ϕ2+ϕ3)

The scalar potential takes the form

V = C0
(

Cup +R0e
−γφ − e−

γ
2
φ +R1e

γ
2
φ +R2e

γφ
)

, (16)

γ =
√
2
3 , ϕ = 〈ϕ〉+ φ, and Cup = 1−R0 −R1 −R2

is the required up-lift for dS vacuum.

Notice D3 up-lift not possible due to absence of O(3)-planes

Nevertheless, D7-brane or T -uplift (1512.04558) can be

implemented.



–25–

A benchmark model:

C0 = 5.78× 10−10, R1 = 5.00× 10−5, R2 = 1.00× 10−7

which correspond to string parameters:

|W0| = 145, gs = 0.3, 〈V〉 = 1.5× 104
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Efolds, scalar perturbation amplitude, spectral index:

Ne
∗ = 51, Ps = 2.1× 10−9, ns

∗ = 0.966
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Figure 1: Plot of spectral index ns vs tensor-to scalar ratio r.
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CONCLUSIONS
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In this talk, I have presented the two basic directions that we have

explored for a fully fledged stringy fibre inflation scenario:

N Realisation of Fibre Inflation in Perturbative LVS. (PLVS)

• It was shown that Kähler Cone Conditions are milder and easy to

satisfy in PLVS.

• This gives the opportunity to construct a robust string scenario

to realise FI

NN Global Embedding within simple CYs having:

• minimal number of Kähler moduli to accommodate inflation

• simple toroidal volume V =
√
τ1τ2τ3.
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T HANK YOU


