Minimal decaying dark matter: from cosmological tensions to neutrino constraints

Lea Fuß, Mathias Garny, Alejandro Ibarra

based on [arXiv:2403.15543](https://arxiv.org/abs/2403.15543) (soon on JCAP)

The Dark Side of the Universe - Corfu

September 14, 2024

Cosmological tensions: A hint for something new?

Cosmological tensions: A hint for something new?

$$
H_0
$$

$$
S_8
$$

$$
S_8 = \sigma_8 \sqrt{\Omega_m/0.3}
$$

S_8 tension:

persistent tension of 2 − 3*σ* between early and late universe measurements in the clustering on small scales

Cosmological tensions: A hint for something new?

S_8 tension:

persistent tension of $2 - 3\sigma$ between early and late universe measurements in the clustering on small scales

[Abdalla et. al., arXiv:2203.06142]

Decaying Cold Dark Matter

DM model that generates suppression on small scales → **Decaying Cold Dark Matter (DCDM)**

 $DCDM \rightarrow WDM + DR$

Decaying Cold Dark Matter

DM model that generates suppression on small scales → **Decaying Cold Dark Matter (DCDM)**

 $DCDM \rightarrow WDM + DR$

2 parameters: **lifetime** τ , **mass splitting** $\epsilon = \frac{1}{2}$ $\frac{1}{2}\left(1-\frac{m^2}{M^2}\right)$ $\frac{m^2}{M^2}$

Decaying Cold Dark Matter

DM model that generates suppression on small scales → **Decaying Cold Dark Matter (DCDM)**

 $DCDM \rightarrow WDM + DR$

2 parameters: **lifetime** τ , **mass splitting** $\epsilon = \frac{1}{2}$ $\frac{1}{2}\left(1-\frac{m^2}{M^2}\right)$ $\frac{m^2}{M^2}$

 $\dot{\bar{\rho}}_{\rm dcdm} = -$ 3 $\cal{H} \bar{\rho}_{\rm dcdm}$ —a $\bar{\rho}_{\rm dcdm}$ $\dot{\bar{\rho}}_{\text{wdm}} = -3(1+\omega)\mathcal{H}\bar{\rho}_{\text{wdm}}$ $+(1-\epsilon)a\Gamma\bar{\rho}_{\rm dcdm}$ $\dot{\bar{\rho}}_{\rm dr} = -$ 4 ${\cal H} \bar{\rho}_{\rm dr} + \epsilon$ aΓ $\bar{\rho}_{\rm dcdm}$

Suppression through decay

▶ Compute power spectrum with modified CLASS code for DCDM from [Abellan, Murgia, Poulin, arXiv:2102.12498]

Suppression through decay

▶ Compute power spectrum with modified CLASS code for DCDM from [Abellan, Murgia, Poulin, arXiv:2102.12498]

Lyman-*α* forest [LF, Garny, arXiv:2210.06117]

CMB and BAO [Simon et al., arXiv:2203.07440]

Weak lensing shear data [Bucko et al., arXiv:2307.03222]

DM halo evolution [DES Collab., arXiv:2201.11740]

Cosmological Constraints

singles out parameter space of interest to address S_8 tension:

$$
\triangleright \tau \sim 10^{18} \text{ s} \sim 100 \text{ Gyrs}
$$

$$
\triangleright \epsilon \sim 10^{-2}
$$

Question: How can such a model be realized theoretically?

Question: How can such a model be realized theoretically?

Idea: "DR" only has to couple sufficiently weakly to the SM particles to be considered dark

Can DM decay instead into neutrinos?

Question: How can such a model be realized theoretically?

Idea: "DR" only has to couple sufficiently weakly to the SM particles to be considered dark

Can DM decay instead into neutrinos?

Minimal approach: as few ingredients as possible

- ▶ 2 new fermionic particles N_1 and N_2 as DM
- ▶ SM neutrinos as "DR"
- \blacktriangleright described by effective interaction

What we want: (for S_8)

decay into neutrinos with $\tau \sim 10^{18}$ s

What we want: (for S_8)

decay into neutrinos with $\tau \sim 10^{18}$ s

What we need:

(indirect detection constraints)

$$
\begin{array}{c} {\rm decay~into~}e^+/e^-/\gamma \\ {\rm with~}\tau\gtrsim 10^{26}-10^{30}\,{\rm s} \end{array}
$$

What we want: (for S_8)

decay into neutrinos with $\tau \sim 10^{18}$ s

What we need:

(indirect detection constraints)

$$
\begin{array}{c} {\rm decay~into~}e^+/e^-/\gamma \\ {\rm with~}\tau\gtrsim 10^{26}-10^{30}\,{\rm s} \end{array}
$$

Challenge!

 \Rightarrow coupling to SM visible particles needs to be suppressed around 10 orders of magnitude

easiest operators:

$$
\mathcal{L} \sim (\bar{L}N_1)(\bar{N}_2L) + \text{h.c.} \n\mathcal{L} \sim (\bar{L}N_1)(\bar{N}_2L) + \text{h.c.}
$$

operators need to be avoided!

easiest operators:

$$
\mathcal{L} \sim (\bar{L}N_1)(\bar{N}_2L) + \text{h.c.}
$$

$$
\mathcal{L} \sim (\bar{L}N_1)(\bar{N}_2^cL) + \text{h.c.}
$$

operators need to be avoided!

impose 2 U(1) symmetries:

easiest operators:

$$
\mathcal{L} \sim (\bar{L}N_1)(\bar{N}_2L) + \text{h.c.}
$$

$$
\mathcal{L} \sim (\bar{L}N_1)(\bar{N}_2L) + \text{h.c.}
$$

operators need to be avoided!

impose 2 U(1) symmetries:

$$
\begin{array}{c|c|c} \textbf{L} & \textbf{N} \\ \hline N_2 \rightarrow e^{i\alpha} N_2 & N_2 \rightarrow e^{i\alpha} N_2 \\ \hline N_1 \rightarrow e^{i\alpha} N_1 & N_1 \rightarrow e^{-i\alpha} N_1 \end{array}
$$

$$
\Rightarrow \boxed{\mathcal{L}_{\text{int}} = \frac{1}{\Lambda^4} \left(\overline{\tilde{L}} \tilde{H} P_R N_2 \right) \left(\overline{\tilde{L}} \tilde{H} P_R N_1 \right) + \text{h.c.}}
$$

$$
+\text{ h.c. }\qquad\qquad\text{with }\tilde{H}=\left(\tfrac{v_{\text{EW}}+h-iG^0}{\sqrt{2}},-G^-\right)
$$

after electroweak symmetry breaking:

$$
\mathcal{L}_{eff} = \frac{v_{EW}^2}{2\Lambda^4} \, \bar{\nu} P_R N_2 \, \bar{\nu} P_R N_1 + \text{h.c.}
$$

after electroweak symmetry breaking:

$$
\mathcal{L}_{eff}=\tfrac{v_{EW}^2}{2\Lambda^4}\,\bar{\nu}P_R N_2\,\bar{\nu}P_R N_1+h.c.
$$

$$
\Gamma_{N_2 \to N_1 \nu \nu} = \frac{v_{\text{EW}}^4}{1280 \pi^3 \Lambda^8} \left(\epsilon M\right)^5 = \frac{1}{\tau}
$$

 \rightarrow Λ only dependent on model parameters ϵ , τ plus the DM mass M:

$$
\Lambda = \left(\frac{v_{\text{EW}}^4}{1280\pi^3}\tau\left(\epsilon M\right)^5\right)^{1/8}
$$

► e^+e^- production possible via W and Goldstone boson, γ production via e^+e^- loop or Higgs loop

► e^+e^- production possible via W and Goldstone boson, γ production via e^+e^- loop or Higgs loop

 $▶$ heavily suppressed due to phase-space and small $(\epsilon M)/v_{EW}$

diffuse neutrino flux induced by N_2 decay:

$$
\frac{\mathrm{d}\Phi_{\nu}}{\mathrm{d}E_{\nu}}\simeq\frac{1}{4\pi}\frac{1}{\tau M}\frac{1}{3}\frac{\mathrm{d}N}{\mathrm{d}E_{\nu}}D(\Omega)
$$

D-factor:

$$
D(\Omega) = \int d\Omega \int \rho(I) \, \mathrm{d}I,
$$

diffuse neutrino flux induced by N_2 decay:

$$
\frac{\mathrm{d}\Phi_{\nu}}{\mathrm{d}E_{\nu}}\simeq\frac{1}{4\pi}\frac{1}{\tau M}\frac{1}{3}\frac{\mathrm{d}N}{\mathrm{d}E_{\nu}}D(\Omega)
$$

D-factor:

$$
D(\Omega)=\int d\Omega\int \rho(I)\,\mathrm{d}I\,,
$$

neutrino spectrum $\frac{dN}{dE_{\nu}}$ with $\langle E_{\nu} \rangle = \epsilon M/2$

- ▶ Borexino (1*.*8 − 16*.*8 MeV) [Borexino Collab., arXiv:1909.02422]
- ▶ KamLAND (8*.*3 − 30*.*8 MeV) [KamLAND Collab., arXiv:2108.08527]
- ▶ Super-Kamiokande (9*.*3 − 200 MeV) [SK Collab., arXiv:2109.11174; Olivares-Del Campo et al., arXiv:1711.05283]
- ▶ JUNO (2*.*75 − 100 MeV) $[Akita et al., arXiv:2206.06755]$ https://www.weltmaschine.de/neuigkeiten/

Measurement via inverse- β -decay: $\bar{\nu}_e + p \rightarrow e^+ + n$

Closing the window...

$$
M=1\,\hbox{GeV}
$$

...but opening it again!

$$
M=0.3\,\hbox{GeV}
$$

[Hall et al., arXiv:0911.1120]

▶ production after EW symmetry breaking via

 $\nu\nu\rightarrow \textit{N}_{1}\textit{N}_{2},\:\bar{\nu}\bar{\nu}\rightarrow \bar{\textit{N}}_{1}\bar{\textit{N}}_{2}$

 $50\%N_1$, $50\%N_2$

▶ production after EW symmetry breaking via $\nu\nu\rightarrow \textit{N}_{1}\textit{N}_{2},\:\bar{\nu}\bar{\nu}\rightarrow \bar{\textit{N}}_{1}\bar{\textit{N}}_{2}$

▶ freeze-in assumption: neglect back-reaction

$$
\frac{\mathrm{d}n}{\mathrm{d}t}+3Hn=\gamma_{N_1N_2}
$$

 $50\%N_1$, $50\%N_2$

▶ production after EW symmetry breaking via $\nu\nu\rightarrow \textit{N}_{1}\textit{N}_{2},\:\bar{\nu}\bar{\nu}\rightarrow \bar{\textit{N}}_{1}\bar{\textit{N}}_{2}$ **The UP is the UP in the symmetry breaking via** $\nu \rightarrow N_1 N_2$ **,** $\bar{\nu} \bar{\nu} \rightarrow \bar{N}_1 \bar{N}_2$ **

Texa:** $\frac{dn}{dt} + 3Hn = \gamma_{N_1 N_2}$
 Temperature dependence!

▶ freeze-in assumption: neglect back-reaction

$$
\frac{\mathrm{d}n}{\mathrm{d}t}+3Hn=\gamma_{N_1N_2}
$$

 $50\%N_1$, $50\%N_2$

▶ production after EW symmetry breaking via $\nu\nu\rightarrow \textit{N}_{1}\textit{N}_{2},\:\bar{\nu}\bar{\nu}\rightarrow \bar{\textit{N}}_{1}\bar{\textit{N}}_{2}$ **The UP is the UP in the symmetry breaking via** $\nu \rightarrow N_1 N_2$ **,** $\bar{\nu} \bar{\nu} \rightarrow \bar{N}_1 \bar{N}_2$ **

Texa:** $\frac{dn}{dt} + 3Hn = \gamma_{N_1 N_2}$
 Temperature dependence!

▶ freeze-in assumption: neglect back-reaction

$$
\frac{\mathrm{d}n}{\mathrm{d}t}+3Hn=\gamma_{N_1N_2}
$$

 $50\%N_1$, $50\%N_2$

▶ vary reheating temperature T_{rh} up to EW symmetry breaking $T < 160$ GeV

One window still closed,

 $M = 1$ GeV

Lea Fuß DSU (Corfu) 14.09.2024 19

one window still open!

$$
M=0.3\,\hbox{GeV}
$$

Invisible Higgs decay

$$
\blacktriangleright \ \Gamma_h^{\sf SM} \simeq 3.2 \text{MeV with invisible BR} < 12\%
$$

$$
\Gamma_h^{\sf inv} \approx 1.37 \cdot 10^{-20} \text{MeV} \left(\frac{\text{MeV}}{\epsilon M}\right)^5 \left(\frac{100 \text{ Gyrs}}{\tau}\right)
$$

Invisible Higgs decay

$$
\blacktriangleright \ \Gamma_h^{\text{SM}} \simeq 3.2 \text{MeV with invisible BR} < 12\%
$$

$$
\Gamma_h^{\text{inv}} \approx 1.37 \cdot 10^{-20} \text{MeV} \left(\frac{\text{MeV}}{\epsilon M}\right)^5 \left(\frac{100 \text{ Gyrs}}{\tau}\right)
$$

▶ limits from blazar TXS-0506+056 with E*^ν* ∼ 290 TeV measured by IceCube **Itrino-DM scattering**
limits from blazar TXS-0506+056 with $E_\nu \sim 290$ TeV
measured by IceCube
[Ferrer, Herrera, Ibarra, arXiv:2209.06339]

Invisible Higgs decay

►
$$
\Gamma_h^{\text{SM}} \simeq 3.2 \text{MeV}
$$
 with invisible BR \lt 12%
\n $\Gamma_h^{\text{inv}} \approx 1.37 \cdot 10^{-20} \text{MeV} \left(\frac{\text{MeV}}{\epsilon M}\right)^5 \left(\frac{100 \text{ Gyrs}}{\tau}\right)$

Neutrino-DM scattering

▶ limits from blazar TXS-0506+056 with E*^ν* ∼ 290 TeV measured by IceCube **Itrino-DM scattering**
limits from blazar TXS-0506+056 with $E_\nu \sim 290$ TeV
measured by IceCube
[Ferrer, Herrera, Ibarra, arXiv:2209.06339]

only relevant for very small M, *ϵ*, *τ* where EFT starts to become invalid

One step further: going to a **UV complete theory**

One step further: going to a **UV complete theory**

- 1. New and/or improved **phenomenology**?
- 2. Connection to **neutrino masses**?
- 3. Natural explanation for the **mass splitting** between N_1 and N_2 ?

- ▶ Found minimal and effective realization of decaying DM that opens up new phenomenology
- ▶ Complementary constraints from cosmology, neutrino experiments, and freeze-in production
- \triangleright Window in parameter space where all constraints and lower S_8 are satisfied for $M \leq 1$ GeV
- ▶ Possible future testability: JUNO, Euclid

- ▶ Found minimal and effective realization of decaying DM that opens up new phenomenology
- ▶ Complementary constraints from cosmology, neutrino experiments, and freeze-in production
- \triangleright Window in parameter space where all constraints and lower S_8 are satisfied for $M \leq 1$ GeV
- ▶ Possible future testability: JUNO, Euclid

Thank you for your attention!