Minimal decaying dark matter: from cosmological tensions to neutrino constraints

Lea Fuß, Mathias Garny, Alejandro Ibarra

based on arXiv:2403.15543 (soon on JCAP)

The Dark Side of the Universe - Corfu

September 14, 2024

Cosmological tensions: A hint for something new?

Cosmological tensions: A hint for something new?

$$H_0$$
? S_8
$$S_8 = \sigma_8 \sqrt{\Omega_m / 0.3}$$

S_8 tension:

persistent tension of $2-3\sigma$ between early and late universe measurements in the clustering on small scales

Cosmological tensions: A hint for something new?

S_8 tension:

persistent tension of $2-3\sigma$ between early and late universe measurements in the clustering on small scales

Decaying Cold Dark Matter

DM model that generates suppression on small scales \rightarrow Decaying Cold Dark Matter (DCDM)

 $\mathsf{DCDM} \to \mathsf{WDM} + \mathsf{DR}$

Decaying Cold Dark Matter

DM model that generates suppression on small scales \rightarrow Decaying Cold Dark Matter (DCDM)

 $\mathsf{DCDM} \to \mathsf{WDM} + \mathsf{DR}$

2 parameters: lifetime au, mass splitting $\epsilon = \frac{1}{2} \left(1 - \frac{m^2}{M^2} \right)$

Decaying Cold Dark Matter

DM model that generates suppression on small scales \rightarrow Decaying Cold Dark Matter (DCDM)

 $\mathsf{DCDM} \to \mathsf{WDM} + \mathsf{DR}$

2 parameters: lifetime au, mass splitting $\epsilon = \frac{1}{2} \left(1 - \frac{m^2}{M^2} \right)$

 $egin{aligned} & \dot{ar{
ho}}_{
m dcdm} = - \, 3 \mathcal{H} ar{
ho}_{
m dcdm} - a \Gamma ar{
ho}_{
m dcdm} \ & \dot{ar{
ho}}_{
m dcdm} \ & \dot{ar{
ho}}_{
m wdm} = - \, 3 (1 + \omega) \mathcal{H} ar{
ho}_{
m wdm} \ & + (1 - \epsilon) a \Gamma ar{
ho}_{
m dcdm} \ & \dot{ar{
ho}}_{
m dc} \ & \dot{ar{
ho}}_{
m dr} = - \, 4 \mathcal{H} ar{
ho}_{
m dr} + \epsilon a \Gamma ar{
ho}_{
m dcdm} \end{aligned}$

Suppression through decay

 Compute power spectrum with modified CLASS code for DCDM from [Abellan, Murgia, Poulin, arXiv:2102.12498]

Lea Fuß

DSU (Corfu)

Suppression through decay

 Compute power spectrum with modified CLASS code for DCDM from [Abellan, Murgia, Poulin, arXiv:2102.12498]

DSU (Corfu)

Lyman- α forest [LF, Garny, arXiv:2210.06117]

CMB and BAO [Simon et al., arXiv:2203.07440]

Weak lensing shear data [Bucko et al., arXiv:2307.03222]

DM halo evolution [DES Collab., arXiv:2201.11740]

Cosmological Constraints

singles out parameter space of interest to address S_8 tension:

•
$$au \sim 10^{18} \, \mathrm{s} \sim 100 \, \mathrm{Gyrs}$$

 $ightarrow \epsilon \sim 10^{-2}$

Question: How can such a model be realized theoretically?

Question: How can such a model be realized theoretically?

Idea: "DR" only has to couple sufficiently weakly to the SM particles to be considered dark

Can DM decay instead into neutrinos?

Question: How can such a model be realized theoretically?

Idea: "DR" only has to couple sufficiently weakly to the SM particles to be considered dark

Can DM decay instead into neutrinos?

Minimal approach: as few ingredients as possible

- ▶ 2 new fermionic particles N_1 and N_2 as DM
- SM neutrinos as "DR"
- described by effective interaction

What we want: (for S_8)

decay into neutrinos with $au \sim 10^{18}\,{
m s}$

What we want: (for S_8)

decay into neutrinos with $au \sim 10^{18}\,{
m s}$

What we need:

(indirect detection constraints)

decay into
$$e^+/e^-/\gamma$$
 with $au\gtrsim 10^{26}-10^{30}$ s

What we want: (for S_8)

decay into neutrinos with $au \sim 10^{18}\,{
m s}$

What we need:

(indirect detection constraints)

decay into $e^+/e^-/\gamma$ with $au\gtrsim 10^{26}-10^{30}\,{
m s}$

Challenge!

 \Rightarrow coupling to SM visible particles needs to be suppressed around 10 orders of magnitude

easiest operators:

$$egin{aligned} \mathcal{L} &\sim (ar{L}N_1)(ar{N}_2L) + ext{h.c.} \ \mathcal{L} &\sim (ar{L}N_1)(ar{N}_2^cL) + ext{h.c.} \end{aligned}$$

operators need to be avoided!

easiest operators:

$$\mathcal{L} \sim (\bar{L}N_1)(\bar{N}_2L) + ext{h.c.}$$

 $\mathcal{L} \sim (\bar{L}N_1)(\bar{N}_2L) + ext{h.c.}$

operators need to be avoided!

impose 2 U(1) symmetries:

L	N
$N_2 ightarrow e^{ilpha} N_2$	$N_2 ightarrow e^{ilpha} N_2$
$N_1 ightarrow e^{ilpha} N_1$	$N_1 ightarrow e^{-ilpha} N_1$

easiest operators:

$$\mathcal{L} \sim (\bar{L}N_1)(\bar{N}_2L) + ext{h.c.}$$

 $\mathcal{L} \sim (\bar{L}N_1)(\bar{N}_2^2L) + ext{h.c.}$

operators need to be avoided!

impose 2 U(1) symmetries:

$$egin{array}{c|c|c|c|c|} L & \mathsf{N} \ \hline N_2
ightarrow e^{ilpha} N_2 & N_2
ightarrow e^{ilpha} N_2 \ \hline N_1
ightarrow e^{ilpha} N_1 & N_1
ightarrow e^{-ilpha} N_1 \end{array}$$

$$\Rightarrow \qquad \mathcal{L}_{\text{int}} = \frac{1}{\Lambda^4} \left(\bar{L} \tilde{H} P_R N_2 \right) \left(\bar{L} \tilde{H} P_R N_1 \right) + \text{h.c.}$$

with
$$ilde{H}=\left(rac{v_{\mathrm{EW}}+h-iG^{0}}{\sqrt{2}},-G^{-}
ight)$$

after electroweak symmetry breaking:

$$\mathcal{L}_{\mathsf{eff}} = rac{v_{\mathsf{EW}}^2}{2\Lambda^4}\,ar{
u} P_R N_2\,ar{
u} P_R N_1 + \mathsf{h.c.}$$

after electroweak symmetry breaking:

$$\mathcal{L}_{\mathsf{eff}} = rac{v_{\mathsf{EW}}^2}{2\Lambda^4}\,ar{
u} P_R N_2\,ar{
u} P_R N_1 + \mathsf{h.c.}$$

$$\Gamma_{N_2 \to N_1 \nu \nu} = \frac{v_{\mathsf{EW}}^4}{1280 \pi^3 \Lambda^8} \left(\epsilon M\right)^5 = \frac{1}{\tau}$$

 $\rightarrow \Lambda$ only dependent on model parameters ϵ , τ plus the DM mass M:

$$\Lambda = \left(\frac{v_{\rm EW}^4}{1280\pi^3}\tau\,(\epsilon M)^5\right)^{1/8}$$

▶ e^+e^- production possible via W and Goldstone boson, γ production via e^+e^- loop or Higgs loop

▶ e^+e^- production possible via W and Goldstone boson, γ production via e^+e^- loop or Higgs loop

▶ heavily suppressed due to phase-space and small $(\epsilon M)/v_{EW}$

diffuse neutrino flux induced by N_2 decay:

$$rac{\mathrm{d}\Phi_{
u}}{\mathrm{d}E_{
u}}\simeq rac{1}{4\pi}rac{1}{ au M}rac{1}{3}rac{\mathrm{d}N}{\mathrm{d}E_{
u}}D(\Omega)$$

D-factor:

$$D(\Omega) = \int \mathrm{d}\Omega \int
ho(I) \,\mathrm{d}I \,,$$

diffuse neutrino flux induced by N_2 decay:

$$rac{\mathrm{d}\Phi_{
u}}{\mathrm{d}E_{
u}}\simeq rac{1}{4\pi}rac{1}{ au M}rac{1}{3}rac{\mathrm{d}N}{\mathrm{d}E_{
u}}D(\Omega)$$

D-factor:

$$D(\Omega) = \int \mathrm{d}\Omega \int
ho(I) \,\mathrm{d}I\,,$$

neutrino spectrum $\frac{\mathrm{d}N}{\mathrm{d}E_{\nu}}$ with $\langle E_{\nu} \rangle = \epsilon M/2$

- Borexino (1.8 16.8 MeV) [Borexino Collab., arXiv:1909.02422]
- KamLAND (8.3 30.8 MeV) [KamLAND Collab., arXiv:2108.08527]
- Super-Kamiokande (9.3 200 MeV) [SK Collab., arXiv:2109.11174; Olivares-Del Campo et al., arXiv:1711.05283]
- JUNO (2.75 100 MeV) [Akita et al., arXiv:2206.06755]

https://www.weltmaschine.de/neuigkeiten/ neuigkeiten_archiv/2016/ neutrinos_auf_der_goldwaage_das_juno_experiment/

Measurement via inverse-eta-decay: $ar{
u}_{e}+p
ightarrow e^{+}+n$

Closing the window...

$$\mathsf{M}=1\,\mathsf{GeV}$$

DSU (Corfu)

...but opening it again!

 $M = 0.3 \, \text{GeV}$

DSU (Corfu)

[Hall et al., arXiv:0911.1120]

▶ production after EW symmetry breaking via $\nu\nu \rightarrow N_1 N_2, \ \bar{\nu}\bar{\nu} \rightarrow \bar{N}_1 \bar{N}_2$

 $50\% N_1$, $50\% N_2$

• production after EW symmetry breaking via $u\nu \rightarrow N_1 N_2, \ \bar{\nu}\bar{\nu} \rightarrow \bar{N}_1 \bar{N}_2$

freeze-in assumption: neglect back-reaction

$$\frac{\mathrm{d}n}{\mathrm{d}t} + 3Hn = \gamma_{N_1N_2}$$

50%*N*₁, 50%*N*₂

• production after EW symmetry breaking via $u\nu \rightarrow N_1 N_2, \ \bar{\nu}\bar{\nu} \rightarrow \bar{N}_1 \bar{N}_2$

freeze-in assumption: neglect back-reaction

$$\frac{\mathrm{d}n}{\mathrm{d}t} + 3Hn = \gamma_{N_1N_2}$$

50%*N*₁, 50%*N*₂

Temperature dependence!

► production after EW symmetry breaking via $\nu \nu \rightarrow N_1 N_2, \ \bar{\nu} \bar{\nu} \rightarrow \bar{N}_1 \bar{N}_2$

freeze-in assumption: neglect back-reaction

$$\frac{\mathrm{d}n}{\mathrm{d}t} + 3Hn = \gamma_{N_1N_2}$$

50%*N*₁, 50%*N*₂

Temperature dependence!

 \blacktriangleright vary reheating temperature T_{rh} up to EW symmetry breaking T < 160GeV

<u>One window</u> still closed,

 10^{20}

M = 1 GeV<u>b</u>] Ĵ, = 0.12, T_{rh} = 1Ge 0.12, Trh = 10GeV $\Omega h^2 < 0.12$ GeV 10^{19} $\tau \text{ in s}$ 10^{18} 10^{17} 10^{-3} 10^{-2} 10^{-4} 10^{-1}

 $\mathsf{M}=1\,\mathsf{GeV}$

Lea Fuß

DSU (Corfu)

14.09.2024

one window still open!

$$M=0.3\,\text{GeV}$$

Lea Fuß

DSU (Corfu)

14.09.2024 20

Invisible Higgs decay

$$\label{eq:rescaled_states} \begin{array}{l} \blacktriangleright \ \Gamma_h^{SM} \simeq 3.2 \mbox{MeV} \mbox{ with invisible BR} < 12\% \\ \Gamma_h^{inv} \approx 1.37 \cdot 10^{-20} \mbox{MeV} \ \left(\frac{\mbox{MeV}}{\ensuremath{\epsilon M}} \right)^5 \left(\frac{100 \mbox{ Gyrs}}{\ensuremath{\tau}} \right) \end{array}$$

Invisible Higgs decay

$$\begin{array}{l} \blacktriangleright \ \Gamma_h^{SM}\simeq 3.2 \text{MeV} \text{ with invisible BR} < 12\% \\ \Gamma_h^{inv}\approx 1.37\cdot 10^{-20} \text{MeV} \, \left(\frac{\text{MeV}}{\epsilon M}\right)^5 \left(\frac{100\,\text{Gyrs}}{\tau}\right) \end{array}$$

 limits from blazar TXS-0506+056 with E_ν ~ 290 TeV measured by IceCube [Ferrer, Herrera, Ibarra, arXiv:2209.06339]

Invisible Higgs decay

$$\begin{array}{l} \blacktriangleright \ \Gamma_h^{SM}\simeq 3.2 \text{MeV with invisible BR} < 12\% \\ \Gamma_h^{inv}\approx 1.37\cdot 10^{-20} \text{MeV } \left(\frac{\text{MeV}}{\epsilon M}\right)^5 \left(\frac{100\,\text{Gyrs}}{\tau}\right) \end{array}$$

Neutrino-DM scattering

► limits from blazar TXS-0506+056 with E_ν ~ 290 TeV measured by IceCube [Ferrer, Herrera, Ibarra, arXiv:2209.06339]

only relevant for very small *M*, ϵ , τ where EFT starts to become invalid

One step further: going to a UV complete theory

One step further: going to a UV complete theory

- 1. New and/or improved **phenomenology**?
- 2. Connection to **neutrino masses**?
- 3. Natural explanation for the mass splitting between N_1 and N_2 ?

- Found minimal and effective realization of decaying DM that opens up new phenomenology
- Complementary constraints from cosmology, neutrino experiments, and freeze-in production
- \blacktriangleright Window in parameter space where all constraints and lower S_8 are satisfied for $M \lesssim 1 \, {\rm GeV}$
- Possible future testability: JUNO, Euclid

- Found minimal and effective realization of decaying DM that opens up new phenomenology
- Complementary constraints from cosmology, neutrino experiments, and freeze-in production
- \blacktriangleright Window in parameter space where all constraints and lower S_8 are satisfied for $M \lesssim 1 \, {\rm GeV}$
- Possible future testability: JUNO, Euclid

Thank you for your attention!