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Background
Generalized geometry in string and gauge theory

Dualities & fluxes in string/M theory in the framework of double field theory.
Duff ‘90, Tseytlin ‘90, Siegel ‘93, Hull, Zwiebach ‘09, Hohm, Hull, Zwiebach ‘10

Symmetries of DFT - global G = O(d , d)
- local diffeomorphisms plus gauge trafos of 2−form

 use generalized geometry Hitchin ’02; Gualtieri ’04 and Courant algebroids Courant ’90; Liu,

Weinstein, Xu ’97; Roytenberg ’99; Ševera ’17

Establish the geometric origin for the structures appearing in DFT DFT
algebroid Chatzistavrakidis, Khoo, LJ, Szabo ’18; Grewcoe, LJ ’20

Utilize the relation between Courant algebroids and QP2 manifolds Roytenberg ’02 to
study world volume theory corresponding to DFT Chatzistavrakidis, Khoo, LJ, Szabo ’18.
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Background
Generalized geometry in string and gauge theory

In general - AKSZ construction for topological sigma models
Alexandrov, Schwarz, Zaboronsky, Kontsevich ’95

 Solution of classical master equation from QP-structures

QP1↔ Poisson sigma model Ikeda ’93; Schaller, Strobl ’94

QP2↔ Courant sigma model Ikeda ’02, Hofman ’02, Roytenberg ’06.

Geometrical content:

dg-manifold data cf. Maxim’s talk

auxiliary connection Roytenberg ’06; Chatzistavrakidis, LJ ’23



Plan

Main question Generalized connection and curvature for Courant algebroid?

In this talk

Is there fundamental theorem of generalized Riemannian geometry?

Can we find geometric conditions that result in interesting gravity models?

Probably not in this talk

What is a graded manifold formulation of generalized geometry structures?



Courant algebroids & gen’d connections

Courant algebroid: (E , ◦, ρ : E → TM, 〈·, ·〉 ≡ η), (Γ(E), ◦) is a (left) Leibniz
algebra,

η(e, e′ ◦ e′) =
1
2
ρ(e)η(e′, e′) = η(e ◦ e′, e′) .

Generalized connection (“E-on-E” connection): ∇E : Γ(E)× Γ(E)→ Γ(E),

∇E
fee′ = f∇E

ee′ and ∇E
efe′ = f∇E

ee′ + ρ(e)f e′ , e, e′ ∈ Γ(E), f ∈ C∞(M) .

η-compatibility:
(
∇Eη

)
(e, e′, e′′) = 0 = ρ(e)η(e′, e′′)− η(∇E

ee′, e′′)− η(e′,∇E
ee′′) .



Courant algebroids & gen’d connections

Proposals for torsion and curvature tensors, Gualtieri; Jurco, Vysoky; cf. Hohm, Zwiebach

T∇
E
(e, e′, e′′) = η

(
∇E

ee′ −∇E
e′e − e ◦ e′, e′′

)
+ η(∇E

e′′e, e
′) ,

R∇
E
(ê, ê′, e, e′) =

1
2

(
R∇

E

0 (ê, ê′, e, e′) + R∇
E

0 (e′, e, ê′, ê)

)
+ η
(
K (e, e′),K (ê, ê′)

)
.

(
R∇

E

0 (e, e′) = [∇E
e,∇E

e′ ]−∇E
e◦e′ and η(K (e, e′), ê) = η(∇E

êe, e′)
)
.

_ Work well in practice. No Koszul formula. Bianchi identities? Symmetrization?



Courant algebroids & gen’d connections

Graded geometric description of E as symplectic submanifold of M2 = T ∗[2]E [1].
Roytenberg

A canonical degree 2 symplectic structure Ω and a homological vector field Q.

|Q| = 1 and {Q,Q} = 0 .

Compatibility of the graded symplectic and Q structures.

LQΩ = 0 .

A degree 3 Hamiltonian function.

Q = {Θ,−} , {Θ,Θ} = 0 .

The Dorfman bracket is a derived bracket, together with ρ and η are given as

e ◦ e′ = {{Θ, e}, e′}

ρ(e)f = {{Θ, e}, f} ,

η(e, e′) = {e, e′} .



Courant algebroids & lie 2-algebroids

In general, split Qn manifolds correspond to Lie n-algebroids.
Voronov; Sheng, Zhu; Bonavolonta, Poncin; . . .

A Courant algebroid is not a split QP2 manifold, in general.

D Price to pay: an η-compatible TM-on-E connection ∇ : X(M)× Γ(E)→ Γ(E).

_ Then the split graded vector bundle T ∗[1]M ⊕ E admits a Lie 2-algebroid
structure.

_ The brackets are given as higher derived brackets (C∞(M)-linear for k ≥ 3)

`k (e1, . . . , ek ) = {. . . {{Q(k−1), e1}, e2} . . . ek} ,

where the arity k Q(k) w.r.t. the (unweighted) Euler vector field is

{Q(k), ε} = kQ(k) .

For Q1 manifolds, only k = 1, giving the Lie bracket of the Lie (1-)algebroid.



Courant algebroids & lie 2-algebroids

For Courant algebroids, there are Q(k) for k = 0, 1, 2.

Denoting the canonically induced E-on-E connection from the TM-on-E as

∇̇E
ee′ = ∇ρ(e)e′ ,

the Lie 2-algebroid on T ∗[1]M ⊕ E is given by the anchor ρ and the brackets

`1 = −ρ]

`2(e, e′) = e ◦ e′ − η](∇̇E
−e, e′)

`2(e, σ) = Lρ(e)(σ)− (∇−e, ρ∗(σ))

`3(e, e′, e′′) = −η(S∇(e, e′)(−), e′′)

Here S∇ ∈ Γ(E ⊗ E ⊗ E ⊗ TM) is the basic curvature tensor for the TM-on-E

S∇(e1, e2, e3)X = η
(
∇X (e1 ◦ e2)−∇X e1 ◦ e2 − e1 ◦ ∇X e2 −∇∇E

e2
X

e1 +∇∇E
e1

X
e2, e3

)
+ η

(
∇∇E

e3
X

e1, e2
)
, where ∇E

eX = ρ(∇X e) + [ρ(e),X ] .

Another choice of∇ gives L∞ quasi-isomorphic Lie 2-algebroid.



Torsion & curvature revisited

Equipped with the `2 bracket and its properties, define tensors (by construction)

T∇
E

∇ (e, e′) = ∇E
ee′ −∇E

e′e − `2(e, e′) ,

R∇
E

∇ (e, e′) = [∇E
e,∇E

e′ ]−∇E
`2(e,e′) .

n.b.: for ∇̇E (only), the torsion is identical to the Gualtieri torsion.

Also, for ∇̇E the “naive” R0 is a tensor

First and second Bianchi identities simply follow from the construction.

R∇
E

∇ (e, e′)e′′ + �=
(
d∇

E
T∇

E

∇ + `1`3
)
(e, e′, e′′) ,

d∇
E
R∇

E

∇ +∇E
`1`3 = 0 .



Gen’d metric & Koszul formula

Generalized metric: G(e, e′) = η(e, τ(e′)), for τ ∈ End(E) with τ 2 = id.

For a Lie 2-algebroid, unique gen’d metric compatible (∇E G = 0) gen’d
connection:

G(∇E
ee′, e′′) =

1
2

(
ρ(e)G(e′, e′′) + ρ(e′)G(e, e′′)− ρ(e′′)G(e, e′)

−G
(
(T∇

E
+ `2)(e, e′′), e′

)
−G

(
(T∇

E
+ `2)(e′, e′′), e

)
+ G

(
(T∇

E
+ `2)(e, e′), e′′

))
.

Koszul formula for fixed torsion (e.g. zero).



Toward gravity models

There is a Ricci tensor and two ways to construct a Ricci scalar.

Ric∇
E

∇ (e, e′) = Tr
(
R∇

E

∇ (−, e,−, e′)
)
,

RG = TrG(Ric∇
E

∇ ) ,

Rη = Trη(Ric∇
E

∇ ) .

For the data of a Lie2oid (with ∇), the gen’d metric G, a ∇E and a volume form ω:

S =

∫
ω

(
RG + λRη

)
, λ ∈ R .

cf. Jurco, Moučka, Vysoky for a Palatini analog using different curvature and torsion tensors



Geometric conditions for (super)gravity

Specialize to the standard (exact) CAoid with H-twisted Dorfman bracket.

E = TM ⊕ T ∗M , Γ(E) 3 e = (X , ξ) , ρ(e) = X , H ∈ Ω3
cl(M) .

e ◦ e′ =
(
[X ,X ′], LX ξ

′ − ιX ′dξ − H(X ,X ′,−)
)
.

It comes from T ∗[2]T [1]M and we consider a TM-on-E connection that splits it.

We impose geometric conditions that fix ∇, giving ∇E via Koszul for fixed torsion.

Take into account a (pseudo)Riemannian volume form (for a metric g)
motivated by physics, the dilaton field

ω = e−2φ√−g dDx , φ ∈ C∞(M) .



Geometric conditions for (super)gravity

A. Metricity conditions: use G = diag(g, g−1).

∇η = 0 , ∇G = 0 , ∇EG = 0 .

B. Conditions that fix ∇. Define ρg : E → TM, with ρg [(X , ξ)] = X + g−1(ξ).

T ∇̇
E
(X ,Y ) = 0 , X ,Y ∈ Γ(TM) ,

Lρg (e)ω = Tr
(
ρg(∇−e),−

)
ω

Γµa
b =

(
Γ̊µν

ρ − 1
3 Hµνρ + 4

(D−1)δ
[ν
µ ∂

ρ]φ

− 1
3 Hµνρ + 4

(D−1)gµ[ν∂ρ]φ −Γ̊µν
ρ

)

Γ. The trace of the torsion is fixed to be suitably proportional to dφ.

D Then the action functional takes the form (for λ = 0, i.e. only the G-trace,)

S =

∫
dDx

√
−ge−2φ

(
RLC − 1

12
H2 + 4�gφ− 4(∂φ)2

)
.

_ This is precisely the action that originates from the β-functions of the 2D σ-model.
without the criticality
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Summary & outlook

D An alternative route to define torsion and curvature in generalized geometry.
via Lie 2-algebroids, paying the price of a connection, buying advantages like canonical definitions, Bianchi identities & ...

D Analog of the fundamental theorem of Riemannian geometry for gen’d
connections.

D A set of geometric conditions resulting in physically motivated gravity models.

***

_ Ultimately, a full formulation directly within graded geometry would be desirable.
“Generalized gravity as ordinary gravity on a graded manifold”?

_ As a first step, characterize a torsion-free degree zero connection on graded
manifold. work in progress with Th. Chatzistavrakidis and D. Roytenberg

_ Analysis so far indicates that gen’d connections and their tensors are obtained
from ordinary connections and their ordinary tensors (plus the Atiyah cocycle)
on dg manifolds.


