Generalized connections and tensors for Courant algebroids

Larisa Jonke

Division of Theoretical Physics Rudier Bošković Institute, Zagreb

based on

work in progress with Th. Chatzistavrakidis, C. Hull, S. Lavau, P. Schupp

Workshop on Noncommutative and Generalized Geometry in String theory, Gauge theory and Related Physical Models Corfu, September 17 - 24, 2024

KORKARYKERKE PORCH

Background

Generalized geometry in string and gauge theory

Dualities & fluxes in string/M theory in the framework of double field theory. Duff '90, Tseytlin '90, Siegel '93, Hull, Zwiebach '09, Hohm, Hull, Zwiebach '10

Symmetries of DFT - global $G = O(d, d)$ - local diffeomorphisms plus gauge trafos of 2−form

 \rightsquigarrow use generalized geometry Hitchin '02; Gualtieri '04 and Courant algebroids Courant '90; Liu, Weinstein, Xu '97; Roytenberg '99; Ševera '17

KORK EXTERNED ARA

Background

Generalized geometry in string and gauge theory

Dualities & fluxes in string/M theory in the framework of double field theory. Duff '90, Tseytlin '90, Siegel '93, Hull, Zwiebach '09, Hohm, Hull, Zwiebach '10

Symmetries of DFT - global $G = O(d, d)$ - local diffeomorphisms plus gauge trafos of 2−form

 \rightsquigarrow use generalized geometry Hitchin '02; Gualtieri '04 and Courant algebroids Courant '90; Liu, Weinstein, Xu '97; Rovtenberg '99; Ševera '17

- \bullet Establish the geometric origin for the structures appearing in DFT \rightsquigarrow DFT algebroid Chatzistavrakidis, Khoo, LJ, Szabo '18; Grewcoe, LJ '20
- Utilize the relation between Courant algebroids and QP2 manifolds Roytenberg '02 to study world volume theory corresponding to DFT Chatzistavrakidis, Khoo, LJ, Szabo '18.

KORK ERKEY EL POLO

Background

Generalized geometry in string and gauge theory

KORK EXTERNED ARA

In general - AKSZ construction for topological sigma models Alexandrov, Schwarz, Zaboronsky, Kontsevich '95 \rightsquigarrow Solution of classical master equation from QP-structures

- QP1 ↔ Poisson sigma model Ikeda '93; Schaller, Strobl '94
- \bullet QP2 \leftrightarrow Courant sigma model Ikeda '02, Hofman '02, Roytenberg '06.

Geometrical content:

- **o** dg-manifold data cf. Maxim's talk
- **auxiliary connection Roytenberg '06; Chatzistavrakidis, LJ '23**

Main question \rightsquigarrow Generalized connection and curvature for Courant algebroid? In this talk

- Is there fundamental theorem of generalized Riemannian geometry?
- Can we find geometric conditions that result in interesting gravity models?

Probably not in this talk

What is a graded manifold formulation of generalized geometry structures?

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q*

Courant algebroids & gen'd connections

• Courant algebroid: $(E, \circ, \rho : E \to TM, \langle \cdot, \cdot \rangle \equiv \eta)$, (Γ(*E*), \circ) is a (left) Leibniz algebra,

$$
\eta(\mathbf{e},\mathbf{e}'\circ\mathbf{e}')=\frac{1}{2}\rho(\mathbf{e})\eta(\mathbf{e}',\mathbf{e}')=\eta(\mathbf{e}\circ\mathbf{e}',\mathbf{e}').
$$

Generalized connection ("*E*-on-*E*" connection): ∇*^E* : Γ(*E*) × Γ(*E*) → Γ(*E*),

 $\nabla^E_{\theta} e' = f \nabla^E_e e'$ and $\nabla^E_e f e' = f \nabla^E_e e' + \rho(e) f e'$, $e, e' \in \Gamma(E), f \in C^{\infty}(M)$.

 η -compatibility: $(\nabla^E \eta)(e, e', e'') = 0 = \rho(e)\eta(e', e'') - \eta(\nabla^E_e e', e'') - \eta(e', \nabla^E_e e'')\,.$

KORKAR KERKER E VOOR

Courant algebroids & gen'd connections

• Proposals for torsion and curvature tensors, Gualtieri; Jurco, Vysoky; cf. Hohm, Zwiebach

$$
T^{\nabla^{E}}(\mathbf{e}, \mathbf{e}', \mathbf{e}'') = \eta(\nabla_{\mathbf{e}}^{E} \mathbf{e}' - \nabla_{\mathbf{e}'}^{E} \mathbf{e} - \mathbf{e} \circ \mathbf{e}', \mathbf{e}'') + \eta(\nabla_{\mathbf{e}'}^{E} \mathbf{e}, \mathbf{e}'),
$$

\n
$$
R^{\nabla^{E}}(\hat{\mathbf{e}}, \hat{\mathbf{e}}', \mathbf{e}, \mathbf{e}') = \frac{1}{2} \left(R_0^{\nabla^{E}}(\hat{\mathbf{e}}, \hat{\mathbf{e}}', \mathbf{e}, \mathbf{e}') + R_0^{\nabla^{E}}(\mathbf{e}', \mathbf{e}, \hat{\mathbf{e}}', \hat{\mathbf{e}}) \right) + \eta(K(\mathbf{e}, \mathbf{e}'), K(\hat{\mathbf{e}}, \hat{\mathbf{e}}')).
$$

\n
$$
\left(R_0^{\nabla^{E}}(\mathbf{e}, \mathbf{e}') = [\nabla_{\mathbf{e}}^{E}, \nabla_{\mathbf{e}'}^{E}] - \nabla_{\mathbf{e} \circ \mathbf{e}'}^{E} \quad \text{and} \quad \eta(K(\mathbf{e}, \mathbf{e}'), \hat{\mathbf{e}}) = \eta(\nabla_{\hat{\mathbf{e}}}^{E} \mathbf{e}, \mathbf{e}') \right).
$$

KO K K Ø K K E K K E K Y S K Y K K K K K

✿ Work well in practice. No Koszul formula. Bianchi identities? Symmetrization?

Courant algebroids & gen'd connections

- Graded geometric description of E as symplectic submanifold of $M_2 = T^*[2]E[1]$. Roytenberg
- A canonical degree 2 symplectic structure Ω and a homological vector field *Q*.

 $|Q| = 1$ and $\{Q, Q\} = 0$.

Compatibility of the graded symplectic and *Q* structures.

 $L_0\Omega = 0$.

A degree 3 Hamiltonian function.

$$
Q=\left\{\Theta,-\right\},\quad \left\{\Theta,\Theta\right\}=0\,.
$$

The Dorfman bracket is a derived bracket, together with ρ **and** η **are given as**

$$
e \circ e' = \{\{\Theta, e\}, e'\}
$$

\n $\rho(e)f = \{\{\Theta, e\}, f\},$
\n $\eta(e, e') = \{e, e'\}.$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | K 9 Q Q

Courant algebroids & lie 2-algebroids

- In general, split Qn manifolds correspond to Lie n-algebroids. Voronov; Sheng, Zhu; Bonavolonta, Poncin; . . .
- A Courant algebroid is not a split QP2 manifold, in general.
- ✤ Price to pay: an η-compatible *TM*-on-*E* connection ∇ : X(*M*) × Γ(*E*) → Γ(*E*).
- ✿ Then the split graded vector bundle *T* ∗ [1]*M* ⊕ *E* admits a Lie 2-algebroid structure.
- ✿ The brackets are given as higher derived brackets (*C* [∞](*M*)-linear for *k* ≥ 3)

$$
\ell_k(e_1,\ldots,e_k)=\{\ldots\{\{Q^{(k-1)},e_1\},e_2\}\ldots e_k\}\,,
$$

where the arity $k \, Q^{(k)}$ w.r.t. the (unweighted) Euler vector field is

$$
\{Q^{(k)},\varepsilon\}=kQ^{(k)}.
$$

• For Q1 manifolds, only $k = 1$, giving the Lie bracket of the Lie $(1-)$ algebroid.

Courant algebroids & lie 2-algebroids

- For Courant algebroids, there are $Q^{(k)}$ for $k = 0, 1, 2$.
- Denoting the canonically induced *E*-on-*E* connection from the *TM*-on-*E* as

$$
\dot{\nabla}^{\text{E}}_{\theta} \textit{\textbf{e}}^{\prime} = \nabla_{\rho(\textit{\textbf{e}})} \textit{\textbf{e}}^{\prime}\,,
$$

the Lie 2-algebroid on $\mathcal{T}^*[1]M \oplus E$ is given by the anchor ρ and the brackets

$$
\ell_1 = -\rho^{\sharp}
$$

\n
$$
\ell_2(\mathbf{e}, \mathbf{e}') = \mathbf{e} \circ \mathbf{e}' - \eta^{\sharp} (\dot{\nabla}^E_{-} \mathbf{e}, \mathbf{e}')
$$

\n
$$
\ell_2(\mathbf{e}, \sigma) = L_{\rho(\mathbf{e})}(\sigma) - (\nabla_{-} \mathbf{e}, \rho^*(\sigma))
$$

\n
$$
\ell_3(\mathbf{e}, \mathbf{e}', \mathbf{e}'') = -\eta(\mathbf{S}^{\nabla}(\mathbf{e}, \mathbf{e}')(-), \mathbf{e}'')
$$

Here *S* [∇] ∈ Γ(*E* ⊗ *E* ⊗ *E* ⊗ *TM*) is the basic curvature tensor for the *TM*-on-*E* $\mathcal{S}^\nabla(\mathit{e}_1,\mathit{e}_2,\mathit{e}_3)X=\eta\big(\nabla_X(\mathit{e}_1\circ\mathit{e}_2)-\nabla_X\mathit{e}_1\circ\mathit{e}_2-\mathit{e}_1\circ\nabla_X\mathit{e}_2-\nabla_{\overline\nabla^E_{\mathit{e}_2}X}\mathit{e}_1+\nabla_{\overline\nabla^E_{\mathit{e}_1}X}\mathit{e}_2,\mathit{e}_3\big)$ $+\eta(\nabla_{\overline{\nabla}^E_{e_3}X}e_1, e_2), \text{ where } \overline{\nabla}^E_eX = \rho(\nabla_Xe) + [\rho(e), X].$

Another choice of ∇ gives *L*∞ quasi-isomorphic Lie 2-algebroid.

Torsion & curvature revisited

• Equipped with the ℓ_2 bracket and its properties, define tensors (by construction)

$$
\begin{aligned} T_\nabla^{\nabla^E}(\mathbf{e},\mathbf{e}') &= \nabla^E_{\mathbf{e}}\mathbf{e}' - \nabla^E_{\mathbf{e}'}\mathbf{e} - \ell_2(\mathbf{e},\mathbf{e}')\,, \\ R_\nabla^{\nabla^E}(\mathbf{e},\mathbf{e}') &= [\nabla^E_{\mathbf{e}},\nabla^E_{\mathbf{e}'}] - \nabla^E_{\ell_2(\mathbf{e},\mathbf{e}')} \,. \end{aligned}
$$

n.b.: for $\dot{\nabla}^E$ (only), the torsion is identical to the Gualtieri torsion. Also, for $\dot{\nabla}^E$ the "naive" R_0 is a tensor

First and second Bianchi identities simply follow from the construction.

$$
R_{\nabla}^{\nabla^E}(e, e')e'' + \circlearrowright = (d^{\nabla^E} T_{\nabla}^{\nabla^E} + \ell_1 \ell_3)(e, e', e''),
$$

$$
d^{\nabla^E} R_{\nabla}^{\nabla^E} + \nabla_{\ell_1 \ell_3}^E = 0.
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q*

Gen'd metric & Koszul formula

- Generalized metric: $G(e, e') = \eta(e, \tau(e'))$, for $\tau \in \mathsf{End}(E)$ with $\tau^2 = \mathsf{id}.$
- For a Lie 2-algebroid, unique gen'd metric compatible (∇*^EG* = 0) gen'd connection:

$$
G(\nabla_{\theta}^{\varepsilon} e', e'') = \frac{1}{2} \bigg(\rho(e) G(e', e'') + \rho(e') G(e, e'') - \rho(e'') G(e, e') - G((\mathcal{T}^{\nabla \varepsilon} + \ell_2)(e, e''), e') - G((\mathcal{T}^{\nabla \varepsilon} + \ell_2)(e', e''), e) + G((\mathcal{T}^{\nabla \varepsilon} + \ell_2)(e, e'), e'') \bigg).
$$

KO KKO K S A B K S B K V S A V K S

Koszul formula for fixed torsion (e.g. zero).

Toward gravity models

There is a Ricci tensor and two ways to construct a Ricci scalar.

$$
\begin{aligned} &\mathsf{Ric}_{\nabla}^{\nabla^E}(e, e') = \mathsf{Tr}\big(R_{\nabla}^{\nabla^E}(-, e, -, e')\big) \,, \\ &\mathcal{R}^G = \mathsf{Tr}_{G}(\mathsf{Ric}_{\nabla}^{\nabla^E}) \,, \\ &\mathcal{R}^{\eta} = \mathsf{Tr}_{\eta}(\mathsf{Ric}_{\nabla}^{\nabla^E}) \,. \end{aligned}
$$

For the data of a Lie2oid (with ∇), the gen'd metric G , a ∇^{ε} and a volume form ω :

$$
S = \int \omega \bigg(\mathcal{R}^G + \lambda \mathcal{R}^{\eta} \bigg) , \quad \lambda \in \mathbb{R} .
$$

KO KKO K S A B K S B K V S A V K S

cf. Jurco, Moučka, Vysoky for a Palatini analog using different curvature and torsion tensors

Specialize to the standard (exact) CAoid with *H*-twisted Dorfman bracket.

$$
E = TM \oplus T^*M, \quad \Gamma(E) \ni e = (X, \xi), \quad \rho(e) = X, \quad H \in \Omega^3_{\text{cl}}(M).
$$

$$
e \circ e' = ([X, X'], L_X\xi' - \iota_{X'}d\xi - H(X, X', -)).
$$

- It comes from *T* ∗ [2]*T*[1]*M* and we consider a *TM*-on-*E* connection that splits it.
- We impose geometric conditions that fix ∇ , giving ∇^{E} via Koszul for fixed torsion.
- Take into account a (pseudo)Riemannian volume form (for a metric *g*) motivated by physics, the dilaton field

$$
\omega = e^{-2\phi} \sqrt{-g} d^D x, \quad \phi \in C^{\infty}(M).
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | K 9 Q Q

A. Metricity conditions: use $G = diag(g, g^{-1})$.

$$
\nabla \eta = 0, \qquad \nabla G = 0, \qquad \nabla^E G = 0.
$$

B. Conditions that fix ∇ . Define $\rho_g : E \to \mathcal{T}M$, with $\rho_g[(X, \xi)] = X + g^{-1}(\xi)$.

$$
T^{\nabla^{E}}(X, Y) = 0, \quad X, Y \in \Gamma(TM),
$$

$$
L_{\rho_{g}(\theta)} \omega = \text{Tr}(\rho_{g}(\nabla_{-\theta}), -) \omega
$$

KO KKO K S A B K S B K V S A V K S B K S B K S A V S B K S B K S B K S B K S B K S B K S B K S B K S B K S B K

A. Metricity conditions: use $G = diag(g, g^{-1})$.

$$
\nabla \eta = 0, \qquad \nabla G = 0, \qquad \nabla^E G = 0.
$$

B. Conditions that fix ∇ . Define $\rho_g : E \to \mathcal{T}M$, with $\rho_g[(X, \xi)] = X + g^{-1}(\xi)$.

$$
T^{\nabla^{E}}(X, Y) = 0, \quad X, Y \in \Gamma(TM),
$$

$$
L_{\rho_{g}(e)}\omega = \text{Tr}(\rho_{g}(\nabla_{-}e), -)\omega
$$

$$
\Gamma_{\mu a}{}^{b}=\begin{pmatrix} \mathring{\Gamma}_{\mu\nu}{}^{\rho}& -\frac{1}{3}H_{\mu}{}^{\nu\rho}+\frac{4}{(D-1)}\delta_{\mu}^{[\nu}\partial^{\rho]}\phi\\ -\frac{1}{3}H_{\mu\nu\rho}+\frac{4}{(D-1)}g_{\mu[\nu}\partial_{\rho]}\phi& -\mathring{\Gamma}_{\mu\nu}{}^{\rho}\end{pmatrix}
$$

KO KKO K S A B K S B K V S A V K S B K S B K S A V S B K S B K S B K S B K S B K S B K S B K S B K S B K S B K

A. Metricity conditions: use $G = diag(g, g^{-1})$.

$$
\nabla \eta = 0, \qquad \nabla G = 0, \qquad \nabla^E G = 0.
$$

B. Conditions that fix ∇ . Define $\rho_g : E \to \mathcal{T}M$, with $\rho_g[(X, \xi)] = X + g^{-1}(\xi)$.

$$
T^{\nabla^{E}}(X, Y) = 0, \quad X, Y \in \Gamma(TM),
$$

$$
L_{\rho_{g}(e)}\omega = \text{Tr}(\rho_{g}(\nabla_{-}e), -)\omega
$$

$$
\Gamma_{\mu a}{}^{b}=\begin{pmatrix} \mathring{\Gamma}_{\mu\nu}{}^{\rho}& -\frac{1}{3}H_{\mu}{}^{\nu\rho}+\frac{4}{(D-1)}\delta_{\mu}^{[\nu}\partial^{\rho]}\phi \\ -\frac{1}{3}H_{\mu\nu\rho}+\frac{4}{(D-1)}g_{\mu[\nu}\partial_{\rho]}\phi & -\mathring{\Gamma}_{\mu\nu}{}^{\rho}\end{pmatrix}
$$

- Γ. The trace of the torsion is fixed to be suitably proportional to $d\phi$.
- Then the action functional takes the form (for $\lambda = 0$, i.e. only the *G*-trace.)

$$
S = \int d^D x \sqrt{-g} e^{-2\phi} \left(R^{LC} - \frac{1}{12} H^2 + 4 \Box_g \phi - 4 (\partial \phi)^2 \right) \, .
$$

a This is precisely the action that originates from the β -functions of the 2D σ -model. without the criticalityK ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | K 9 Q Q

Summary & outlook

- ✤ An alternative route to define torsion and curvature in generalized geometry. via Lie 2-algebroids, paying the price of a connection, buying advantages like canonical definitions, Bianchi identities & ...
- ✤ Analog of the fundamental theorem of Riemannian geometry for gen'd connections.
- ✤ A set of geometric conditions resulting in physically motivated gravity models.

- ✿ Ultimately, a full formulation directly within graded geometry would be desirable. "Generalized gravity as ordinary gravity on a graded manifold"?
- ✿ As a first step, characterize a torsion-free degree zero connection on graded manifold. work in progress with Th. Chatzistavrakidis and D. Roytenberg
- ✿ Analysis so far indicates that gen'd connections and their tensors are obtained from ordinary connections and their ordinary tensors (plus the Atiyah cocycle) on dg manifolds.