

Reconstruction Methods	Artificial Neural Networks 00000 0	Methodology 0000	Results 000 0	Conclusions O

Take home message

- ANNs are a model independent tool that can help us reconstruct cosmological parameters.
- We can use them to distinguish between the plethora of theories in the literature, based solely on the data without any physical or statistical assumption.

Reconstruction Methods	Artificial Neural Networks 00000 0	Methodology 0000	Results 000 0	Conclusions O

Take home message

- ANNs are a model independent tool that can help us reconstruct cosmological parameters.
- We can use them to distinguish between the plethora of theories in the literature, based solely on the data without any physical or statistical assumption.

In this work,

- We use ANNs to agnostically constrain the value of *M_B* and assess the impact and statistical significance of a possible variation with redshift from the Pantheon+ compilation.
- We find an indication for a possible transition redshift at the $z \approx 1$ region.

Reconstruction Methods ●000	Artificial Neural Networks 00000	Methodology 0000	Results 000 0	Conclusions O
Gaussian processes				

What are Gaussian processes?

Kostas Dialektopoulos

Reconstruction Methods ●000	Artificial Neural Networks 00000	Methodology 0000	Results 000 0	Conclusions O
Gaussian processes				

What are Gaussian processes?

<u>Definition</u>: A GP is a stochastic (random) process where any finite subset is a **multivariant Gaussian distribution** with <u>mean</u> $\mu(x)$ and <u>covariance</u> k(x, x').

Setting each $\mu(x)$ to zero, the **covariance function** can be used to learn the behavior that produced the data points.

Reconstruction Methods ○●○○	Artificial Neural Networks 00000	Methodology 0000	Results 000 0	Conclusions O
Gaussian processes				

Gaussian Process Regression

- The covariance function contains non-physical hyperparameters θ which define the distribution k(θ, x, x').
- Iterating over these values using Bayesian inference (or others) can produce better hyperparameters.
- The result is a model independent reconstruction (in physics) of the behabior of some parameter.
- This is superior to regular fitting because it is nonparametric and so assumes no physical model whatsoever.

	0000			000	0
--	------	--	--	-----	---

Gaussian processes

Squared Exponential H_0 GP (GaPP code: Seikel et al. 2012)

 $H_0 = 67.539 \pm 4.772 \text{km/s/Mpc}$ $H_0 = 67.001 \pm 1.653 \text{km/s/Mpc}$ $H_0 = 66.197 \pm 1.464 \text{km/s/Mpc}$ $H_0 = 73.782 \pm 1.374$ km/s/Mpc $H_0 = 72.022 \pm 1.076$ km/s/Mpc $H_0 = 71.180 \pm 1.025$ km/s/Mpc

Kostas Dialektopoulos

Reconstruction Methods 000●	Artificial Neural Networks 00000	Methodology 0000	Results 000 0	Conclusions O
Gaussian processes				

Open problems with GP reconstructions

 Overfitting: GP is very prone to overfitting for small data sets, which is especially pronounced at the origin, i.e. Hubble constant

• Kernel Selection Problem: There is no natural kernel for cosmology

Kostas Dialektopoulos

Reconstruction Methods 0000	Artificial Neural Networks	Methodology 0000	Results 000 0	Conclusions O
Construction and Training of an AN	IN			

Artificial Neural Networks (ANN)

ReFANN code from Wang et al. (2020)

< □ > < □ > < 三 > < 三 > < 三 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Kostas Dialektopoulos

Reconstruction Methods 0000	Artificial Neural Networks ⊙●○○○	Methodology 0000	Results 000 0	Conclusions O
Construction and Training of an AN	IN			

Training data for the ANN

$$P(z, \alpha, \lambda) = \frac{\lambda^{lpha}}{\Gamma(lpha)} z^{lpha - 1} e^{-\lambda z}$$

Mean: $\sigma_H = 14.25 + 3.42z$ Upper error: $\sigma_H = 21.37 + 10.79z$ Lower error: $\sigma_H = 7.14 - 3.95z$

Kostas Dialektopoulos

Reconstruction Methods 0000	Artificial Neural Networks	Methodology 0000	Results 000 0	Conclusions 0
Construction and Training of an AN	IN			

Designing the ANN

• <u>**Risk**</u>: Optimizes the number of hidden layers and neurons in an ANN risk = $\sum_{i=1}^{N} (\text{Bias}_{i}^{2} + \text{Variance}_{i}) = \sum_{i=1}^{N} ([H_{\text{obs}}(z_{i}) - H_{\text{pred}}(z_{i})]^{2} + \sigma_{H}^{2}(z_{i}))$

Loss: Balances the number of iterations a system needs to predict the observational data

1 Least absolute deviation (L1)

$$L1 = \sum_{i=1}^{N} |H_{ ext{obs}}(z_i) - H_{ ext{pred}}(z_i)|$$

2 Smoothed L1 (SL1)
3 Mean Square Error (MSE)

$$\mathsf{MSE} = \frac{1}{N} \sum_{i=1}^{N} \left(H_{\mathrm{obs}}(z_i) - H_{\mathrm{pred}}(z_i) \right)^2$$

Kostas Dialektopoulos

Reconstruction Methods	Artificial Neural Networks	Methodology	Results	Conclusions
0000		0000	000	O
Construction and Training of an ANN				

Designing the ANN

What we use here

$$\mathrm{L}_{\chi^2} = \sum_{i,j} \left[m_{\mathrm{obs}}(z_i) - m_{\mathrm{pred}}(z_i)
ight]^\mathsf{T} \mathcal{C}_{ij}^{-1} \left[m_{\mathrm{obs}}(z_j) - m_{\mathrm{pred}}(z_j)
ight] \,,$$

where C_{ij} is the total noise covariance matrix of the data, which includes the statistical noise and systematics.

Reconstruction Methods	Artificial Neural Networks	Methodology	Results	Conclusions
0000		0000	000	O
Construction and Training of an ANN				

Building the ANN

Figure: Left: Risk function for one layer (number of neurons 2^n , $n \in 7, ..., 14$), Right: Evolution of L1, SL1 and MSE loss functions

< □ > < □ > < 三 > < 三 > < 三 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Kostas Dialektopoulos

Reconstruction Methods 0000	Artificial Neural Networks	Methodology 0000	Results 000 0	Conclusions O
Reconstructing $H(z)$ and $H'(z)$				

Using the ANN (KD, Levi Said et al. '21) (KD, Mukherjee et al. '23)

Figure: Reconstructed reduced Hubble parameter from the (i) Pantheon SN compilation (left) and (ii) combined CC+BAO Hubble data set (right), using ANNs.

Reconstruction Methods	Artificial Neural Networks 00000 0	Methodology ●000	Results 000 0	Conclusions O

Observational Datasets

- Pantheon+: SNIa observations from 1701 light curves that represent 1550 distinct SNIa spanning the redshift range z < 2.3.
- **CC**: 32 *H*(*z*) measurements, along with the full covariance matrix that includes systematic and calibration errors, as reported in *Moresco, et al, Astrop. J. 2020*.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶ □ □ ● ○ ○ ○

Reconstruction Methods	Artificial Neural Networks 00000 0	Methodology 0●00	Results 000 0	Conclusions O

ANN Training and Validation

- We split the Pantheon+ dataset into training (70%) and validation (30%) sets and we train the network.
- 2 To incorporate the covariance matrix of the dataset, we minimize the χ^2 loss function.
- 3 The optimal network is one with two hidden layers and 128 neurons each.
- 4 The optimal network architecture is iterated over 500 times for random initialization of the hyperparameters along with the dropout effect. Out of these 500 samples, we compute the mean function and the respective uncertainties.

Reconstruction Methods 0000	Artificial Neural Networks 00000 0	Methodology 00●0	Results 000 0	Conclusions O

Theoretical Framework

In a spatially flat Friedmann-Lemaître-Robertson-Walker universe, the luminosity distance is related to the Hubble parameter H(z) at some redshift z, as,

$$d_L(z) = c(1+z) \int_0^z \frac{d\tilde{z}}{H(\tilde{z})}.$$

Kostas Dialektopoulos

Reconstruction Methods	Artificial Neural Networks 00000 0	Methodology 00●0	Results 000 0	Conclusions O

Theoretical Framework

In a spatially flat Friedmann-Lemaître-Robertson-Walker universe, the luminosity distance is related to the Hubble parameter H(z) at some redshift z, as,

$$d_L(z) = c(1+z) \int_0^z \frac{d\tilde{z}}{H(\tilde{z})}.$$

The observed luminosity of SNIa, from a specific redshift, is related to the apparent peak magnitude m via the following relation, independent of any physical model as,

$$m(z) - M_B = 5 \log_{10} \left[\frac{d_L(z)}{1 \text{ Mpc}} \right] + 25.$$

▲ ■ ▶ ▲ ■ ▶ ■ ■ ■ ● ● ● ●

Reconstruction Methods 0000	Artificial Neural Networks 00000 0	Methodology 000●	Results 000 0	Conclusions O

Theoretical Framework

We can rewrite the luminosity distance as,

$$d_L(z) = 10^{\frac{1}{5}[m(z)-M_B-25]}.$$

and we can compute d'_L , the first order derivative of d_L with respect to the redshift z as,

$$d'_L(z) = rac{\log(10)}{5} 10^{-rac{M_B}{5}} m'(z).$$

Combining them, we can express the Hubble parameter as,

$$H(z) = rac{c(1+z)^2}{(1+z)d'_L(z) - d_L(z)}.$$

In this way, we can derive the Hubble parameter H(z), from the Pantheon+ apparent magnitudes m and its corresponding derivatives m' employing specific values of $M_{B_{D}}$, $m' \in \mathbb{R}$, $m \in \mathbb{R}$, $m \in \mathbb{R}$

Kostas Dialektopoulos

Reconstruction Methods	Artificial Neural Networks 00000 0	Methodology 0000	Results ●00 ○	Conclusions O

Constraints on M_B

Figure: ANN reconstruction of the Pantheon+ apparent magnitudes m(z) (left panel) and its corresponding derivatives m'(z) [right panel] at the CC redshifts (z_{CC}).

< □ > < □ > < 三 > < 三 > < 三 > < 三 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Constraints on M_B [Mukherjee, KD, Levi-Said, Mifsud, 2402.10502 (JCAP)]

Reference	Methodology	Datasets	M_B
Camarena & Marra[144]	Cosmography	$\alpha_{BAO} + r_d^{CMB} + Pantheon$ $\theta_{BAO} + r_d^{CMB} + Pantheon$	-19.401 ± 0.027 -19.262 ± 0.030
Mukherjee & Mukherjee[118]	Gaussian Process	CC + Pantheon	-19.387 ± 0.060
Multhonics & Banonics[61]	Caussian Process	CC + Pantheon	-19.360 ± 0.059
Wukherjee & Banerjee[01]	Gaussiali Frocess	$CC + r_{BAO} + Pantheon$	-19.398 ± 0.041
		CC + Pantheon	-19.384 ± 0.052
Dinda & Banerjee[115]	Gaussian Process	BAO + Pantheon	-19.396 ± 0.016
		CC + BAO + Pantheon	-19.395 ± 0.015
Ponisty et al [69]	Nouvel Networks	$\alpha_{BAO} + r_d^{CMB} + Pantheon$	-19.38 ± 0.20
Benisty et al. [08]	Redrai Retworks	$\alpha_{BAO} + r_d^{SH0ES} + Pantheon$	-19.22 ± 0.20
Cámor Valent[145]	Index of Inconsistence	CC + BAO + Pantheon	-19.374 ± 0.080
Gomez-valent[145]	findex of finconsistency	$CC + BAO + Pantheon (\Omega_k \neq 0)$	$-19.362^{+0.078}_{-0.067}$
		CC + Pantheon +	$-19.344^{+0.116}_{-0.090}$
Favale et al [122]	Gaussian Process	CC + BAO + Pantheon +	$-19.314^{+0.086}_{-0.108}$
Tavale ce ut.[122]	Gaussian 1 100035	CC + SH0ES + Pantheon +	$-19.252^{+0.024}_{-0.036}$
		CC + BAO + SH0ES + Pantheon +	$-19.252^{+0.024}_{-0.036}$
Banerjee et al.[119]	Gaussian Process	$CC + r_{BAO} + Pantheon + (\Omega_k \neq 0)$	$-19.404^{+0.099}_{-0.104}$
Shah at al [111]	Nouvel Networks	Pantheon + α_{BAO} + r_d^{CMB}	$-19.394^{+0.018}_{-0.017}$
Shan et at.[111]	incurat inclworks	Pantheon + θ_{BAO} + r_d^{CMB}	$-19.257^{+0.028}_{-0.027}$
This work [*]	Neural Networks	CC & Pantheon+	$-19.353^{+0.073}_{-0.078}$

Figure: Comparison between the model-independent constraints on M_B obtained in this work vs those present in the literature.

Reconstruction Methods

Artificial Neural Networks

Methodolog

Results 00● Conclusions 0

Constraints on M_B [Mukherjee, KD, Levi-Said, Mifsud, 2402.10502 (JCAP)]

Kostas Dialektopoulos

Reconstruction Methods 0000	Artificial Neural Networks 00000 0	Methodology 0000	Results	Conclusions O
Data driven transition on M-				

Cumulative binning method/Redshift layer binning with \bar{z}

Figure: Predictions of the supernovae absolute magnitudes: $M_B(z_{max})$ by adopting cumulative binning, where $M_B(z_{max})$ is the derived value of M_B by considering CC H(z) data up to z_{max} (left panel), and $M_B(\bar{z})$ by adopting the redshift layer binning, where $M_B(\bar{z})$ is the derived value of M_B by considering CC H(z) data within that redshift layer with a mean redshift \bar{z} (right panel). The purple region corresponds to the $1 - \sigma$ model independent constraint $M_B = -19.214 \pm 0.037$, as inferred from the Pantheon and SH0ES data sets.

Kostas Dialektopoulos

Reconstruction Methods	Artificial Neural Networks 00000 0	Methodology 0000	Results 000 0	Conclusions ●

Conclusions

- Given the observed apparent magnitudes *m* of the SNIa, we reconstruct *m*(*z*) using ANNs.
- We express the Hubble parameter inferred from SN-Ia as a function of its peak absolute magnitude.
- We obtain constraints on M_B by minimizing its negative log-likelihood. The result we get is $M_B = -19.353^{+0.073}_{-0.078}$.
- We test the evolution of M_B as a function of redshift and we find a possible transition at $z \simeq 1$.

Reconstruction Methods	Artificial Neural Networks 00000 0	Methodology 0000	Results 000 0	Conclusions ●

Conclusions

- Given the observed apparent magnitudes *m* of the SNIa, we reconstruct *m*(*z*) using ANNs.
- We express the Hubble parameter inferred from SN-Ia as a function of its peak absolute magnitude.
- We obtain constraints on M_B by minimizing its negative log-likelihood. The result we get is $M_B = -19.353^{+0.073}_{-0.078}$.
- We test the evolution of M_B as a function of redshift and we find a possible transition at $z \simeq 1$.

Thank you!

◆□▶ ◆□▶ ◆ヨ▶ ◆ヨ▶ ヨヨ シのの

Om diagnostics (Sahni, Shafieloo, Starobinsky '08) (Shafieloo, Clarkson '10)

Distinguish ACDM from alternative dark energy and modified gravity models:

$$Om(z) = rac{E^2(z) - 1}{(1 + z)^3 - 1}$$
.

Figure: Reconstructed *Om* diagnostics using (i) ANNs (left) and (ii) GPs (right) from the Pantheon SN data for three different priors. **Example 1** Soc

Kostas Dialektopoulos

Constraining theories of gravity

H0 diagnostics (Krishnan, Colgáin, Sheikh-Jabbari, Yang '20)

It is defined as

$$\mathsf{H0} = rac{H(z)}{\sqrt{\Omega_{m0}(1+z)^3+1-\Omega_{m0}}}$$
 ,

and its non-constancy suggests evidence for new physics beyond ACDM.

Figure: Reconstructed H_0 diagnostics using (i) ANNs (left) and (ii) $GPs_{i=0.00}$

Kostas Dialektopoulos

Constraining theories of gravity $_{\odot OOO}$

< □ > < □ > < 三 > < 三 > < 三 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Constraining theories Arjona, Cardona, Nesseris '19

Example: Horndeski mapping:

$$G_2 = K(X), \ G_3 = G(X), \ G_4 = 1/2, \ \text{and} \ G_5 = 0 \,,$$

The action is given by:

$$S = \int \mathrm{d}^4 x \sqrt{-g} \left(rac{R}{2} - \mathcal{K}(X) - \mathcal{G}(X) \Box \phi
ight) + S_{\mathrm{mat}}(\psi, g_{\mu\nu}) \, .$$

Cosmological equations (flat FLRW):

$$K(X) = -3H_0^2 \left(1 - \Omega_{m0}\right) + rac{\mathcal{J}\sqrt{2X}H^2(X)}{H_0^2\Omega_{m0}} - rac{\mathcal{J}\sqrt{2X}(1 - \Omega_{m0})}{\Omega_{m0}},$$

and

$$G_X(X) = -\frac{2\mathcal{J}H'(X)}{3H_0^2\Omega_{m0}}$$

.

Kostas Dialektopoulos

< □ > < □ > < 三 > < 三 > < 三 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

(KFD, Mukherjee, Levi Said, Mifsud '23)

We can also compute the DE EoS as

$$w_{\phi} = \frac{-K + \sqrt{2X} \dot{X} G_X}{K - 2X(K_X + 3\sqrt{2X} H G_X)}$$

Figure: Plots for dark energy EoS $w_{\phi}(z)$ (left) and its compactified form $\arctan(1 + w_{\phi}(z))$ (right) considering R21, TRGB, and P18 H_0 priors. The shaded regions with '-', '|' and '×' hatches represent the 1σ confidence levels for the above priors respectively.

Kostas Dialektopoulos

Figure: Plots showing the posteriors of probability distribution of the compactified dark energy EoS for the theory at some sample redshifts for the R21, TRGB, and P18 H_0 priors, respectively.