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Reconstruction Methods Artificial Neural Networks Methodology Results Conclusions

Take home message

ANNs are a model independent tool that can help us
reconstruct cosmological parameters.
We can use them to distinguish between the plethora of
theories in the literature, based solely on the data without any
physical or statistical assumption.

In this work,
We use ANNs to agnostically constrain the value of MB and
assess the impact and statistical significance of a possible
variation with redshift from the Pantheon+ compilation.
We find an indication for a possible transition redshift at the
z ≈ 1 region.
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Gaussian processes

What are Gaussian processes?

Definition: A GP is a stochastic (random) process where any finite
subset is a multivariant Gaussian distribution with mean µ(x)
and covariance k(x , x ′).

Setting each µ(x) to zero, the covariance function can be used
to learn the behavior that produced the data points.
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Gaussian processes

Gaussian Process Regression

The covariance function contains non-physical
hyperparameters θ which define the distribution k(θ, x , x ′).
Iterating over these values using Bayesian inference (or
others) can produce better hyperparameters.
The result is a model independent reconstruction (in
physics) of the behabior of some parameter.
This is superior to regular fitting because it is nonparametric
and so assumes no physical model whatsoever.
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Gaussian processes

Squared Exponential H0 GP (GaPP code: Seikel et al. 2012)

H0 = 67.539 ± 4.772km/s/Mpc
H0 = 67.001 ± 1.653km/s/Mpc
H0 = 66.197 ± 1.464km/s/Mpc

H0 = 73.782 ± 1.374km/s/Mpc
H0 = 72.022 ± 1.076km/s/Mpc
H0 = 71.180 ± 1.025km/s/Mpc
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Gaussian processes

Open problems with GP reconstructions
Overfitting: GP is very prone to overfitting for small data sets,
which is especially pronounced at the origin, i.e. Hubble constant

Kernel Selection Problem: There is no natural kernel for cosmology
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Construction and Training of an ANN

Artificial Neural Networks (ANN)

ReFANN code from Wang et al. (2020)

Kostas Dialektopoulos
Possible late-time transition of MB inferred via neural networks



Reconstruction Methods Artificial Neural Networks Methodology Results Conclusions

Construction and Training of an ANN

Training data for the ANN

P(z , α, λ) = λα

Γ(α)zα−1e−λz

Mean: σH = 14.25 + 3.42z
Upper error: σH = 21.37 + 10.79z
Lower error: σH = 7.14 − 3.95z
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Construction and Training of an ANN

Designing the ANN
Risk: Optimizes the number of hidden layers and neurons in an ANN

risk =
N∑

i=1
(Bias2

i + Variancei) =
N∑

i=1

(
[Hobs(zi) − Hpred(zi)]2 + σ2

H(zi)
)

Loss: Balances the number of iterations a system needs to predict the
observational data

1 Least absolute deviation (L1)

L1 =
N∑

i=1
|Hobs(zi) − Hpred(zi)|

2 Smoothed L1 (SL1)
3 Mean Square Error (MSE)

MSE = 1
N

N∑
i=1

(Hobs(zi) − Hpred(zi))2
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Construction and Training of an ANN

Designing the ANN

What we use here

Lχ2 =
∑
i ,j

[mobs(zi) − mpred(zi)]T C−1
ij [mobs(zj) − mpred(zj)] ,

where Cij is the total noise covariance matrix of the data, which
includes the statistical noise and systematics.
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Construction and Training of an ANN

Building the ANN

Figure: Left: Risk function for one layer (number of neurons 2n, n ∈ 7, ..., 14),
Right: Evolution of L1, SL1 and MSE loss functions
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Reconstructing H(z) and H′(z)

Using the ANN (KD, Levi Said et al. ’21) (KD, Mukherjee et al. ’23)

Figure: Reconstructed reduced Hubble parameter from the (i) Pantheon SN
compilation (left) and (ii) combined CC+BAO Hubble data set (right), using
ANNs.
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Observational Datasets

Pantheon+: SNIa observations from 1701 light curves that
represent 1550 distinct SNIa spanning the redshift range
z < 2.3.
CC: 32 H(z) measurements, along with the full covariance
matrix that includes systematic and calibration errors, as
reported in Moresco, et al, Astrop. J. 2020 .
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ANN Training and Validation

1 We split the Pantheon+ dataset into training (70%) and
validation (30%) sets and we train the network.

2 To incorporate the covariance matrix of the dataset, we
minimize the χ2 loss function.

3 The optimal network is one with two hidden layers and 128
neurons each.

4 The optimal network architecture is iterated over 500 times
for random initialization of the hyperparameters along with
the dropout effect. Out of these 500 samples, we compute the
mean function and the respective uncertainties.
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Theoretical Framework

In a spatially flat Friedmann-Lemâıtre-Robertson-Walker universe,
the luminosity distance is related to the Hubble parameter H(z) at
some redshift z , as,

dL(z) = c(1 + z)
∫ z

0

dz̃
H(z̃) .

The observed luminosity of SNIa, from a specific redshift, is related
to the apparent peak magnitude m via the following relation,
independent of any physical model as,

m(z) − MB = 5 log10

[ dL(z)
1 Mpc

]
+ 25 .
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Theoretical Framework
We can rewrite the luminosity distance as,

dL(z) = 10
1
5 [m(z)−MB−25].

and we can compute d ′
L, the first order derivative of dL with

respect to the redshift z as,

d ′
L(z) = log(10)

5 10− MB
5 m′(z).

Combining them, we can express the Hubble parameter as,

H(z) = c(1 + z)2

(1 + z)d ′
L(z) − dL(z) .

In this way, we can derive the Hubble parameter H(z), from the
Pantheon+ apparent magnitudes m and its corresponding
derivatives m′ employing specific values of MB.
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Constraints on MB
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Figure: ANN reconstruction of the Pantheon+ apparent magnitudes
m(z) (left panel) and its corresponding derivatives m′(z) [right panel] at
the CC redshifts (zCC).
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Constraints on MB [Mukherjee, KD, Levi-Said, Mifsud, 2402.10502 (JCAP)]

Figure: Comparison between the model-independent constraints on MB
obtained in this work vs those present in the literature.
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Constraints on MB [Mukherjee, KD, Levi-Said, Mifsud, 2402.10502 (JCAP)]
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Data-driven transition on MB
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Figure: Predictions of the supernovae absolute magnitudes: MB(zmax) by
adopting cumulative binning, where MB(zmax) is the derived value of MB by
considering CC H(z) data up to zmax (left panel), and MB(z̄) by adopting the
redshift layer binning, where MB(z̄) is the derived value of MB by considering
CC H(z) data within that redshift layer with a mean redshift z̄ (right panel).
The purple region corresponds to the 1 − σ model independent constraint
MB = −19.214 ± 0.037, as inferred from the Pantheon and SH0ES data sets.
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Conclusions

Given the observed apparent magnitudes m of the SNIa, we
reconstruct m(z) using ANNs.
We express the Hubble parameter inferred from SN-Ia as a
function of its peak absolute magnitude.
We obtain constraints on MB by minimizing its negative
log-likelihood. The result we get is MB = −19.353+0.073

−0.078.
We test the evolution of MB as a function of redshift and we
find a possible transition at z ≃ 1.

Thank you!
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Null tests Constraining theories of gravity

Om diagnostics (Sahni, Shafieloo, Starobinsky ’08) (Shafieloo, Clarkson ’10)

Distinguish ΛCDM from alternative dark energy and modified gravity models:

Om(z) = E 2(z) − 1
(1 + z)3 − 1 .

Figure: Reconstructed Om diagnostics using (i) ANNs (left) and (ii) GPs
(right) from the Pantheon SN data for three different priors.
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H0 diagnostics (Krishnan, Colgáin, Sheikh-Jabbari, Yang ’20)

It is defined as
H0 = H(z)√

Ωm0(1 + z)3 + 1 − Ωm0
,

and its non-constancy suggests evidence for new physics beyond ΛCDM.

Figure: Reconstructed H0 diagnostics using (i) ANNs (left) and (ii) GPs
(right) from the Pantheon SN data for three different priors.Kostas Dialektopoulos
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Constraining theories Arjona, Cardona, Nesseris ’19

Example: Horndeski mapping:

G2 = K (X ), G3 = G(X ), G4 = 1/2, and G5 = 0 ,

The action is given by:

S =
∫

d4x
√

−g
(R

2 − K (X ) − G(X )□ϕ
)

+ Smat(ψ, gµν) .

Cosmological equations (flat FLRW):

K (X ) = −3H2
0 (1 − Ωm0) + J

√
2XH2(X )

H2
0 Ωm0

− J
√

2X (1 − Ωm0)
Ωm0

,

and
GX (X ) = −2J H ′(X )

3H2
0 Ωm0

.
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(KFD, Mukherjee, Levi Said, Mifsud ’23)
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We can also compute the DE EoS as

wϕ = −K +
√

2XẊGX

K − 2X (KX + 3
√

2XHGX )
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Figure: Plots for dark energy EoS wϕ(z) (left) and its compactified form
arctan(1 + wϕ(z)) (right) considering R21, TRGB, and P18 H0 priors.
The shaded regions with ‘−’, ‘|’ and ‘×’ hatches represent the 1σ
confidence levels for the above priors respectively.
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Figure: Plots showing the posteriors of probability distribution of the
compactified dark energy EoS for the theory at some sample redshifts for
the R21, TRGB, and P18 H0 priors, respectively.
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