Anomalous Z'

Karim Benakli Sorbonne Université - CNRS (LPTHE)

Workshop on the Standard Model and Beyond, Corfu 2024

Based on

Pascal Anastasopoulos, Ignatios Antoniadis, K.B., François Rondeau JHEP 07 (2024) 232 + Arno Goudeau (in progress ...)

The general idea

Separating the chiral fermions

Three massless chiral fermions

One massless and two massive chiral fermions

Three massless chiral fermions

Anomaly cancellation among the three

The EFT will look anomalous

One massless and other massive fermions

Three massless chiral fermions Anomaly cancellation among the three

Old story but very few explicit realizations

The EFT will look anomalous

One massless and two massive chiral fermions

Anomaly cancellation lost in the EFT

Many massless chiral fermions Gauge bosons

Hierarchy of Yukawa couplings Hierarchy gauge vs Yukawa couplings

Hierarchy might lead to non-perturbative coupling Example: top quark in SM

Our objective is:

To orchestrate a situation in which the contributions to the anomalies of the $U(1)_A$ gauge symmetry cancel out between:

the light fields present in the effective
 field theory

and

- the (non-observable) heavier chiral fermions.

Aiming for:

Our objective is:

To orchestrate a situation in which the contributions to the anomalies of the $U(\underline{g})$ and $U(\underline{g})$ and

An explicit Model:

The Model Field Content

Our objective is:

To orchestrate a situation in which the contributions to the anomalies of the $U(1)_A$ gauge symmetry cancel out between:

the light fields present in the effective field theory

and

the (non-observable) heavier chiral fermions.

			SU(3)	SU(2)	$U(1)_{V}$	U(1)
SM sector	\mathbf{Q}_{I}^{f}	f = 1, 2, 3	3	2	$\frac{1}{1}$	z^{f}
	$u_{R}^{c,f}$	9))	$\overline{3}$	1	-2/3	z_{u}^{f}
	$d_B^{c,f}$		$\overline{3}$	1	1/3	$z_d^{\widetilde{f}}$
	\mathbf{L}_{L}^{f}		1	2	-1/2	$z^{f}_{\mathbf{L}}$
	$e_R^{\overline{c,f}}$		1	1	1	$z_e^{\overline{f}}$
	$ u_R^{c,f}$		1	1	0	$z^f_{ u}$
Secluded sector	$\psi_L^{\mathbf{L}_i}_{(a),\mathbf{L}_i \ c}$	<i>i</i> — 1 N/-	1	2	$y^i_{\mathbf{L}}$	$q^i_{\mathbf{L}}$
	$(\psi_R) \ \psi_I^{e_j}$	$i = 1,, i \mathbf{V} \mathbf{L}$	1 1	2 1	$-y_{\mathbf{L}}$ $v_{\mathbf{L}}^{j}$	$q_{\mathbf{L}}$
	$(\psi_R^{e_j})^c$	$j = 1,, N_e$	1	1	$-y_e^j$	\widetilde{q}_e^{j}
	$\psi_{L_{L_{i}}}^{a_{k}}$		3	1	y_d^k	q_d^k
	$(\psi_R^{d_k})^c$	$k = 1,, N_d$	$\overline{3}$	1	$-y_d^k$	$\widetilde{q_d}^k$
	$\psi_L^{\mathbf{Q}_m}$		3	2	$y^m_{f Q}$	$q^m_{f Q}$
	$(\psi_R^{\mathbf{Q}_m})^c$	$m = 1,, N_{\mathbf{Q}}$	$\overline{3}$	2	$-y^m_{\mathbf{Q}}$	$\widetilde{q_{\mathbf{Q}}}^n$

 Table 1: The particle content of the model

Masses through Higgses

$$\langle H \rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ v \end{pmatrix}, \quad \langle S \rangle = \frac{v_S}{\sqrt{2}},$$

 $v \ll v_S$

		SU(3)	SU(2)	$U(1)_Y$	U(1
\mathbf{Q}_{L}^{f}	f = 1, 2, 3	3	2	1/6	z
$u_R^{c,f}$		$\overline{3}$	1	-2/3	z
$d_R^{c,f}$		$\overline{3}$	1	1/3	z
$\mathbf{L}_{L_{+}}^{f}$		1	2	-1/2	z
$e_R^{c,f}$		1	1	1	z
${ u}_{R}^{c,f}$		1	1	0	z
Н		1	2	1/2	z_{\perp}
$\psi_{L_{-}}^{\mathbf{L}_{i}}$		1	2	$y^i_{f L}$	q
$(\psi_R^{\mathbf{L}_i})^c$	$i=1,,N_{\mathbf{L}}$	1	2	$-y^i_{f L}$	\widehat{q}_{1}
$\psi_L^{e_j}$		1	1	y_e^j	q
$(\psi^{e_j}_R)^c$	$j = 1,, N_e$	1	1	$-y_e^j$	$\widetilde{q_{e}}$
$\psi_L^{d_k}$		3	1	y_d^k	q
$(\psi_R^{d_k})^c$	$k=1,,N_d$	$\overline{3}$	1	$-y_d^k$	$\widetilde{q_{o}}$
$\psi_L^{\mathbf{Q}_m}$		3	2	$y^m_{\mathbf{Q}}$	q
$(\psi_R^{\mathbf{Q}_m})^c$	$m=1,,N_{\mathbf{Q}}$	$\overline{3}$	2	$-y^m_{\mathbf{Q}}$	\widetilde{q}
\overline{S}		1	1	0	q

$$\langle H \rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ v \end{pmatrix}, \quad \langle S \rangle = \frac{v_S}{\sqrt{2}},$$
$$v \ll v_S$$

gauge boson mass $U(1)_A$ $M_A \sim g_A |q_S| v_S.$

Yukawa terms $Y_{ij}\bar{\psi}_L^i\psi_R^i\tilde{S}$, where by \tilde{S} we denote S or S^*

$$M_{\psi,ij} = Y_{ij} v_S$$

 $Y_{ij} \propto \delta_{ij}$

Masses through Higgses

	SU(3)	SU(2)	$U(1)_Y$	$U(1)_A$
\mathbf{Q}_{L}^{f} $f = 1, 2, 3$	3	2	1/6	$z^f_{\mathbf{Q}}$
$u_R^{c,f}$	$\overline{3}$	1	-2/3	z^f_u
$d_R^{c,f}$	$\overline{3}$	1	1/3	z_d^f
\mathbf{L}_{L}^{f}	1	2	-1/2	$z^{f}_{\mathbf{L}}$
$e_R^{c,f}$	1	1	1	z_e^f
$- u_R^{c,f}$	1	1	0	$z^f_ u$
H	1	2	1/2	z_H
$\psi_L^{{f L}_i}$	1	2	$y^i_{{f L}}$	$q^i_{f L}$
$(\psi_R^{\mathbf{L}_i})^c i = 1,, N$	L 1	2	$-y^i_{f L}$	$\widetilde{q_{\mathbf{L}}}^i$
$\psi_L^{e_j}$	1	1	y_e^j	q_e^j
$(\psi_R^{e_j})^c j=1,,N$	T_e 1	1	$-y_e^j$	$\widetilde{q_e}^j$
$\psi_L^{d_k}$	3	1	y_d^k	q_d^k
$(\psi_R^{d_k})^c k = 1,, N$	V_d $\overline{3}$	1	$-y_d^k$	$\widetilde{q_d}^k$
$\psi_L^{\mathbf{Q}_m}$	3	2	$y^m_{\mathbf{Q}}$	$q^m_{\mathbf{Q}}$
$(\psi_R^{\mathbf{Q}_m})^c m=1,,R$	$N_{\mathbf{Q}}$ $\overline{3}$	2	$-y^m_{\mathbf{Q}}$	$\widetilde{q_{\mathbf{Q}}}^m$
S	1	1	0	q_S

11

Exploration of potential models

The Complete Model anomaly cancellation equations

Cancellation of the anomalies contributions

$Tr[Y]_{SM}$	$= Tr[Y]_{secluded}$	=0,
$Tr[YYY]_{SM}$	$= Tr[YYY]_{secluded}$	=0,
$Tr[YT_2T_2]_{SM}$	$= Tr[YT_2T_2]_{secluded}$	=0,
$Tr[YT_3T_3]_{SM}$	$= Tr[YT_3T_3]_{secluded}$	=0,
$Tr[T_3T_3T_3]_{SM}$	$= Tr[T_3T_3T_3]_{secluded}$	=0,

$$Tr[q_A]_{SM} = -Tr[q_A]_{secluded} \equiv t_A,$$

$$Tr[YYq_A]_{SM} = -Tr[YYq_A]_{secluded} \equiv t_{YYA},$$

$$Tr[Yq_Aq_A]_{SM} = -Tr[Yq_Aq_A]_{secluded} \equiv t_{YAA},$$

$$Tr[q_Aq_Aq_A]_{SM} = -Tr[q_Aq_Aq_A]_{secluded} \equiv t_{AAA},$$

$$Tr[q_AT_2T_2]_{SM} = -Tr[q_AT_2T_2]_{secluded} \equiv t_2,$$

$$Tr[q_AT_3T_3]_{SM} = -Tr[q_AT_3T_3]_{secluded} \equiv t_3.$$

Anomalies contributions = Triangular Feynman diagrams

		SU(3)	SU(2)	$U(1)_Y$	U(1)
\mathbf{Q}_{L}^{f}	f = 1, 2, 3	3	2	1/6	$z^f_{\mathbf{Q}}$
$u_B^{c,f}$		$\overline{3}$	1	-2/3	z_u^f
$d_B^{c,f}$		$\overline{3}$	1	1/3	$z_d^{\widetilde{f}}$
\mathbf{L}_{L}^{f}		1	2	-1/2	$z^{f}_{\mathbf{L}}$
$e_B^{c,f}$		1	1	1	z_e^f
$\nu_B^{c,f}$		1	1	0	$z^{f}_{ u}$
H		1	2	1/2	z_H
$\psi_L^{{f L}_i}$		1	2	$y^i_{\mathbf{L}}$	$q^i_{f L}$
$(\psi_R^{\mathbf{L}_i})^c$	$i = 1,, N_{\mathbf{L}}$	1	2	$-y^i_{f L}$	$\widetilde{q_{\mathbf{L}}}^i$
$\psi_L^{e_j}$		1	1	y_e^j	q_e^j
$(\psi_R^{e_j})^c$	$j = 1,, N_e$	1	1	$-y_e^j$	$\widetilde{q_e}^j$
$\psi_L^{d_k}$		3	1	y_d^k	q_d^k
$(\psi_R^{d_k})^c$	$k = 1,, N_d$	$\overline{3}$	1	$-y_d^k$	$\widetilde{q_d}^k$
$\psi_L^{\mathbf{Q}_m}$		3	2	$y^m_{\mathbf{Q}}$	$q^m_{f Q}$
$(\psi_R^{\mathbf{Q}_m})^c$	$m=1,,N_{\mathbf{Q}}$	$ar{3}$	2	$-y_{\mathbf{Q}}^{m}$	$\widetilde{q}\widetilde{\mathbf{Q}}^{m}$
S		1	1	0	q_S

Exploration of potential models

STEP 1: Reduce number of parameters

Constraints from SM fermions masses

SM Yukawa couplings

$$\begin{aligned} \bar{\mathbf{Q}}_{L}^{i}Hd_{R}^{j} &\to -z_{\mathbf{Q}}^{i}-z_{d}^{j}+z_{H} &= 0, \\ \bar{\mathbf{Q}}_{L}^{i}\tilde{H}u_{R}^{j} &\to -z_{\mathbf{Q}}^{i}-z_{u_{R}}^{j}-z_{H} &= 0, \\ \bar{\mathbf{L}}^{i}He_{R}^{j}, &\to -z_{\mathbf{L}}^{i}-z_{e_{R}}^{j}+z_{H} &= 0. \end{aligned}$$

Dirac neutrino mass

 $\bar{\mathbf{L}}^{i}\tilde{H}\nu_{R}^{j} \rightarrow -z_{\mathbf{L}}^{i} - z_{\nu_{R}}^{j} - z_{H} = 0,$

Majorana neutrino mass

 $\bar{\nu}_R^{c,i}\nu_R^j \frac{\tilde{S}^n}{\Lambda^{n-1}} \quad \to \qquad z_{\nu_R}^i + z_{\nu_R}^j - (\varepsilon_{\nu}^{ij})^n n \ q_S = 0,$

 $\varepsilon_{\nu}^{ij} = \pm 1$ depending if we use S or S^*

		SU(3)	SU(2)	$U(1)_Y$	U(1)
\mathbf{Q}_L^f	f = 1, 2, 3	3	2	1/6	$z^f_{f Q}$
$u_R^{c,f}$		$\overline{3}$	1	-2/3	z_u^f
$d_R^{c,f}$		$\overline{3}$	1	1/3	z_d^f
\mathbf{L}_{L}^{f}		1	2	-1/2	$z^f_{f L}$
$e_R^{c,f}$		1	1	1	z_e^f
$ u_R^{c,f}$		1	1	0	$z^f_{ u}$
H		1	2	1/2	z_H
-					
$\psi_{L_{\perp}}^{\mathbf{L}_{i}}$		1	2	$y^i_{\mathbf{L}}$	$q^i_{\mathbf{L}_{\perp}}$
$(\psi_R^{\mathbf{L}_i})^c$	$i = 1,, N_{\mathbf{L}}$	1	2	$-y^i_{f L}$	$\widetilde{q_{\mathbf{L}}}^i$
$\psi_{L_{c}}^{e_{j}}$		1	1	y_e^j .	$q_{e_{\perp}}^{j}$
$(\psi^{e_j}_R)^c$	$j = 1,, N_e$	1	1	$-y_e^j$	$\widetilde{q_e}^j$
$\psi_L^{d_k}$		3	1	y_d^k	q_d^k
$(\psi_R^{d_k})^c$	$k = 1,, N_d$	$\overline{3}$	1	$-y_d^k$	$\widetilde{q_d}^k$
$\psi_L^{\mathbf{Q}_m}$		3	2	$y^m_{\mathbf{Q}}$	$q^m_{\mathbf{Q}}$
$(\psi_R^{\mathbf{Q}_m})^c$	$m = 1,, N_{\mathbf{Q}}$	$\overline{3}$	2	$-y^m_{\mathbf{Q}}$	$\widetilde{q_{\mathbf{Q}}}^m$
S		1	1	0	q_S

Constraints from the extra fermions Yukawa's

Secluded sector Yukawa couplings

$$\begin{split} \bar{\psi}_{L}^{\mathbf{L}_{i}}\psi_{R}^{\mathbf{L}_{i}}\hat{S} &\to -q_{\mathbf{L}}^{i}-\widetilde{q_{\mathbf{L}}}^{i}+\varepsilon_{\mathbf{L}}^{i}q_{S} = 0\\ \bar{\psi}_{L}^{e_{j}}\psi_{R}^{e_{j}}\hat{S} &\to -q_{e}^{j}-\widetilde{q_{e}}^{j}+\varepsilon_{e}^{j}q_{S} = 0\\ \bar{\psi}_{L}^{d_{k}}\psi_{R}^{d_{k}}\hat{S} &\to -q_{d}^{k}-\widetilde{q_{d}}^{k}+\varepsilon_{d}^{k}q_{S} = 0\\ \bar{\psi}_{L}^{\mathbf{Q}_{m}}\psi_{R}^{\mathbf{Q}_{m}}\hat{S} &\to -q_{\mathbf{Q}}^{m}-\widetilde{q_{\mathbf{Q}}}^{m}+\varepsilon_{\mathbf{Q}}^{m}q_{S} = 0 \end{split}$$

 \hat{S} denotes either S or S^*

$$\varepsilon_{\mathbf{L}}^{i}, \varepsilon_{e}^{j}, \varepsilon_{d}^{k}, \varepsilon_{\mathbf{Q}}^{m} = \pm 1$$

,						
			SU(3) .	SU(2)	$U(1)_Y$	U(1)
	\mathbf{Q}_L^f	f = 1, 2, 3	3	2	1/6	$z^f_{\mathbf{Q}}$
	$u_R^{c,f}$		$\overline{3}$	1	-2/3	z_u^f
	$d_R^{c,f}$		$\overline{3}$	1	1/3	z_d^f
	\mathbf{L}_{L}^{f}		1	2	-1/2	$z^f_{f L}$
	$e_R^{c,f}$		1	1	1	z_e^f
	$ u_R^{c,f}$		1	1	0	$z^f_ u$
	H		1	2	1/2	z_H
	Ŧ					
	$\psi_{L_{ar{ extbf{ ex}$		1	2	$y^i_{\mathbf{L}}$	$q^i_{\mathbf{L}_{_{-}}}$
	$(\psi_R^{\mathbf{L}_i})^c$	$i = 1,, N_{\mathbf{L}}$	1	2	$-y^i_{f L}$	$\widetilde{q_{\mathbf{L}}}^i$
	$\psi^{e_j}_L$		1	1	y_e^j	q_e^j
	$(\psi^{e_j}_R)^c$	$j = 1,, N_e$	1	1	$-y_e^j$	$\widetilde{q_e}^j$
	$\psi_L^{d_k}$		3	1	y_d^k	q_d^k
	$(\psi_R^{d_k})^c$	$k = 1,, N_d$	$\overline{3}$	1	$-y_d^k$	${\widetilde{q_d}}^k$
	$\psi_L^{\mathbf{Q}_m}$		3	2	$y^m_{\mathbf{Q}}$	$q^m_{\mathbf{Q}}$
	$(\psi_R^{\mathbf{Q}_m})^c$	$m=1,,N_{\mathbf{Q}}$	$\overline{3}$	2	$-y^m_{\mathbf{Q}}$	$\widetilde{q}\widetilde{\mathbf{Q}}^n$
	S		1	1	0	q_S

Anomaly equations from SM fermions

Cancellation of the anomalies contributions

 $\begin{aligned} Tr[q_A]_{SM} &= \sum_f [6z_{\mathbf{Q}}^f + 3z_u^f + 3z_d^f + 2z_{\mathbf{L}}^f + z_e^f + z_\nu^f] \\ Tr[YYq_A]_{SM} &= \sum_f [6(y_{\mathbf{Q}}^f)^2 z_{\mathbf{Q}}^f + 3(y_u^f)^2 z_u^f + 3(y_d^f)^2 z_d^f + 2(y_L^f)) \\ Tr[Yq_Aq_A]_{SM} &= \sum_f [6y_{\mathbf{Q}}^f (z_{\mathbf{Q}}^f)^2 + 3y_u^f (z_u^f)^2 + 3y_d^f (z_d^f)^2 + 2y_L^f (z_u^f)^2 \\ Tr[q_Aq_Aq_A]_{SM} &= \sum_f [6(z_{\mathbf{Q}}^f)^3 + 3(z_u^f)^3 + 3(z_d^f)^3 + 2(z_{\mathbf{L}}^f)^3 + (z_e^f)^2 \\ Tr[q_AT_2T_2]_{SM} &= \sum_f [3z_{\mathbf{Q}}^f + z_{\mathbf{L}}^f] \\ Tr[q_AT_3T_3]_{SM} &= \sum_f [2z_{\mathbf{Q}}^f + z_u^f + z_d^f] \end{aligned}$

Impose relations from Yukawa coupling constraints

 $\begin{aligned} Tr[q_{A}]_{SM} &= \sum_{f} [2z_{\mathbf{L}}^{f} + z_{e}^{f} + z_{\nu}^{f}] \\ Tr[YYq_{A}]_{SM} &= -\frac{1}{2} \sum_{f} [3z_{\mathbf{Q}}^{f} + z_{\mathbf{L}}^{f}] \\ Tr[Yq_{A}q_{A}]_{SM} &= -2 \sum_{f} [3z_{\mathbf{Q}}^{f} + z_{\mathbf{L}}^{f}] z_{H} \\ Tr[q_{A}q_{A}q_{A}]_{SM} &= \sum_{f} [z_{H}^{3} + 3z_{H}(z_{\mathbf{L}}^{f})^{2} + (z_{\mathbf{L}}^{f})^{3} - 3z_{H}^{2}z_{\mathbf{L}}^{f} - 18z_{\mathbf{L}}^{f}] \\ Tr[q_{A}T_{2}T_{2}]_{SM} &= \sum_{f} [3z_{\mathbf{Q}}^{f} + z_{\mathbf{L}}^{f}] \\ Tr[q_{A}T_{3}T_{3}]_{SM} &= 0 \end{aligned}$

$$t_{YYA} = -\frac{1}{2}t_2$$
, $t_{YAA} = -2z_H t_2$, $t_3 = 0$. $t_A = 0$, $t_{AAA} = -6z_H^2 t_2$
(neutrino Dirac mass constraints)

$$= t_{A},$$

$$)^{2}z_{\mathbf{L}}^{f} + (y_{e}^{f})^{2}z_{e}^{f}] = t_{YYA},$$

$$z_{\mathbf{L}}^{f})^{2} + y_{e}^{f}(z_{e}^{f})^{2}] = t_{YAA},$$

$$)^{3} + (z_{\nu}^{f})^{3}] = t_{AAA},$$

$$= t_{2},$$

$$= t_{3},$$

$$= t_A$$

= t_{YYA}
= t_{YAA}
 $z_H^2 z_{\mathbf{Q}}^f + (z_{\nu}^f)^3] = t_{AAA}$
= t_2
= t_3

		SU(3)	SU(2)	$U(1)_Y$
\mathbf{Q}_{L}^{f}	f = 1, 2, 3	3	2	1/6
$u_R^{c,f}$		$\overline{3}$	1	-2/3
$d_R^{c,f}$		$\overline{3}$	1	1/3
$\mathbf{L}_{L}^{\widetilde{f}}$		1	2	-1/2
$e_R^{\bar{c,f}}$		1	1	1
$ u_R^{c,f}$		1	1	0
H		1	2	1/2
$\psi_L^{{f L}_i}$		1	2	$y^i_{\mathbf{L}}$
$(ar{\psi}_R^{\mathbf{L}_i})^c$	$i=1,,N_{\mathbf{L}}$	1	2	$-\overline{y}^i_{f L}$
$\psi_L^{e_j}$		1	1	y_e^j
$(\psi^{e_j}_R)^c$	$j = 1,, N_e$	1	1	$-y_e^j$
$\psi_L^{d_{m k}}$		3	1	y_d^k
$(\psi_R^{d_k})^c$	$k = 1,, N_d$	$\overline{3}$	1	$-y_d^k$
$\psi_L^{{f Q}_m}$		3	2	$y^m_{\mathbf{Q}}$
$(\psi_R^{\mathbf{Q}_m})^c$	$m=1,,N_{\mathbf{Q}}$	$\overline{3}$	2	$-y^{m}_{\mathbf{Q}}$
S		1	1	0

Universality hypothesis

Assume universality with respect to both U(1)'s

$\forall i = 1,, N_{\mathbf{L}}$	$\forall j = 1,, N_e$	$\forall k = 1,, N_d$
$\varepsilon^i_{\mathbf{L}} = \varepsilon_{\mathbf{L}}$	$\varepsilon_e^j = \varepsilon_e$	$\varepsilon_d^k = \varepsilon_d$
$y_{\mathbf{L}}^{i} = y_{\mathbf{L}}$	$y_e^j = y_e$	$y_d^k = y_d$
$q^i_{\mathbf{L}} = q_{\mathbf{L}}$	$q_e^j = q_e$	$q_d^k = q_d$
$\widetilde{q_{\mathbf{L}}}^i = \widetilde{q_{\mathbf{L}}}$	$\widetilde{q_e}^j = \widetilde{q_e}$	$\widetilde{q_d}^k = \widetilde{q_d}$

$$\forall m = 1, ..., N_{\mathbf{Q}}$$
$$\varepsilon_{\mathbf{Q}}^{m} = \varepsilon_{\mathbf{Q}}$$
$$y_{\mathbf{Q}}^{m} = y_{\mathbf{Q}}$$
$$q_{\mathbf{Q}}^{m} = q_{\mathbf{Q}}$$
$$\widetilde{q_{\mathbf{Q}}}^{m} = \widetilde{q_{\mathbf{Q}}}$$

		SU(3)	SU(2)	$U(1)_Y$
\mathbf{Q}_{L}^{f}	f = 1, 2, 3	3	2	1/6
$u_R^{c,f}$		$\overline{3}$	1	-2/3
$d_R^{c,f}$		$\overline{3}$	1	1/3
\mathbf{L}_{L}^{f}		1	2	-1/2
$e_R^{c,f}$		1	1	1
$ u_R^{c,f}$		1	1	0
H		1	2	1/2
т				
$\psi_{L_{f r}}^{{f L}_i}$		1	2	$y^i_{\mathbf{L}_{\underline{i}}}$
$(\psi_R^{\mathbf{L}_i})^c$	$i = 1,, N_{\mathbf{L}}$	1	2	$-y^i_{\mathbf{L}}$
$\psi_L^{e_j}$		1	1	y_e^j
$(\psi^{e_j}_R)^c$	$j = 1,, N_e$	1	1	$-y_e^j$
$\psi_L^{d_k}$		3	1	y_d^k
$(\psi_R^{d_k})^c$	$k = 1,, N_d$	$\overline{3}$	1	$-y_d^k$
$\psi_L^{{f Q}_m}$		3	2	$y^m_{\mathbf{Q}}$
$(\psi_R^{\mathbf{Q}_m})^c$	$m=1,,N_{\mathbf{Q}}$	$\overline{3}$	2	$-y_{\mathbf{Q}}^{m}$
S		1	1	0

Cancellation of the anomalies contributions

$$\begin{aligned} Tr[q_A]_{secluded} &= \left(2\varepsilon_{\mathbf{L}}N_{\mathbf{L}} + \varepsilon_e N_e + 3\varepsilon_d N_d + 6\varepsilon_{\mathbf{Q}}N_{\mathbf{Q}}\right)q_S = -t_A, \\ Tr[YYq_A]_{secluded} &= \left(2\varepsilon_{\mathbf{L}}y_{\mathbf{L}}^2N_{\mathbf{L}} + \varepsilon_e y_e^2N_e \\ &+ 3\varepsilon_d y_d^2N_d + 6\varepsilon_{\mathbf{Q}}y_{\mathbf{Q}}^2N_{\mathbf{Q}}\right)q_S = -t_{YYA}, \\ Tr[Yq_Aq_A]_{secluded} &= -q_S^2\left(2y_{\mathbf{L}}N_{\mathbf{L}} + y_e N_e + 3y_d N_d + 6y_{\mathbf{Q}}N_{\mathbf{Q}}\right) \\ &+ 2q_S\left(2\varepsilon_{\mathbf{L}}y_{\mathbf{L}}q_{\mathbf{L}}N_{\mathbf{L}} + \varepsilon_e y_e q_e N_e \\ &+ 3\varepsilon_d y_d q_M d + 6\varepsilon_{\mathbf{Q}}y_{\mathbf{Q}}q_{\mathbf{Q}}N_{\mathbf{Q}}\right) = -t_{YAA}, \\ Tr[q_Aq_Aq_A]_{secluded} &= q_S^3\left(2\varepsilon_{\mathbf{L}}N_{\mathbf{L}} + \varepsilon_e N_e + 3\varepsilon_d N_d + 6\varepsilon_{\mathbf{Q}}N_{\mathbf{Q}}\right) \\ &- 3q_S^2\left(2q_{\mathbf{L}}N_{\mathbf{L}} + q_e N_e + 3q_d N_d + 6q_{\mathbf{Q}}N_{\mathbf{Q}}\right) \\ &+ 3q_S\left(2\varepsilon_{\mathbf{L}}q_{\mathbf{L}}^2N_{\mathbf{L}} + \varepsilon_e q_e^2N_e \\ &+ 3\varepsilon_d q_d^2N_d + 6\varepsilon_{\mathbf{Q}}q_{\mathbf{Q}}^2N_{\mathbf{Q}}\right) = -t_{AAA}, \\ Tr[q_AT_2T_2]_{secluded} &= (\varepsilon_{\mathbf{L}}N_{\mathbf{L}} + 3\varepsilon_{\mathbf{Q}}N_{\mathbf{Q}})q_S \\ Tr[q_AT_3T_3]_{secluded} &= (\varepsilon_d N_d + 2\varepsilon_{\mathbf{Q}}N_{\mathbf{Q}})q_S \\ &= -t_3. \end{aligned}$$

Anomalies from the extra fermions

		SU(3)	SU(2)	$U(1)_Y$	
\mathbf{Q}_{L}^{f}	f = 1, 2, 3	3	2	1/6	
$u_R^{c,f}$		$\overline{3}$	1	-2/3	
$d_R^{c,f}$		$\overline{3}$	1	1/3	
\mathbf{L}_{L}^{f}		1	2	-1/2	
$e_R^{\overline{c,f}}$		1	1	1	
$\nu_R^{c,f}$		1	1	0	
H		1	2	1/2	
$\psi_L^{{f L}_i}$		1	2	$y^i_{\mathbf{L}}$	
$(\psi_R^{\mathbf{L}_i})^c$	$i = 1,, N_{\mathbf{L}}$	1	2	$-y^i_{f L}$	
$\psi_L^{e_j}$		1	1	y_e^j	
$(\psi_R^{e_j})^c$	$j = 1,, N_e$	1	1	$-y_e^j$	
$\psi_L^{d_{m k}}$		3	1	y_d^k	
$(\psi_R^{d_k})^c$	$k = 1,, N_d$	$\overline{3}$	1	$-y_d^k$	
$\psi_L^{\mathbf{Q}_m}$		3	2	$y^m_{\mathbf{Q}}$	
$(\psi_R^{\mathbf{Q}_m})^c$	$m=1,,N_{\mathbf{Q}}$	$\overline{3}$	2	$-y_{\mathbf{Q}}^{m}$	
S		1	1	0	

Exploration of potential models

STEP 2: Solve the anomaly equations

Solving in the case where all N's are non zero

12 parameters: $y_{\mathbf{L}}$, y_e , $y_{\mathbf{Q}}$, y_d , $q_{\mathbf{L}}$, q_e , $q_{\mathbf{Q}}$, q_d , q_S , z_H , $N_{\mathbf{L}}$ and $N_{\mathbf{Q}}$

We demand:

- All charges are rational numbers.
- The lepton-like extra fermions $\psi^{\mathbf{L}}$ have electric charges 0 or ± 1 , and ψ^{e} electric charge $\pm 1.$
- The quark-like extra fermions $\psi^{\mathbf{Q}}$ and ψ^d have electric charges $\pm 1/3$ or $\pm 2/3$. Indeed, this condition ensures that when the color forces confine, the resulting bound states can all carry integer charges.
- We will consider $\varepsilon_{\mathbf{L}} = 1$, $\varepsilon_e = -1$, $\varepsilon_d = 1$ and $\varepsilon_{\mathbf{Q}} = -1$

We get:

$$y_{\mathbf{L}} = \pm \frac{1}{2}, \quad y_{\mathbf{Q}} = \pm \frac{1}{6}, \quad y_d = \pm \frac{2}{3}, \quad y_e = \pm 1,$$

$$N_{\mathbf{L}} = N_{\mathbf{Q}}.$$

		SU(3)	SU(2)	$U(1)_Y$
\mathbf{Q}_{L}^{f}	f = 1, 2, 3	3	2	1/6
$u_R^{c,f}$		$\overline{3}$	1	-2/3
$d_R^{c,f}$		$\overline{3}$	1	1/3
$\mathbf{L}_{L}^{\widetilde{f}}$		1	2	-1/2
$e_R^{\overline{c,f}}$		1	1	1
$\nu_R^{c,f}$		1	1	0
H		1	2	1/2
$\psi_L^{{f L}_i}$		1	2	$y^i_{\mathbf{L}}$
$(\psi_R^{\mathbf{L}_i})^c$	$i = 1,, N_{\mathbf{L}}$	1	2	$-y^i_{\mathbf{L}}$
$\psi_L^{e_j}$		1	1	y_e^j
$(\psi_R^{e_j})^c$	$j = 1,, N_e$	1	1	$-y_e^j$
$\psi_L^{d_{m k}}$		3	1	y_d^k
$(\psi_R^{d_k})^c$	$k = 1,, N_d$	$\overline{3}$	1	$-y_d^k$
$\psi_L^{\mathbf{Q}_m}$		3	2	$y^m_{\mathbf{Q}}$
$(\psi_R^{\mathbf{Q}_m})^c$	$m=1,,N_{\mathbf{Q}}$	$\overline{3}$	2	$-y_{\mathbf{Q}}^{m}$
S		1	1	0

 $U(1)_A$ $z^f_{\mathbf{Q}} z^f_{u} z^f_{d} z^f_{\mathbf{L}} z^f_{e} z^f_{
u} z^f_{
u}$ z_H $q^{\imath}_{\mathbf{L}}$ $\widetilde{q_{\mathbf{L}}}^{i}$ $\begin{array}{c} q_e^j \\ \widetilde{q_e}^j \end{array}$ q_d^k $\widetilde{q_d}^k$ $q^m_{\mathbf{Q}}$ $\widetilde{q}\widetilde{\mathbf{Q}}^m$ q_S

			Model a		Model b		Model c	
	SU(3)	SU(2)	$U(1)_Y$	$U(1)_A$	$U(1)_Y$	$U(1)_A$	$U(1)_Y$	$U(1)_A$
$\mathbf{Q}_L^f \qquad f = 1, 2, 3$	3	2	1/6	1/3	1/6	2/3	1/6	1/3
$u_R^{c,f}$	3	1	-2/3	-10/3	-2/3	-8/3	-2/3	-4/3
$d_R^{c,f}$	3	1	1/3	8/3	1/3	4/3	1/3	2/3
\mathbf{L}_{L}^{f}	1	2	-1/2	1	-1/2	2	-1/2	1
$e_R^{c,f}$	1	1	1	2	1	0	1	0
$ u_R^{c,f}$	1	1	0	-4	0	-4	0	-2
H	1	2	1/2	3	1/2	2	1/2	1
$\psi_L^{{f L}_i}$	1	2	-1/2	-3	-1/2	-3	-1/2	-1
$(\psi_R^{\mathbf{L}_i})^c i = 1, \cdots, N_{\mathbf{L}}$	1	2	+1/2	6	+1/2	5	+1/2	2
$\psi_L^{e_j}$	1	1	-1	-3	+1	-3	-1	-1
$(\psi_R^{e_j})^c j = 1, \cdots, 2N_{\mathbf{L}}$	1	1	+1	0	-1	1	+1	0
$\psi_L^{d_k}$	3	1	-2/3	0	2/3	1/3	-2/3	0
$(\psi_R^{d_k})^c k = 1, \cdots, 2N_{\mathbf{L}}$	$\overline{3}$	1	+2/3	3	-2/3	5/3	2/3	1
$\psi_L^{\mathbf{Q}_m}$	3	2	+1/6	0	+1/6	1/3	+1/6	0
$(\psi_R^{\mathbf{Q}_m})^c m = 1, \cdots, N_{\mathbf{L}}$	$\overline{3}$	2	-1/6	-3	-1/6	-7/3	-1/6	-1
S	1	1	0	3	0	2	0	1
t_2			6		12		6	
t_{YYA}			-3		-6		-3	
t_{YAA}			-36		-48		-12	
t_{AAA}			-324		-288		-36	

Table 3. Examples of anomaly-free solutions, with all $N_i s \neq 0$. Model *a*: Anomaly-free solution with $q_{\mathbf{L}} = q_e, q_d = q_{\mathbf{Q}}$, and $N_{\mathbf{L}} = 1, z_L = 1$. Model *b*: Anomaly-free solution with $q_{\mathbf{L}} = q_e, q_d = q_{\mathbf{Q}}$, and $N_{\mathbf{L}} = 3, z_L = 2$. Model *c*: Anomaly-free solution with $q_{\mathbf{L}} = q_e, q_d = q_{\mathbf{Q}}$, and $N_{\mathbf{L}} = 3, z_L = 2$. Model *c*: Anomaly-free solution with $q_{\mathbf{L}} = q_e, q_d = q_{\mathbf{Q}}$, and $N_{\mathbf{L}} = 3, z_L = 1$.

Energy domain of validity I: The UV cut-off of the EFT

The EFT UV Cutoff: Preskill bound

The vector boson Z' obtains its mass M_A as the sum of two distinct contributions:

$$M_{A}^{(0)} = g_{A} |q_{S}| v_{S} \qquad \qquad M_{A}^{(1)} \simeq \left| \frac{[g_{A}^{3} t_{AAA}^{(light)} + 2g_{A}^{2} g_{Y} t_{YAA}^{(light)} + g_{A} g_{Y}^{2} t_{AYY}^{(light)} + g_{A} g_{2}^{2} t_{2}^{(light)} + g_{A} g_{3}^{2} t_{3}^{(light)}] \Lambda_{eff}}{64\pi^{3}} \right|_{C_{AAA}}$$

Tree-level Higgs contribution

We assume knowledge of the mass M_A and the coupling constant g_A of the $U(1)_A$ gauge boson, denoted as Z', either through theoretical calculations or experimental measurements.

One-loop radiative contribution

We want to infer the value of the cut-off energy from this information

The EFT UV Cutoff: Preskill bound

Often quoted is the Preskill cutoff

$$\Lambda_{eff} \sim \left| \frac{64\pi^3 M_A}{\left[g_A^3 t_{AAA}^{(light)} + 2g_A^2 g_Y t_{YAA}^{(light)} + g_A g_Y^2 t_{AYY}^{(light)} + g_A g_2^2 t_2^{(light)} + g_A g_3^2 t_3^{(light)}\right]} \right|$$

The EFT UV Cutoff: Preskill bound

Often quoted is the Preskill cutoff

$$\Lambda_{eff} \sim \left| \frac{64\pi^3 M_A}{[g_A^3 t_{AAA}^{(light)} + 2g_A^2 g_Y t_{YAA}^{(light)} + g_A g_Y^2 t_{AYY}^{(light)} + g_A g_2^2 t_2^{(light)} + g_A g_3^2 t_3^{(light)}] \right|$$

More precisely, the Preskill bound is

$$\Lambda_{eff} \lesssim \left| \frac{64\pi^3 M_A}{\left[g_A^3 t_{AAA}^{(light)} + 2g_A^2 g_Y t_{YAA}^{(light)} + g_A g_Y^2 t_{AYY}^{(light)} + g_A g_2^2 t_2^{(light)} + g_A g_3^2 t_3^{(light)} \right] \right|$$

27

The EFT UV Cutoff

The effective theory cut-off scale Λ_{eff} will be approximately equal to the mass scale of the heavy fermions, i.e.,

$$\Lambda_{eff} \simeq M_f$$

the heavy secluded fermion mass originates from the Yukawa coupling

 $M_f \simeq Y_{ij} v_S \simeq v_S$

The ratio of the loop-induced mass with respect of the tree-level one is now of order:

$$\frac{M_A^{(1)}}{M_A^{(0)}} \simeq \frac{g_A^2 \left| t_{AAA}^{(h)} \right|}{64\pi^3 q_S} \qquad \text{all extra fermions heat}$$

Indeed, the dominance of the anomaly loop-induced mass for the Z'_A requires that $g_A z_H^2 N_{\mathbf{Q}} \sim$ 10³. To achieve a light Z'_A with a mass $M_A \ll M_f$, it necessitates a coupling $g_A \ll 1$. This, in turn, implies significantly large charges and/or a large number of fields $N_{\mathbf{Q}}$, especially if we assume $q_S = 1$.

The EFT UV Cutoff: Preskill's bound domain of validity

$$\overrightarrow{\text{avy}} \qquad \frac{M_A^{(1)}}{M_A^{(0)}} \simeq \frac{3g_A^2 z_H^2 N_{\mathbf{L}}}{16\pi^3}$$

The EFT UV Cutoff

One potential resolution to this issue is that only some of the fermions are heavy enough

fermions $\psi_L^{\mathbf{L}i}$ with large charges $q\mathbf{L} \gg q_S$ are heavy and inaccessible.

$$\frac{M_A^{(1)}}{M_A^{(0)}} \simeq \frac{g_A^2 \left| t_{AAA}^{(h)} \right|}{64\pi^3 q_S} \qquad \overline{N_{\mathbf{L}} \psi_L^{\mathbf{L}} \text{ heavy}} \qquad \frac{M_A^{(1)}}{M_A^{(0)}} \simeq \frac{3g_A^2 q_{\mathbf{L}}^2 N_{\mathbf{L}}}{32\pi^3}$$

 $g_A^2 q_{\mathbf{L}}^2 N_{\mathbf{L}}$ that needs to be of order $\sim 10^3$.

The EFT UV Cutoff

In the case where g_A is hierarchically the smallest coupling in the theory, the magnetic Swampland Conjecture can be used to put a bound as:

$$\simeq v_S \qquad \qquad M_A^{(0)} = g_A |q_S| v_S$$

 $(q_S > 0)$

 $\Lambda_{eff} \lesssim \Lambda_{QG} \simeq g_A M_P \Rightarrow M_A \lesssim g_A^2 M_p$

Energy domain of validity

II: Above the new fermions scale: the UV model

The hierarchy:

Mass of Z' << Mass of new fermions

implies:

Coupling of Z' << Yukawa coupling of new fermions

But: The coupling of Z' must not be too small so that we can detect the Z'

Yukawa couplings of new fermions are of O(1)

The hierarchy:

< Mass of new fermions

implies:

Coupling of Z' << Yukawa coupling of new fermions

implies:

 $\begin{array}{l} & But: \\ & The \ coupling \ of \ Z' \ must \ not \ be \ too \ small \ so \ that \ we \ can \ detect \ the \ Z' \end{array}$

Which implies:

Yukawa couplings of new fermions are of O(1)

The hierarchy:

Mass of Z' << Mass of new fermions

implies:

< Yukawa coupling of new fermions

To make sense of our UV model description: a perturbative QFT, we request:

A model which can be valid many orders of energy scales above the new fermions scale and Yukawa couplings of new fermions are of O(1)

The RGE should make the Yukawa couplings not grow with increasing energy: The contributions from gauge interactions to the RGE of the Yukawa couplings should dominate

imply:

		SU(3)	SU(2)	$U(1)_Y$	$U(1)_A$
\mathbf{Q}_{L}^{f}	f = 1, 2, 3	3	2	1/6	-1/48
$u_R^{c,f}$		$\overline{3}$	1	-2/3	97/48
$d_R^{c,f}$		$\overline{3}$	1	1/3	-95/48
\mathbf{L}_{L}^{f}		1	2	-1/2	-1/48
$e_R^{\overline{c,f}}$		1	1	1	-95/48
$\nu_R^{c,f}$		1	1	0	97/48
H_1		1	2	1/2	-2
H_2		1	2	1/2	2
т					
$\psi_{L_{\mathbf{T}}}^{\mathbf{L}_{i}}$		1	2	-1/2	35/8
$(\psi_R^{\mathbf{L}_i})^c$	$i = 1, \cdots, N_{\mathbf{L}}$	1	2	+1/2	9/2
ψ^e_L		1	1	+1	0
$(\psi^e_R)^c$	$j = 1, \cdots, 2N_{\mathbf{L}}$	1	1	-1	0
ψ^a_L		3	1	-2/3	5/4
$(\psi_R^a)^c$	$k = 1, \cdots, 2N_{\mathbf{L}}$	3	1	+2/3	-9/8
$\psi_L^{\mathbf{Q}_m}$		3	2	+1/6	2
$(\psi_R^{\mathbf{Q}_m})^c$	$m = 1, \cdots, N_{\mathbf{L}}$	3	2	-1/6	-15/8
S		1	1	0	1/8
S'		1	1	0	-1/8
S_2		1	1	0	-3/2
S_2'		1	1	0	11/8

A SUSY example

SUSY, as a bonus, allows easily to unify the couplings

free of anomalies above a scale much below the Planck scale.

In a SUSY set-up, we can find models that allow to unify the couplings.

Work in progress ...

Conclusions

- In summary, we have build models whith an anomalous Z' in a range of energies and

m_{f}