Scale invariant extension of the Starobinsky inflation model and primordial non-Gaussianity

Jisuke Kubo (MPIK, Heidelberg & Uni. of Toyama)

based on Aoki, JK+ Yang, JCAP 05 096 (2401.12442)

The max. value of
$$
y_t^2/\lambda_H \rightarrow m_t^2/m_H^2 \simeq 1.9 \left(\left[m_t^2/m_H^2 \right]_{\text{exp}} \simeq 2.0 \right)
$$

2. JK, Sibold, Zimmermann, '85;'88

Indication for scale invariance in cosmology

scale invariant

However, scale anomaly can not directly generate mass gap.

To generate a mass gap, scale invariance has to be spontaneously broken.

Callan, '70; Symanzik,'70

Scale invariance is hardly broken by scale anomaly.

Spontaneous generation (SG) of M PI **= SG of Einstein-Hilbert theory**

```
*Akama, Chikashige+ Matsuki,'78
*Adler,'80
; *Zee,'81
```

```
…………
```
Induced gravity

with scalars

without scalars

```
*Fujii '74
*Minkowski, '77
*Englert, Gunzig,Truffin+Windey,'75
*Minkowski, '77
*Chundnovsky,'78
*Fradkin+Vilkovisky,'78
*Zee,'79
*Smolin,'79
*Terazawa,'81
*Nieh' '82
…………
```
n simple way to $\mathcal{L} = \mathcal{L} - \mathcal{L}$ ξ*H,S* → −1*/*6

 $\frac{S^3}{2} S^2 R \rightarrow \frac{S^3}{2}$ *|^T* ⁼*Tⁿ* ξ*S* 2 $S^2 R \rightarrow \frac{\xi_S}{2}$ $\frac{2^{S}}{2} \langle S \rangle^2 R \rightarrow$

 \sim 10−10−10−2 \sim $M_{\rm P}^2$ Pl 2 *R*

$$
M_{\rm Pl} = \sqrt{\xi_S} \langle S \rangle
$$

∆ *m*² Salvio+Strumia,'14; Kannike et al,'15; Rinaldi et al,'14; Farzinnia+Kouwn,'15; ξ_{Η, Σ}
Γ_ε Ghilenea +H.M.Lee,'18; Karam+Pappas+Tamvakis,'18;JK,Lindner,Schmitz+Yamada,'18;……………. see e.g. Aoki+JK+Yang, '24 and Cecchini et al, '24 for more references

H

Recent papers:

unitary during inflation (if the inflation scale < Mspin-2-ghost) \mathcal{L}_{max} JK+Kuntz, '23; JK+Kugo, '23; 24 **spin-2-ghost** duri
∫ $\overline{16}$ \sim 000 \sim 000 \sim 1fla; $\mathbf n$

 $\mathcal{L}_{\text{Matter}}(\phi, \cdots)$ $\mathcal{L}_{\text{Matter}}(\boldsymbol{\phi}, \cdots)$ $\sqrt{-g}$

Extension of Starobinsky inflation based on Renormalizable Quadratic Gravity (QG): two polarizations at uniform energy density hypersurface

renormalizable $\overline{}$ Stelle, `77 √−^g 2 S 2

Weyl tensor²

(classically) scale invariant √−^g 1) SC **GIS INVALIANT** 1 g
construction of a construction of a co
Solomon of a construction of a const 4 −

Bezrukov+Shaposhnikov,'07

Clunan+Sasaki,'09; Baumann et al,'15; Salvio,'17; Anselmi et al, '20

 $R + \gamma\, R^2 - \kappa W^2 \, ,$

control n_c, r, f_{NI}: **s** *NL*

triggers SSB of scale invariance

JK,Kuntz,Rezacek+Saake,'22

$$
\frac{\mathcal{L}_{\text{QG}}}{\sqrt{-g}} \ni -\frac{1}{2} \xi_{ab} \phi_a \phi_b R
$$
\n
$$
\gamma, \xi_{ab}, \kappa \text{ contr}
$$

- *T* for R[^]2 Inflation Starobinsky,'80 γ for R^o2 In flocal NL = −0.9 ± 5.1 ±
	- **for Higgs (-like) inflation** \overline{b} for High ξ_{ab} for
- **contributes to r** NU durin iBan
Nu de Clim **K** contrib γ , ξab , κ \mathbf{O} utes ∂N ⊽
∫eeel
	-
	- ∂N $\mathbf{1} \cdot \mathbf{0}$ **τriggers ssβ or scale invariand**

Further: Simons, CMB-S4, ……

LiteBird/Planck (95% CL) PICO (95%CL) in the case of null detection

(see e.g. Snowmass 2021)

*f*local

JK,Kuntz,Rezacek+ Saake,'23 $uctua$ \mathbf{i} $\overline{}$ noerg.
of the massive spinα $\overline{\text{min}}$ wo g **22** be the massive spin-two ghost $\rightarrow \langle S \rangle$ JK Kuntz Reza \overrightarrow{q} $\ddot{}$ √
∽−gala $\text{spin-two ghost} \; \rightarrow \langle$ uatio<mark>l</mark> $\overline{ }$ οσιg.
The massive sp $\bf p$ $intw$ ϕ \to $\langle S \rangle$ ∂K ϕ Fiuctuation of the massive spin-two extended to the massive spin-two respectives Fluctuation of the massive spin-two ghost $\rightarrow \langle S \rangle$

L^I \mathbf{c}_1 \mathbb{L} Coleman-Weinberg: Coleman - Weinberg: W
Weinberg: Weinberg: Weinberg: Weinberg: Weinberg: Weinberg: Weinberg: Weinberg: Weinberg: Weinberg: Weinberg:

Hidden QCD-like sector

Aoki, JK, Yang, '22,'24

$$
\frac{\lambda_S}{4}S^4 - \frac{1}{2}\beta S^2 R + \gamma R^2 - \kappa W^2 + \cdots
$$

($\beta = \xi$, not β -function)

$$
\mathbf{I}: \quad \frac{\mathcal{L}_1}{\sqrt{-g}} = \frac{1}{2}g^{\mu\nu}\partial_\mu S\partial_\nu S - \frac{\lambda_S}{4}S^4 - \frac{1}{2}\beta S^2
$$

non-Gaussinity parameter

$$
\begin{aligned} \text{II:} \quad & \frac{\mathcal{L}_{\text{II}}}{\sqrt{-g}} = \frac{\mathcal{L}_{\text{I}}(\kappa \rightarrow 0)}{\sqrt{-g}} - \frac{1}{2} \text{tr} F^2 + \text{tr} \bar{\psi} (i \gamma^\mu D_\mu - y S) \psi + \cdots \\ & \text{ \quad \ \ \, \text{Hidden QCD-like sector} } \qquad \text{Aoki, JK} \end{aligned}
$$

 \mathbf{p} Chiral symmetry breaking: $\langle \bar{\psi}\psi \rangle \rightarrow \langle S \rangle$ try = ϵ $\frac{1}{2}$ $Chiral$ symmetry hre ∫ral symr $\overline{\mathbf{n}}$ λ

LOGIC 2 G by Signal Horace √−
⊿nn 6 Multi-field system for inflation δφ^H = 0 ald sv! $\overline{}$

$$
\forall \text{ breaking: } \langle \bar{\psi} \psi \rangle \rightarrow \langle S \rangle \qquad \qquad \text{(11)}
$$

↑ cyctom for inflation 2 t

$$
\left(\begin{array}{c} M_{\text{ghost}}^2 = \frac{\beta}{4\kappa} \langle S \rangle^2 \\ m_{\varphi}^2 = \frac{\beta}{12\gamma} \langle S \rangle^2 \end{array} \right)
$$

A. Basin-like potential

Slow-roll trajectory

Inflationary parameters depend on the starting point very much.

Contour

B. Vally-like potential

Slow-roll trajectory

Inflationary parameters do not depend on the starting point very much; effectively a single-field system.

But another problem

2

4

 $6₅$

Potential

〇

 -6^{\perp}

 -4

 -2

Zoomed near the starting point (I in Einstein frame)

Oscillating just after the start, but conversing fast to a "fixed point" trajectory

Initial value dependence is suppressed.

$$
\mathcal{G}^{IJ}\,V_{,J}=0
$$

$\zeta = \delta N = N(\delta \phi_*) - \bar{N}$ on one annorm che ' δN formalism to compute ns, r, f NL $\frac{1}{2}$ irvature perturbe $= (\partial N/\partial \bar{\phi}_I) \delta \phi_I |_{t=t_*}$ $+ \cdot \cdot \cdot$ $\bar{t}(t_{*}) = \bar{\phi}^{I}$ $N(\delta\phi_*) \nu_I$) σ $\nu_I|_{t=0}$ $\bar{\phi}^{I}(t_{*})=\bar{\phi}_{*}^{I}$ $\bar{\rho}(t)\rightarrow \bar{\rho}(\bar{t})$ $\bar{t}_{\rm end})$ \mathbb{R}^n (t \mathbb{R}^n) \mathbb{R}^n (the positive state \mathbb{R}^n) \mathbb{R}^n (the positive state \mathbb{R}^n $\mathbf{v}^{\prime}(\mathbf{x}) = \mathbf{v}^{\prime}(\mathbf{x}) + \mathbf{v}^{\prime}(\math$ $\overline{N}I(S+1)$ $-12N/24$ $\phi^I(t_*,x)=\bar{\phi}^I_*+\delta\phi^I_*$ $\varphi_*^I(x)\to\rho(t)\to\bar\rho(t_\text{end})\,.$ = time t_{end} t_{end} $\overline{t}_{\text{end}}$ **Curvature perturbation** N formalism to compute ne $\frac{1}{2}$ a $\frac{1}{2}$ urb. \bullet \bullet \bullet $\zeta = \mathbf{0}I$ correlation in the correlation of the correlation of the correlation of the correlation of the correlation of
Correlations in the correlation of the correlation of the correlation of the correlation of the correlation of
C bispectrum de la provincia de
Del provincia de la provincia φ (v_*) $-\varphi_*$ $A^I(f \ \alpha)$ non-Gaussinity parameters and the control of the c
Gaussinity parameters and the control of the contro two polarizations of \mathbf{f} and \mathbf{f} horizon exit aliem to com shape function non-Gaussinity parameters and the state of th
Gaussinity parameters are considered in the state of the s
 $\sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n}$ $\left(\partial N/\partial \phi_I\right)$ on the uniform energy density hypersurface $\overline{}$ √−^g $\bar{\rho}(t)$ - $\theta(t_{\text{end}})$ $M_{\rm eff}$ $=$ (1.4 ± 0.0000) $M_{\rm eff}$ $=$ (1.4 ± 0.0000) $M_{\rm eff}$ $=$ (1.4 ± 0.0000)

- Sasaki+Stewart,'95,.......
-
-
-

$$
\rightarrow \bar{\rho}(t) \rightarrow \bar{\rho}(\bar{t}_{\rm end}) \\ (x) \rightarrow \rho(t) \rightarrow \bar{\rho}(t_{\rm end})
$$

Sasaki+Stewart,'95,…….

˙ ˙*^K* ˙ *L* . . . **Valley structure ->** ^ε **<< 1 ,** ε **>> 1 !! ^L ^H**

H More ⇣*GIKGJL M*² Pl 1 *^RIKJL*⌘ **Moreover, fluctuation of heavy** $\frac{1}{2}$ *^H*² *^DIDJ^V* es are exponenti
Iner horizon l n ! Pilo ally sup **modes are exponentially suppressed in super horizon !** Pilo et al,'14

Aoki, JK, Yang, '24 Wann¹⁰ .
.
. loki, JK, IK Yang '2 $\overline{}$

" ˜

^L 0

f_{α} ^N α phy the light mode = R^T " R = N only \ln **Evpita** \overline{a}

$$
\frac{(\mathcal{D}_{i}\mathcal{D}_{j}N)N^{i}N^{j}}{(N_{k}N^{k})^{2}}\\N_{i}=\frac{\partial N}{\partial\bar{\phi}_{L}^{i}}
$$

 $\bar{\phi}_*$ ϕ_{H*}

$$
\Bigg\}\ \ {\rm at}\ t=t_*
$$

$$
\tilde{\epsilon} = R^T \epsilon\, R = \begin{pmatrix} \tilde{\epsilon}_L & 0 \\ 0 & \tilde{\epsilon}_H \end{pmatrix} \quad \sim \; : \; \text{in} \; \; \text{d}
$$

$$
\delta \phi_* = R \begin{pmatrix} \delta \phi_L \\ \delta \phi_H = 0 \end{pmatrix} \text{ at } t = t_* \qquad \text{A}
$$

(Nk)
2002 - Paul Barbara, papa pangangan
2002 - Paul Barbara, pangangan pangangan

δφ^L

|
|-
| Gikgi Gik

 $\overline{}$

H

δφ[∗] = R

6

22 **The model behaves similar to a single-field model, except** $for n_c \approx 0.97.$ **s**

The model model will be consistent with null detection at LiteBIRD. **THS MOUSL MOUSL WHI DE CONSISTEM W**

23

The model behaves like a single-field model

Summary

- the hierarchy problem might open.
- theory is scale invariant.
- 3. Extension of the R^2 model
	- \Rightarrow More than two scalar fields involved in inflation
	- \Rightarrow Multi-field system for inflation.
- 4. Valley-like potential \Rightarrow Initial value dependence is suppressed, but δN formalism has to be accordingly adjusted.
- 5. r of our models can be measured at future experiments, but not f_{NL} .

1. If the origin of all energy scales is known, a new route toward a solution of

2. Various indications in particle physics $+$ cosmology that the underlying

Ευχαριστ**ώ**

- χ**SB (chiral symmetry breaking)** *r x* SB (chiral symmetry breaking) Is it possible to distinguish the models by measuring small r and also non-
- $\langle \bar{\psi}\psi \rangle \neq 0$ & $\langle S \rangle \neq 0$

L : QCD-like sector = Origin of all scales 3. Scale invariant extensions of the *R*² model of Starobinsky L_H: QCD-like sector

- $L_G: Mpl^2 = B_S \cos^2 \frac{2}{3}$ G: MPI = P_S ⇠ ¹⁰⁷
-

$L_N: m = Y_M$ <S> $\sim 10^7$ GeV (*v* option) N : $M = Y_M$ <S> $\sim 10'$ GeV Brivio+Trott,'17,…….

and inflation

A three-field system of cosmic inflation

local minimum of φ **for given S and** σ

V (*S,,* ') ^σ **[≈] constant = v**^σ \mathbf{r}

The full potential is: $V_T(S, \sigma, \varphi)$ (φ = scalaron) **in the Einstein frame** $\mathbf{S}: V_T(S, \sigma, \varphi)$

| Effectively two-field system **in the Einstein frame described by** Is it possible to distinguish the distinguish the small result of the small result of the small result of the s

3. Scale invariant extensions of the *R*² model of Starobinsky

) *^r >*

$$
\begin{aligned} \ddot{\varphi} + \left(1/\sqrt{6} M_{\text{Pl}} \right) e^{-(2/3)^{1/2} \varphi / M_{\text{Pl}}} \dot{S}^2 + 3 H \dot{\varphi} + \frac{\partial V(\varphi,S)}{\partial \varphi} = 0 \,, \\ \ddot{S} - 2 \big(1/\sqrt{6} M_{\text{Pl}} \big) \, \dot{\varphi} \dot{S} + 3 H \dot{S} + \, e^{(2/3)^{1/2} \varphi / M_{\text{Pl}}} \frac{\partial V(\varphi,S)}{\partial S} = 0 \,, \\ \left(\mathcal{D} \dot{\phi}^I + 3 H \, \dot{\phi}^I + \mathcal{G}^{IJ} \, V_{,J} = 0 \right) \end{aligned}
$$

where $\varphi = \varphi(t)$, $S = S(t)$ and *H* is the Hubble parameter

$$
H^{2} = \left(\frac{\dot{a}}{a}\right)^{2} = \frac{1}{3M_{\text{Pl}}} \Big(\frac{1}{2}(\dot{\varphi}^{2} + e^{-(2/3)^{1/2}\varphi/M_{\text{Pl}}} \dot{S}^{2}) + V(\varphi, S)\Big)
$$

Gaussianity in the CMB and large structure in the CMB and large scale structure by future by future by future
The CMB and large scale structure by future by future experimental structure by future by future by future exp

