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where D = / I B  2 - 4  CI and the values of parameters  
as given in (7) have been used. 

Our  approximat ion  will shift the pole at most  
1% for N = 3. We have been very careful about  the 
range of validity of our  solutions. As a check we 
might search for the value x* 0 related to m* where 
g2 looses its asymptot ic  freedom. 

C l D  
X~o = = 10.0 (N = 3). 

[ ( B + D )  (2 C + B  - D ) ]  
c t In L(B - D) ~ ~ D ) J  

This gives m* = m  z - ] / 2 .  sin 2 0 w . x* 0 = 197 GeV 
(N = 3). The result is in perfect agreement  with those 
obtained by numerical  integration. For  N > 4  (30b) 
has to be used for such a claculation. 

The remaining equat ion (13) is written in terms 
of 2, x, X2, X 4 

d2 [22 x2 1 3 
t -=cA L (4  ql-~ X 2 - x 4 )  

We integrate this numerically by a Runge-Kut ta  
algori thm for different values of ).(0) and x4(O ). We 
search for the parameter  space where the singularity 
produces no singular behaviour  at Ap scales lower 
than A. 
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Fig. 2. The allowed parameter space of m H and m t for various 
embedding scales A. Allowed is the area around the origin 
bounded by the various curves. The curve entitled with Landau 
pole is identical to the curve of Beg et al. The horizontal lines 
come from avoiding triviality and the vertical lines are deter- 
mined from 2(t) becoming negative at scales lower than A 

IV. Discussions and Conclusions 

The resulting bounds  for m u and m t as function of A 
are drawn in Fig. 2. For  2(0) becoming large the 
result is less reliable. The last curve for A = I T e V  
should be qualitatively good. This curve has to be 
compared  with the estimate of Dashen and Neuber-  
ger [12] of  m/~<0 (1 TeV). The curves which limit the 
allowed area to the right come from demanding 2(0 
not  to become negative up to A. If we expect new 
phisics to appear  in the TeV range triviality gives 
the same bound  on the Higgs mass as A. But then 
the Higgs particle should not  be much heavier than 
1 TeV. 

In Fig. 2 the result for A=1015  GeV-~GUTsca l e  
is identical to the curves obtained by Cabbibo  et al. 
[13]. In their paper  they study the s tandard  model  
in the f ramework of grand unifying theories with the 
requirement that  no interaction becomes strong up 
to the unification scale. Avoiding triviality means 
avoiding Landau  singularities which are nearby the 
scale where couplings begin to become stronger. 
Thus triviality motivates the requirement in [-13]. 

In  Fig. 3 we draw the upper  bounds  on m/~ as a 
function of  A (curve 1). The bound  f rom the scale A 
is also shown (curve 2). The two bounds  cross at a 
scale of  O(1 TeV) and give the maximal  allowed 
value of  mu~- l / 2TeV.  Finding a Higgs particle 
would allow us to ask where new physics has to 
appear. If  m H > 1 7 5 G e V  then A<Aeianok. For  a 
Higgs exceeding 200 GeV it becomes difficult to re- 
alize a G U T  model. If the Higgs mass is still higher, 
A is quickly driven to the TeV range. The result for 
N = 4  is obtained to a very good  approximat ion  by 
simply replacing m t by ~ .  

U p  to now we studied consequences of triviality 
of pure scalar 2q~ 4 theories. Triviality might  be 
something which is c o m m o n  to non asymptot ical ly  
free field theories. N o t  much is known about  this 
possibility as proofs are already very complicated in 
2 ~  4. But if this is true other  couplings (e.g. Yukawa  
couplings) in the s tandard model  should not  pro- 
duce too strong values. This is because otherwise the 
same argumenta t ion  as in the scalar case goes 
through. Other  fields can be neglected and the re- 
maining sector produces a pathological  short  dis- 
tance behaviour.  Hopeful ly we can still use the one- 

Lindner,’86

JK, Sibold, Zimmermann, ’85;’88
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Desert => Scale invariance is broken only by 
anomaly if μ    = 0.Η
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γ−1 , β/γ << 1 → perturbative
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Non-perturbative scenario: Fixed Point (asymptotic safety)

(Semi) Perturbative senario

Strings

∈

Bardeen,’95

1

λHS

︸ ︷︷ ︸

Theoretical aspect:

1. EEW and MPl can be spontaneously generated,

both perturbatively and non-perturbatively

2. Naturalness of mH ⇒ safeness of λH ⇒ multiplicative solution

3. The desert ⇒ the SM and Planck scale physics are directly related

Safeness of λH ⇔ Inflationary parameters

Phenomenogical aspect:

1. For CW breaking: Supercooling ⇒ new history of the Universe, strong GW

2. For non-perturbative scale symmetry breaking:

Large duration of PT⇒ suppression of GW

should be confirmed by 1st principle calculations

3. Scale invariant extensions of the R2 model of Starobinsky

⇒ r >∼ rR2 ∼ O(10−3) and more than two scalars during inflation

Is it possible to distinguish these models by measuring small r and also non-

Gaussianity in the CMB anisotropy and large scale structure by future exper-

iments such as LiteBIRD, CMB-S4, Simons Observatory DESI, Euclid, LSST,

etc

ξ

ξH <∼ 2.5 · 10−(15∼16)

10−(18∼19) ξH <∼ 2.5 · 10−33

M2
Pl = ξS〈S〉2 → λHS〈S〉2H†H → λHS〈S〉2 <∼ O(m2

H)

λHS/ξS <∼ M2
Pl/m

2
H ∼ 2.5 · 10−33 !!

Indication for scale invariance

in particle physics
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Indication for scale invariance

in cosmology
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Models Mechanism α β/H Tn [TeV] f [Hz] GW source mDM [TeV]

1 Coleman-Weinberg 0.11 0.67× 103 0.052(∼ TC) 0.0084 sound waves – –
2 Gildner-Weinberg 1.6× 1013 8.0 2.4(# TC) 1.5 Collisions – –
3 〈ψ̄ψ〉 &= 0 0.024 3.7× 103 0.35(∼ TC) 0.36 Sound waves 0.23
4 〈S†S〉 &= 0 0.013 2.6× 104 0.36(∼ TC) 2.7 Sound waves 1.0

L
√
−g

= −
M2

Pl

2
R +

{

γR2 (γ ∼ 109)
β|H|2R− λH |H|4 (β ∼ 104)

for

{

R2 inflation, Starobinsky, ‘80
Higgs inflation, Bezrukov and Shaposhnikov, ‘08.

(1)

Leff = Tr ψ̄(i/∂ − yS)ψ + 2GTrΦ†Φ+GD (detΦ+ h.c.)

Φij = ψ̄i(1− γ5)ψj

Veff(f)/〈f〉2

〈ψ̄i(1− γ5)ψj〉BSC = −
1

4G
[ δij σ̂ + λa(σ′a + iπa) ]

〈σ′a〉 = 0 , 〈πa〉 = 0

Veff(σ) [ GeV4 ]

σδij = −4G〈ψ̄iψj〉BCS , φa = −2iG〈ψ̄γ5λaψ〉BCS

L0 = Tr ψ̄(i/∂ −M)ψ − iTr ψ̄γ5φψ −
1

8G

(

3σ2 + 2
8
∑

a=1

φaφa

)

+
GD

8G2

(

−Tr ψ̄φ2ψ +
8
∑
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φaφaTr ψ̄ψ + iσTr ψ̄γ5φψ +
σ3

2G
+

σ

2G

8
∑

a=1

(φa)
2

)

(2)

with φ =
∑8

a=1 φaλa and σ = σ1 = σ2 = σ3.

10−3 10−4 10−5

µ2
H = 0 MPl mH ∼ 10 GeV mtop

1. 2HD (not scale invariant)
M. Kakizaki, S. Kanemura and T. Matsui, PRD,‘15;
C. Caprini et al, JCAP, ‘16

2. ν-option
V. Brdar, Y. Emonds, A. J. Helmboldt and M. Lindner, PRD, ‘19;
V.Brdar, A. J. Helmboldt and JK, JCAP, ‘19
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scale invariant

super flat potential (plateau) 

(in Einstein frame)

1
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∼ O(10) for Coleman-Weinberg

∼ O(103∼4) for 〈ψ̄ψ〉 '= 0 or 〈S†S〉 '= 0
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Nambu-Jona-Lasinio (NJL)

Polyakov-NJL (PNJL)

Linear Sigma Model (LSM)
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Nambu-Jona-Lasinio (NJL)

Polyakov-NJL (PNJL)

Linear Sigma Model (LSM)

β
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∼ O(100) → f ∼ 10−8 Hz
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√
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However, scale anomaly 

can not directly generate mass gap.


To generate a mass gap, scale invariance 

has to be spontaneously broken.

Callan, ’70; Symanzik,’70

Scale invariance is hardly broken 

by scale anomaly.
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*Fujii ’74 
*Minkowski, ’77 
*Englert, Gunzig,Truffin+Windey,’75 
*Minkowski, ’77 
*Chundnovsky,’78 
*Fradkin+Vilkovisky,’78 
*Zee,’79 
*Smolin,’79 
*Terazawa,’81 
*Nieh‚ ’82 
………….. 

*Akama, Chikashige+ Matsuki,’78 
*Adler,’80 
*Zee,’81
………….. 

Induced gravity

with scalars

without scalars

Pl 
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Spontaneous generation (SG) of M
= SG of Einstein-Hilbert theory

; 
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An simple  way  to generate M   :

3






Nambu-Jona-Lasinio (NJL)

Polyakov-NJL (PNJL)

Linear Sigma Model (LSM)
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Salvio+Strumia,’14; Kannike et al,’15; Rinaldi et al,’14; Farzinnia+Kouwn,’15;


Ghilenea +H.M.Lee,’18;  Karam+Pappas+Tamvakis,’18;JK,Lindner,Schmitz+Yamada,’18;…………….


see e.g. Aoki+JK+Yang, ’24 and Cecchini et al, ’24  for more references
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Recent papers:

Pl
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Extension of Starobinsky inflation based on

Renormalizable Quadratic Gravity (QG):

(classically) scale invariant


renormalizable 


unitary during inflation

(if the inflation scale < M            ) 

3
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1/
√
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)
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∂ϕ
= 0 , (3)

S̈ − 2
(

1/
√
6MPl

)
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LMatter(φ, · · · )√
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JK+Kuntz, `23; JK+Kugo, `23;`24

Stelle, `77
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 control n  , r ,   f   :

 for Higgs (-like) inflation

for R^2 Inflation 
Starobinsky,’80

Bezrukov+Shaposhnikov,’07
 contributes to r

Clunan+Sasaki,’09; Baumann et al,’15; Salvio,’17; Anselmi et al, ’20 

 triggers SSB of scale invariance
JK,Kuntz,Rezacek+Saake,’22
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ȧ

a

)2

=
1

3MPl

(1

2
(ϕ̇2 + e−(2/3)1/2ϕ/MPlṠ2) + V (ϕ, S)
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Hidden QCD-like sector

Coleman-Weinberg: Fluctuation of Wαβγδ → 〈S〉

Chiral symmetry breaking: 〈ψ̄ψ〉 → 〈S〉
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Future experiments for  n  and r

2R  inflation 

LiteBird/Planck (95% CL)

PICO (95%CL)

Further:
Simons, CMB-S4, ……

(see e.g. Snowmass 2021)   
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in the case of null detection

s



Future experiments for  f

CMB

Inflation: Theory and Observations
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Figure 5: Comparison of constraints on three types of primordial non-Gaussianity from a small
subset of completed (‘c’), upcoming (‘u’) and proposed (‘p’) experiments (see [15, 22, 26, 375,
385–395] for the underlying data analyses and forecasts). We also forecast a conservative
cosmic-variance-limited (CVL) CMB experiment up to ✓

)

max = 3000 and ✓
%

max = 5000, but
note that these limits could be further improved by the use of delensing or the inclusion of
Rayleigh-scattering anisotropies. The constraints on local PNG from (e)BOSS, Euclid, DESI
and mm-LIM assume only power-spectrum information. The DESI+SO forecast includes the
cross-correlation between the emission-line-galaxy sample of DESI and SZ maps of the Simons
Observatory. The forecast for LSST+CMB-S4 includes power spectra and bispectra, including
the cross-correlations between galaxy and lensing maps to remove sample variance. All other
LSS probes include bispectrum information. We note that there are two important caveats to
these displayed results: (i) scale-dependent-bias measurements hinge on the ability to measure
the largest scales at high precision and most of the forecasts contain only a limited assessment
of the impact of observational systematics; (ii) there remains a large degree of uncertainty
over several aspects of these forecasts despite a lot of theoretical progress in recent years which
means that the achievable constraints may become better or worse as these issues are resolved.

data. Based on current constraints, this implies that future CMB data can in principle reach
5

local
NL ⇠ $(1), while this level is out of reach for equilateral-type PNG. For more detailed

forecasts, including ISW-lensing and reionization-lensing deprojection, we refer to [389].
Improvements by another factor of two may be obtained by including Rayleigh anisotropies,

which are produced shortly after recombination when CMB photons scatter o� of neutral
hydrogen and helium [405]. To include this information in an analysis however requires a
careful removal of foregrounds. Since constraints on large-scale B modes will dramatically
improve this decade (cf. §2.2), we note that current bounds on bispectra sourced by tensor-
scalar and tensor-tensor interactions could be even more significantly tightened than those
from purely scalar couplings (see e.g. [398] for a forecast).
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'̇Ṡ + 3HṠ + e(2/3)

1/2
'/MPl

@V (', S)

@S
= 0 , (4)

where ' = '(t), S = S(t) and H is the Hubble parameter

H2 =

✓
ȧ
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Two models

Aoki, JK, Yang, ’22,’24

(β =ξ, not β-function )
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JK,Kuntz,Rezacek+ Saake,’23

I:

II:

3

ϕ̈+
(

1/
√
6MPl

)

e−(2/3)1/2ϕ/MPlṠ2 + 3Hϕ̇+
∂V (ϕ, S)

∂ϕ
= 0 , (3)

S̈ − 2
(

1/
√
6MPl

)
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ȧ

a

)2

=
1

3MPl

(1

2
(ϕ̇2 + e−(2/3)1/2ϕ/MPlṠ2) + V (ϕ, S)
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A.　Basin-like potential 

Slow-roll trajectory

Inflationary parameters depend on the starting point very much.
Contour 

13



B.　Vally-like potential 

Slow-roll trajectory

Inflationary parameters do not depend on the starting point 

very much; effectively a single-field system.

Contour 



But another problem
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Zoomed near the starting point (I in Einstein frame)

Oscillating just after the start, but conversing fast to

a „fixed point“ trajectory  


Initial value dependence is suppressed.
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�HS

| {z }

Theoretical aspect:

1. EEW and MPl can be spontaneously generated,

both perturbatively and non-perturbatively

2. Naturalness of mH ) naturalness of �HS ) multiplicative solution

3. The desert ) the SM and Planck scale physics are directly related

Naturalnessof �HS , Inflationary parameters

Phenomenological aspect:

1. For CW breaking: Supercooling ) new history of the Universe, strong GW

2. For non-perturbative scale symmetry breaking:

Short duration of PT) suppression of GW

should be confirmed by 1st principle calculations

3. Scale invariant extensions of the R2
model of Starobinsky

) r >⇠ rR2 ⇠ O(10�3) and more than two scalars during inflation

Is it possible to distinguish these models by measuring small r and also non-

Gaussianity in the CMB anisotropy and large scale structure by future exper-

iments such as LiteBIRD, CMB-S4, Simons Observatory DESI, Euclid, LSST,

etc ?
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∂V (ϕ, S)

∂ϕ
= 0 , (3)

S̈ − 2
(

1/
√
6MPl

)

ϕ̇Ṡ + 3HṠ + e(2/3)
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slow-roll parameter

δN formalism works 

if eigenvalues of ε   << 1, where   

4

ηv

εIJ = −GIJ

Ḣ

H2
+
(GIKGJL

M2
Pl

−
1

3
RIKJL

)φ̇Kφ̇L
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3H2

εIJ = · · ·· · ·−
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3H2

(

f equil
NL = −26± 47 , f equil

NL = −38± 24
)

...

Pζ(k) =
2π2 As(k∗)

k3

( k

k∗

)ns−1

Ph(k) =
2π2 At(k∗)

2k3

( k

k∗

)nt

f(n) =
∑

l,m

aflm Ylm(n)

f(t,x) =
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d3k

(2π)3/2
eik·x fk(t)

〈fkfk′〉 = (2π)3 Pf(k) δ
3(k + k′) ↔ 〈aflma

f
l′m′〉

〈fkfk′fk′′〉 = (2π)3Bf(k, k
′, k′′) δ3(k + k′ + k′′) ↔ 〈aflma

f
l′m′a

f
l′′m′′〉

Btype(k, k
′, k′′) =

18

5
f type
NL A2

s

Stype(k, k′, k′′)

(kk′k′′)2

Blocal(k, k
′, k′′) =

6

5
f local
NL

[

Pζ(k)Pζ(k
′) + Pζ(k

′)Pζ(k
′′) + Pζ(k)Pζ(k

′′)
]

lim
k→0

Blocal(k, k
′, k′′)δ3(k + k′ + k′′) = (1− ns)Pζ(k)Pζ(k

′) δ3(k + k′ + k′′)

Moreover, fluctuation of heavy 
modes are exponentially suppressed 
in super horizon !

ε << 1 , ε  >> 1 !!Valley structure -> L H

Pilo et al,’14



„Excite“ only the light modes at t  .*
Aoki, JK, Yang, ’24
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Model I

r > rR^2
Fiducial model with 

n  =0.96, r=0.0042

1

N : 60 50

(21cm)

λHS

︸ ︷︷ ︸

Theoretical aspect:

1. EEW and MPl can be spontaneously generated,

both perturbatively and non-perturbatively

2. Naturalness of mH ⇒ naturalness of λHS ⇒ multiplicative solution

3. The desert ⇒ the SM and Planck scale physics are directly related

Naturalnessof λHS ⇔ Inflationary parameters

Phenomenological aspect:

1. For CW breaking: Supercooling ⇒ new history of the Universe, strong GW

2. For non-perturbative scale symmetry breaking:

Short duration of PT⇒ suppression of GW

should be confirmed by 1st principle calculations

3. Scale invariant extensions of the R2 model of Starobinsky

⇒ r >∼ rR2 ∼ O(10−3) and more than two scalars during inflation

Is it possible to distinguish these models by measuring small r and also non-

Gaussianity in the CMB anisotropy and large scale structure by future exper-

iments such as LiteBIRD, CMB-S4, Simons Observatory DESI, Euclid, LSST,

etc ?
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The model behaves similar to 

a single-field model, except 
for n   ≳ 0.97.
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Non-Gaussianity (I)
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Model II

r < r
R^2

Fiducial model with 

n  =0.96, r=0.0042s

The model model will be consistent with

null detection at LiteBIRD.
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Non-Gaussianity (II)

The model behaves like a single-field model

(as expected).

LiteBird/Planck 
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Summary

LiteBIRD
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2

1. If the origin of all energy scales is known, a new route toward a solution of

the hierarchy problem might open.

2. Various indications in particle physics + cosmology that the underlying

theory is scale invariant.

3. Extension of the R2 model

⇒ More than two scalar fields involved in inflation

⇒ Multi-field system for inflation.

4. Valley-like potential ⇒ Initial value dependence is suppressed,

but δN formalism has to be accordingly adjusted.

5. r of our models can be measured at future experiments,

but not fNL.

(

Dφ̇I + 3H φ̇I + GIJ V,J = 0
)

(1)

with the non-vanishing components of ΓI
JK :

Γϕ
SS =

1√
6MPl

e−Φ(ϕ) , ΓS
ϕS = ΓS

Sϕ =
−1√
6MPl

. (2)



Ευχαριστώ
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L  :  QCD-like sector

L   :  Mpl  = β <S> 2

L  :   m  = y  <S>M (νoption)

2
S

<     >  = 0  &   <S>  =  0

χSB (chiral symmetry breaking) 

= Origin of all scales
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The full potential is: (   = scalaron) 

A three-field system of cosmic inflation 
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) r >⇠ rR2 ⇠ O(10�3) and more than two scalars during inflation

Is it possible to distinguish these models by measuring small r and also non-
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iments such as LiteBIRD, CMB-S4, Simons Observatory DESI, Euclid, LSST,
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Short duration of PT) suppression of GW

should be confirmed by 1st principle calculations

3. Scale invariant extensions of the R2
model of Starobinsky

) r >⇠ rR2 ⇠ O(10�3) and more than two scalars during inflation

Is it possible to distinguish these models by measuring small r and also non-
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'

V (S,�,')

VNJL(S,�)

σ ≈ constant = vσ

  in the Einstein frame

2

'̈+ 3H'̇+
�
1/
p
6MPl

�
e�(2/3)1/2'/MPlṠ2 +

@V ()

@'
= 0 , (3)

S̈ + 3HṠ � 2
�
1/
p
6MPl

�
'̇Ṡ + V,S = 0 , (4)

where H is the Hubble parameter. In the subsequent discussions we assume that the fields

are homogenous and depend only on time t. Under this assumption the Hubble parameter
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ȧ
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⌘
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Effectively two-field system 

in the Einstein frame described by
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Phenomenological aspect:

1. For CW breaking: Supercooling ) new history of the Universe, strong GW

2. For non-perturbative scale symmetry breaking:

Short duration of PT) suppression of GW

should be confirmed by 1st principle calculations

3. Scale invariant extensions of the R2
model of Starobinsky

) r >⇠ rR2 ⇠ O(10�3) and more than two scalars during inflation

Is it possible to distinguish these models by measuring small r and also non-

Gaussianity in the CMB anisotropy and large scale structure by future exper-

iments such as LiteBIRD, CMB-S4, Simons Observatory DESI, Euclid, LSST,

etc ?

⇣
D�̇I + 3H �̇I + GIJ V,J = 0

⌘
(1)

with the non-vanishing components of �I

JK
:

�'

SS
=

1p
6MPl

e��(') , �S

'S
= �S
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 Exact solution


 Valley bottom


Horizon exit Starting point

End of inflation
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