Gauge Theories on quantum Minkowski spaces: ρ versus κ

Jean-Christophe Wallet

IJCLab Université Paris-Saclay, CNRS/IN2P3, Orsay (France)

17-24 September 2024 / Corfu

- Quantum Minkowski space-times in short
- \bullet Algebra for $\rho\textsc{-Minkowski}$ from group algebra and Weyl quantization
- ρ -deformed Poincaré algebra
- Scalar field theory on ρ -Minkowski
- A gauge theory model on ρ -Minkowski
- 1-loop tadpole: ρ versus κ

• Coordinates algebra ($\kappa > 0$, $[\kappa] = 1$) of κ -Minkowski space:

$$[x_0, x_i] = \frac{i}{\kappa} x_i, \ [x_i, x_j] = 0, \ i, j = 1, \cdots, d.$$
 (1)

Informally, $\kappa\text{-Minkowski}\sim\text{universal enveloping algebra of }\mathfrak{g}$ Acted on by a deformation of the Poincaré algebra

Pioneering papers:

J. Lukierski, H. Ruegg, A. Nowicki, V. N. Tolstoï, Phys. Lett. B264 (1991) 331.

J. Lukierski, A. Nowicki, H. Ruegg, Phys. Lett. B293 (1992) 344.

S. Majid and H. Ruegg, Phys. Lett. B334 (1994) 348.

• Subject of a huge literature since ~ 3 decades: algebra + phenomenological impacts + scalar field theories

Reviews: See for instance

J. Lukierski, "kappa-Deformations: Historical Developments and Recent Results", J. Phys. Conf. Ser. 804, 012028 (2017)

J. Kowalski-Glikman, "Introduction to Doubly Special Relativity", Lect. Notes Phys. 669 (2005) 131

¹(1) belongs to a wider class of deformations of the form $[x_{\mu}, x_{\nu}] = i(a_{\mu}x_{\nu} - a_{\nu}x_{\mu})$, $a_{\mu}a_{\mu} = \pm 1, 0$, see J. Lukierski, V. Lyakhovsky, M. Mozrzymas, Phys. Lett. B538 (2002) 375.

Another deformation of Minkowski: *p*-Minkowski space-time

• Coordinates algebra \mathfrak{g} ($\rho > 0$, [ρ] = -1) of ρ -Minkowski space: Euclidean algebra $\mathfrak{e}(2)$ plus central coordinate x_3

$$[x_0, x_1] = i\rho x_2, \ [x_0, x_2] = -i\rho x_1, \ [x_1, x_2] = 0, \ [x_3, x_i] = 0, \ i = 0, 1, 2$$

– If Exchange $x_0 \leftrightarrow x_3$: "commutative time". Does not alter the following conclusions.

- Considered closely more recently from various viewpoints:
- NC field theory²,
- Black hole physics 3,
- Localisation and quantum observers⁴
- AdS/CFT: gauge dual of Yang-Baxter deformation⁵ of $AdS_5 \times S_5$ superstring
- Appeared a long ago (see J. Lukierski, M. Woronowicz, Phys. Lett. B 633 (2006) 116)

⁵T. Meier, S. J. van Tongeren, Phys. Rev. Lett. 131 (2023) 121603, JHEP12 (2023) 045 = 🔊 🗨 🔿 🔍

²M. Dimitrijević Ćirić, N. Konjik, M. A. Kurkov, F. Lizzi and P. Vitale, Phys. Rev. D **98** (2018) 085011.

³M. Dimitrijević Ćirić, N. Konjik and A. Samsarov, Class. Quant. Grav. **35** (2018) 175005; Phys. Rev. D **101** (2020) 116009

⁴F. Lizzi, L. Scala and P. Vitale, Phys. Rev. D 106 (2022) 025023; F. Lizzi, P. Vitale, Phys. Lett. B 818 (2021) 136372

• ρ -Minkowski $\longleftarrow (\mathcal{A}, \star_{\rho}, \dagger)$

 \bullet Extend the old construction of von Neumann to formalize the Weyl quantization of phase space \longrightarrow Moyal product

J. von Neumann, Math. Ann. 104 (1931) 570. H. Weyl, Zeitschrift für Physik 46 (1927) 1.

• Exploit main properties of convolution algebras for the group ${\cal G}$ related to the coordinates algebra ${\mathfrak g}$ combined with Weyl quantization map

Yields star-product as twisted convolution, natural involution plus natural trace

 \longrightarrow In the following, corresponding *-algebra denoted by $\mathcal{M}_{
ho}$

• Convenient to construct star-products when the noncommutativity of space is of "Lie algebra type"

B. Durhuus, A. Sitarz, J. Noncommut. Geom. **7** (2013) 605. J.-C. Wallet, Nucl. Phys. B912 (2016) 354. T. Poulain, J.-C. Wallet, Phys. Rev. D 98 (2018) 025002.

Sketching the construction of \star_{ρ} and \dagger

K. Hersent, J.-C. Wallet, JHEP 07 (2023) 031

• Start from non trivial part of coordinate algebra \mathfrak{e}_2 . Relevant group \mathcal{G} is

$$\mathcal{G}=SO(2)\ltimes_{\phi}\mathbb{R}^2, \ \ \phi(x)=ax, \ a\in SO(2), \ x\in\mathbb{R}^2$$

 $(a_1, x_1)(a_2, x_2) = (a_1a_2, x_1 + a_1x_2), (a, x)^{-1} = (a^{-1}, -a^{-1}x), \mathbb{I}_{\mathcal{G}} = (\mathbb{I}_{\mathcal{H}}, 0)$

• Convolution algebra $\mathbb{C}[\mathcal{G}] = (L^1(\mathcal{G}), \circ, \star)$ – For $F, G \in L^1(\mathcal{G}), s, t \in \mathcal{G}$

$$(F \circ G)(s) = \int_{\mathcal{G}} d\mu(t)F(st)G(t^{-1}), \ F^*(s) = \overline{F}(s^{-1})\Delta(s^{-1})$$

$$- d\mu((a, x)) = d\mu_{\mathbb{R}^2}(x) \ d\mu_{SO(2)}(a) \ | \det(a)|^{-1} = d\mu_{\mathbb{R}^3}$$
 (Lebesgues)
 $- \Delta((a, x)) = \Delta_{\mathbb{R}^2}(x) \ \Delta_{SO(2)}(a) \ | \det(a)|^{-1} = 1$ (unimodular)

- $F = \mathcal{F}f$, i.e interpreted as functions on momentum space: $F(p_0, p_i)$ • Use Weyl quantization $Q(f) = \pi(\mathcal{F}f)$, Q *-morphism of algebra

$$\pi: \mathbb{C}[\mathcal{G}] \to \mathcal{B}(\mathcal{H}), \ \pi(F) = \int_{\mathcal{G}} d\mu(s) F(s) \pi_U(s)$$

• Combine *Q* with $\pi(F \circ G) = \pi(F)\pi(G)$, $\pi(F)^{\dagger} = \pi(F^*)$ to obtain:

$$f \star g = \mathcal{F}^{-1}(\mathcal{F}f \circ \mathcal{F}g), \ f^{\dagger} = \mathcal{F}^{-1}(\mathcal{F}(f)^{*})$$

Star-product and involution for ρ -Minkowski

K. Hersent, J.-C. Wallet, JHEP 07 (2023) 031

 \bullet Star-product and involution for \mathcal{M}_{ρ}

$$(f \star_{\rho} g)(x_{0}, \vec{x}, x_{3}) = \int \frac{dp_{0}}{2\pi} dy_{0} e^{-ip_{0}y_{0}} f(x_{0} + y_{0}, \vec{x})g(x_{0}, R(-\rho p_{0})\vec{x}, x_{3}),$$
$$f^{\dagger}(x_{0}, \vec{x}, x_{3}) = \int \frac{dp_{0}}{2\pi} dy_{0} e^{-ip_{0}y_{0}} \overline{f}(x_{0} + y_{0}, R(-\rho p_{0})\vec{x}, x_{3}),$$
$$R(-\rho p_{0}) \in SO(2)$$

Properties.

$$\int d^4x \ (f^\dagger \star_\rho g)(x) = \int d^4x \ \bar{f}(x)g(x), \ \int d^4x \ (f \star_\rho g)(x) = \int d^4x \ (g \star_\rho f)(x),$$

– Lebesgue integral defines a trace w.r.t. \star_{ρ} ; cyclicity holds. \star_{ρ} "almost" closed (K. Hersent, J.-C. Wallet, JHEP 07 (2023) 031).

 $-\star_{\rho}$ different from star-product already used in literature⁶. Does not derive from a twist.

ρ -Poincaré algebra

V. Maris, J.-C. Wallet, JHEP 2024, 119 (2024)

- ρ -Minkowski space \mathcal{M}_{ρ} acted on by a deformation of Poincaré algebra \mathcal{P}_{ρ} .
- One can check \mathcal{M}_{ρ} is a left module algebra over \mathcal{P}_{ρ}
- \mathcal{M}_{ρ} dual to $\mathcal{T}_{\rho}\{P_0, P_3, P_{\pm}\}$ deformed translations

$$[M_i, N_j] = i\epsilon_{ijk}N_k, \quad [M_i, M_j] = i\epsilon_{ijk}M_k, \quad [N_i, N_j] = -i\epsilon_{ijk}M_k, \quad [N_i, P_0] = iP_i \\ [N_i, P_j] = i\delta_{ij}P_0, \quad [M_i, P_j] = i\epsilon_{ijk}P_k, \quad [P_\mu, P_\nu] = [M_j, P_0] = 0,$$

$$\begin{split} &\Delta(M_{\pm}) = M_{\pm} \otimes \mathbb{I} + \mathcal{E}_{\mp} \otimes M_{\pm}, \ \Delta(N_{\pm}) = N_{\pm} \otimes \mathbb{I} + \mathcal{E}_{\mp} \otimes N_{\pm} \\ &\Delta(M_3) = M_3 \otimes \mathbb{I} + \mathbb{I} \otimes M_3, \ \Delta(N_3) = N_3 \otimes \mathbb{I} + \mathbb{I} \otimes N_3 \\ &\Delta(P_{0,3}) = P_{0,3} \otimes \mathbb{I} + \mathbb{I} \otimes P_{0,3}, \ \Delta(P_{\pm}) = P_{\pm} \otimes \mathbb{I} + \mathcal{E}_{\mp} \otimes P_{\pm}, \end{split}$$

$$\Delta(\mathcal{E}_{\pm}) = \mathcal{E}_{\pm} \otimes \mathcal{E}_{\pm}, \ \mathcal{E}_{\pm} = e^{\pm i\rho P_0}$$

$$\epsilon(P_{\mu}) = 0, \quad \epsilon(\mathcal{E}) = 1, \ \epsilon(M_j) = \epsilon(N_j) = 0, \ j = \pm, 3,$$

$$S(P_{\mu}) = -P_{\mu} S(P_{\mu}) = -P_{\mu} S(P_{\mu}) = -S_{\mu} P_{\mu} S(S_{\mu}) = S^{-1}$$

$$S(P_0) = -P_0, S(P_3) = -P_3, S(P_{\pm}) = -\mathcal{E}_{\mp}P_{\pm}, S(\mathcal{E}) = \mathcal{E}$$

 $S(M_j) = -M_j, S(N_j) = -N_j, j = \pm, 3,$

Action of \mathcal{P}_{ρ} :

$$(P_{\mu} \triangleright f)(x) = -i\partial_{\mu}f(x), \ (M_{j} \triangleright f)(x) = (\epsilon_{jk}^{l}x^{k}P_{l} \triangleright f)(x),$$

$$(N_{j} \triangleright f) = ((x_{0}P_{j} - x_{j}P_{0}) \triangleright f)(x)$$

• One can check:

$$h \triangleright \int d^4x \mathcal{L} := \int d^4x h \triangleright \mathcal{L} = \epsilon(h) \int d^4x \mathcal{L},$$

for any $h \in \mathcal{P}_{\rho}$, $\mathcal{L} \in \mathcal{M}_{\rho}$.

 Accordingly, the scalar and gauge actions we will consider will be ρ-Poincaré invariant.

A = A = B
 A = B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

1-loop exploration of ϕ^4 scalar field theory on ρ -Minkowski. UV/IR mixing? K. Hersent, J.-C. Wallet, JHEP 07 (2023) 031

$$S(\phi,\overline{\phi}) = \int d^4x \, (\partial_\mu \overline{\phi} \partial_\mu \phi + m^2 \overline{\phi} \phi) + S_{int},$$
$$S_{int}^O = g \int d^4x \, \phi^\dagger \star_\rho \phi \star_\rho \phi^\dagger \star_\rho \phi; \quad S_{int}^{NO} = g \int d^4x \, \phi^\dagger \star_\rho \phi^\dagger \star_\rho \phi \star_\rho \phi$$

• 2-point function:

Figure: Diagrams contributing to the 2-point function - Orientable interaction

Figure: Diagrams contribution to the 2-point function – Non orientable interaction 📱 🔊 ۹.0

1-loop exploration of ϕ^4 scalar field theory on ρ -Minkowski

K. Hersent, J.-C. Wallet, JHEP 07 (2023) 031

• 4-point function – Orientable case:

Figure: Typical diagrams among the 12 diagrams for the 4-point function.

	Orientable	Non orientable	UV/IR mixing
2-point function	no IR singularity	IR singularity	YES
4-point function	IR singularity	Х	YES

- IR singularities responsible for UV/IR mixing
- D = 4 quadratic UV divergence for 2-point function in orientable case
- Conclusions similar to M. Dimitrijević et al., Phys. Rev. D 98 (2018) 085011.
- UV/IR mixing of Lie algebra-type noncommutatitive ϕ^4 -theories recently re-investigated in K. Hersent, JHEP 2024 (2024) 23.

A gauge theory model on ρ -Minkowski

V. Maris, J.-C. Wallet, JHEP 2024, 119 (2024)

- Convenient to use a twisted derivation-based differential calculus.
- Introduced a long ago 7,
- Untwisted versions in NC gauge theories 8
- Graded and extended versions introduced in 9
- Start from set of twisted derivations of \mathcal{T}_{ρ}

$$\mathfrak{D} = ig\{ P_{\mu} : \mathcal{M}_{
ho} o \mathcal{M}_{
ho}, \ \mu = 0, 3, \pm, \ \{P_0, P_3\}_{\mathbb{I}} \oplus \{P_+\}_{\mathcal{E}_+} \oplus \{P_-\}_{\mathcal{E}_-} ig\}, \ \mathcal{E}_{\pm} = e^{i \pm
ho P_0} \ P_{0,3}(f \star g) = P_{0,3}(f) \star g + f \star P_{0,3}(g), \ P_{\pm}(f \star g) = P_{\pm}(f) \star g + \mathcal{E}_{\mp}(f) \star P_{\pm}(g)$$

⁷Michel Dubois-Violette. Lectures on graded differential algebras and noncommutative geometry. 2000. arXiv: math/9912017 [math.QA].

⁸E. Cagnache, T.Masson, and J.-C. Wallet, J. Noncommut. Geom. 5 (2011) 39

⁹A. de Goursac, T. Masson, J.-C. Wallet, J. Noncommut. Geom. 6 (2012) 343 (= > (= >)

A gauge theory model on ρ -Minkowski - Differential calculus

V. Maris, J.-C. Wallet, JHEP 2024, 119 (2024)

• One checks: \mathfrak{D} is a graded abelian Lie algebra and $\mathcal{Z}(\mathcal{M}_{\rho})$ -bimodule:

$$(z.P_{\mu})(f) = z \star P_{\mu}(f) = P_{\mu}(f) \star z := (P_{\mu}.z)(f)$$

Grading defined by $\tau(P_{0,3}) = 0$, $\tau(P_{\pm}) = \pm 1$:

$$\mathfrak{D}=\mathfrak{D}_0\oplus\mathfrak{D}_+\oplus\mathfrak{D}_-$$

• Exterior algebra of differential forms defined as usual from the spaces of $\mathcal{Z}(\mathcal{M}_{\rho})$ -multilinear antisymmetric maps $\omega : \mathfrak{D}^{n} \to \mathcal{M}_{\rho}$. One has $\omega(P_{1}, P_{2}, ..., P_{n}) \in \mathcal{M}_{\rho}$ and $\omega(P_{1}, P_{2}, ..., P_{n}.z) = \omega(P_{1}, P_{2}, ..., P_{n}) \star z$. $(\Omega^{\bullet}(\mathcal{M}_{\rho}) = \bigoplus_{n=0}^{4} \Omega^{n}(\mathcal{M}_{\rho}), \times, d)$ graded differential algebra can be constructed with differential d with $d^{2} = 0$.

P + 4 = + 4 = +

A gauge theory model on ρ -Minkowski - Differential calculus

V. Maris, J.-C. Wallet, JHEP 2024, 119 (2024)

1

• For any $\omega \in \Omega^{p}(\mathcal{M}_{\rho}), \eta \in \Omega^{q}(\mathcal{M}_{\rho}), \omega \times \eta \in \Omega^{p+q}(\mathcal{M}_{\rho})$

$$(\omega \times \eta)(P_1, \dots, P_{p+q}) = \frac{1}{p!q!} \sum_{\sigma \in \mathfrak{S}_{p+q}} (-1)^{(\sigma)} \omega(P_{\sigma(1)}, \dots, P_{\sigma(p)}) \star \eta(P_{\sigma(p+1)}, \dots, P_{\sigma(p+q)}),$$

$$d\omega(P_1,\ldots,P_{\rho+1}) = \sum_{j=1}^{\rho+1} (-1)^{j+1} P_j \triangleright (\omega(P_1,\ldots,\vee_j,\ldots,P_{\rho+1})),$$
$$d^2 = 0$$

• Differential satisfies a twisted Leibnitz rule:

$$d(\omega \times \eta) = d\omega \times \eta + (-1)^{\delta(\omega)} \omega \times_{\mathcal{E}} d\eta$$

for any $\omega, \eta \in \Omega^{\bullet}(\mathcal{M}_{\rho})$

 $-\delta(.)$: degree of form

 $-\times_{\mathcal{E}}$: indicates that a twist acts on the 1st factor depending on the actual derivation acting on the 2nd factor

• • • • • • •

Gauge theory on ρ -Minkowski - Twisted connection and curvature V. Maris, J.-C. Wallet, JHEP 2024, 119 (2024)

- Pick right hermitian module over \mathcal{M}_{ρ} , says, \mathbb{E} .
- Twisted connection defined as $\nabla : \mathfrak{D}_i \times \mathbb{E} \to \mathbb{E}, \ i = 0, \pm$

$$\nabla_{P_{\mu}+P'_{\mu}}(m) = \nabla_{P_{\mu}}(m) + \nabla_{P'_{\mu}}(m), \ \forall (P_{\mu}, P'_{\mu}) \in \mathfrak{D}_{i} \times \mathfrak{D}_{i}, \ i = 0, \pm$$

$$\nabla_{Z.P_{\mu}}(m) = \nabla_{P_{\mu}}(m) \star Z, \ \forall P_{\mu} \in \mathfrak{D}, \forall Z \in Z(\mathcal{M}_{\rho}),$$

$$\nabla_{P_{\mu}}(m \triangleleft f) = \nabla_{P_{\mu}}(m) \triangleleft f + \beta_{P_{\mu}}(m) \triangleleft P_{\mu}(f), \ \forall P_{\mu} \in \mathfrak{D},$$
(2)

((2) holds for linear combinations of P_{μ} 's homogeneous in twist degree

• Assume now: $\mathbb{E} \simeq \mathcal{M}_{\rho}, \ m \triangleleft f = m \star f, \ h(m_1, m_2) = m_1^{\dagger} \star m_2$

$$\nabla_{\mathcal{P}_{\mu}}(m \triangleleft f) = \nabla_{\mathcal{P}_{\mu}}(m) \triangleleft f + \mathcal{E}_{\mu}(m) \triangleleft \mathcal{P}_{\mu}(f), \ \forall \mathcal{P}_{\mu} \in \mathfrak{D}.$$

$$\mathcal{E}_{\mu} = \mathbb{I}, \mathbb{I}, \mathbf{e}^{\pm i
ho P_0}, \ \mu = \mathbf{0}, \mathbf{3}, \pm$$

• The curvature $\mathcal{F}(P_{\mu}, P_{\nu}) := \mathcal{F}_{\mu\nu} : \mathbb{E} \to \mathbb{E} \left(\mathcal{F}_{\mu\nu}(m \star f) = \mathcal{F}_{\mu\nu}(m) \star f \right)$ is

$$\mathcal{F}_{\mu\nu} := \mathcal{E}_{\nu} \nabla_{\mu} \mathcal{E}_{\nu}^{-1} \nabla_{\nu} - \mathcal{E}_{\mu} \nabla_{\nu} \mathcal{E}_{\mu}^{-1} \nabla_{\mu}, \ \mu, \nu = \mathbf{0}, \mathbf{3}, \pm$$

くぼう くほう くほう

Gauge theory on ρ -Minkowski - Gauge transformations

V. Maris, J.-C. Wallet, JHEP 2024, 119 (2024)

• Set:
$$A_{\mu} = \nabla_{P_{\mu}}(\mathbb{I}), \ \nabla_{\mu} := \nabla_{P_{\mu}}, \ \mathcal{F}_{\mu\nu}(\mathbb{I}) = F_{\mu\nu}$$

• Gauge transformations: automorphisms of \mathbb{E} preserving the hermitian structure $h(m_1, m_2)$

$$\mathcal{U} = \{ g \in \mathbb{E} \simeq \mathcal{M}_{
ho}, \ g^{\dagger} \star g = g \star g^{\dagger} = 1 \}.$$

• Twisted gauge transformations for the connection:

$$abla^g_\mu(.) = (\mathcal{E}_\mu \triangleright g^\dagger) \star
abla_\mu(g \star .)$$
 $\mathcal{A}^g_\mu = (\mathcal{E}_\mu \triangleright g^\dagger) \star \mathcal{A}_\mu \star g + (\mathcal{E}_\mu \triangleright g^\dagger) \star \mathcal{P}_\mu g$

• Twisted gauge transformations for the field strength

$$F^g_{\mu
u} = (\mathcal{E}_\mu \mathcal{E}_
u \triangleright g^\dagger) \star F_{\mu
u} \star g$$

(no summation over indices μ, ν in the RHS)

一日

Gauge theory on ρ -Minkowski - Gauge transformations

V. Maris, J.-C. Wallet, JHEP 2024, 119 (2024)

• Gauge invariant action ([G] = 0)

$$S_{
ho}:=rac{1}{4G^2}\langle F_{\mu
u},F_{\mu
u}
angle=rac{1}{4G^2}\int d^4x\;F^{\dagger}_{\mu
u}\star F_{\mu
u}=rac{1}{4G^2}\int d^4x\;\overline{F_{\mu
u}}(x)F_{\mu
u}(x),$$

also ρ -Poincaré invariant. (Assume A_{μ} , $\mu = 0, 1, 2, 3$ real-valued). – Gauge-invariance: use $((\mathcal{E}_{\mu}\mathcal{E}_{\nu}) \triangleright g)^{\dagger} = (\mathcal{E}_{\mu}\mathcal{E}_{\nu}) \triangleright g, \ \mu, \nu = 0, 3, \pm$ plus cyclicity of the integral w.r.t \star_{ρ}

- Comments (classical level):
- − "dimension" d ≥ 3

- Kinetic operator = the one for usual QED (comes from differential calculus)

– "photon" has self-interactions as expected (ρ^{-1} large)

– comparison with similar construction for κ -Minkowski¹⁰: gauge invariance is obtained for a unique value of dimension: d = 5

Lost of cyclicity of the integral w.r.t $\star_{\kappa} \to \text{KMS}$ weight "twisted trace"

1-loop tadpole: ρ versus κ

V. Maris, J.-C. Wallet, to appear (2024)

BRST gauge-fixing – BRST symmetry is twisted as for κ-Minkowski case¹¹

$$S = S_{\rho} + s \int d^4x \ (\overline{C}^{\dagger} \star (\overline{P_{\mu}}(A_{\mu})) + c.c., \ (s^2 = 0)$$

- Lorentz-type gauge : $\overline{P_{\mu}}(A_{\mu}) = P_0A_0 + P_3A_3 + P_+A_- + P_-A_+$
- BRST operation: $sA_{\mu} = P_{\mu}C + A_{\mu} \star C (\mathcal{E}_{\mu} \triangleright C) \star A_{\mu}, s\overline{C}^{\dagger} = b^{\dagger}, sb^{\dagger} = 0$
- Result: Tadpole vanishes! There is no 1-point function ($\Gamma^1(A) = 0$)
- Non-vanishing tadpole frequent in gauge theories on quantum spaces¹²
- Effective action not gauge-invariant ("gauge symmetry radiatively broken")
- Vacuum not stable against quantum fluctuations
- non zero tadpole in gauge theory on κ -Minkowski¹³ obtained similarly to S_{ρ} (computation done for a whole family of gauge functions)

 \rightarrow comparison of the computations for ρ and κ suggests that the structure of differential calculus strongly matters for the vanishing of tadpole (within the considered type of differential calculus)

¹³K. Hersent, P. Mathieu, J.-C. Wallet, Phys. Rev. D 105 (2022) 106013 (D + (E + (E + (E + (C + (C + (

¹¹ P. Mathieu, J.-C. Wallet, Phys. Rev. D 103, 086018 (2021)

¹²K. Hersent, P. Mathieu, J.-C. Wallet, Physics Reports 1014 (2023) 1-83

• Delicate but routine computations for ρ -Minkowski gauge theory: Perform computation of tadpole in a family of gauge functions ¹⁴, plus search for UV/IR mixing (freedom?) ¹⁵.

 \bullet Explore other available deformations of Minkowski plus gauge theories on them (in progress) \longrightarrow more NC gauge theory prototypes

Note: all these present (and forthcoming) gauge theories are "only" NC versions of Yang-Mills theory.

• One step ahead: NC analogs of Einstein-Hilbert action using notion of NC (quantum) analog of tangent bundle¹⁶, with κ -Minkowski space as NC analog of tangent space. Exploration of classical properties of resulting actions in progress...

to be continued...

THANK YOU !

¹⁴V. Maris, J.-C. Wallet (2024)

¹⁵A. Besson, V. Maris, J.-C. Wallet (2024)

¹⁶K. Hersent, J.-C. Wallet (2024)