The Rise and Fall of the SM Higgs: EW Vacuum Stability during Kination

Based on G. Laverda, JR, JCAP 03 (2024) 033 & JHEP 05 (2024) 339

la Unión Europea

- Unknown energy scale
- Unknown fields
- Unknown equation of state

- Unknown masses
- Unknown couplings
- Unknown distribution

A simple scenario

- A single field ϕ for both inflation and dark energy (quintessential inflation)
- An unavoidable non-minimal coupling of the Higgs field H to gravity
- No additional degrees of freedom beyond the electroweak scale

$$\frac{\mathcal{L}}{\sqrt{-g}} = \frac{M_{\rm P}^2}{2}R - g^{\mu\nu}(D_{\mu}H)^{\dagger}(D_{\nu}H) - \lambda\left(H^{\dagger}H - \frac{v_{\rm EW}^2}{2}\right)^2 - \xi H^{\dagger}HR + \mathcal{L}_{\rm SM} + \mathcal{L}_{\phi}$$

Interesting outputs

- The Higgs field is safely stabilized during inflation (no isocurvature pert.)
- Appealing connection between SM parameters and (post-)inflationary era
- The Higgs field itself can be responsible for heating the Universe

G. Laverda, JR, JCAP 03 (2024) 033 & JHEP 05 (2024) 339

Quintessential inflation

For a review see e.g. D. Bettoni, JR, Galaxies 10 (2022) 1, 22

Quintessential inflation

For a review see e.g. D. Bettoni, JR, Galaxies 10 (2022) 1, 22

D. Bettoni, JR, Phys.Lett.B 784 (2018) 122-129; D. Bettoni, G. Domènech, JR, JCAP 02 (2019) 034, D. Bettoni, JR, JCAP 01 (2020) 002, D. Bettoni, A. Opferkuch, Schwaller, Stefanek 1905.06823 (homogeneous approx. only) López-Eiguren, JR, JCAP 01 (2022) 01, 002

Tachyonic particle production

$$Y \equiv \frac{a}{a_{\rm kin}} \frac{h}{h_*} \qquad \qquad \vec{y} \equiv a_{\rm kin} h_* \vec{x} \qquad \qquad h_* \equiv \sqrt{6\xi} H_{\rm kin}$$

$$S_{\chi} = \int d^3 \vec{y} \, dz \, \left[\frac{1}{2} (Y')^2 - \frac{1}{2} |\nabla Y|^2 + \frac{1}{2} M^2(z) Y^2 - V(Y) \right]$$
$$M^2(z) \equiv (4\nu^2 - 1)\mathcal{H}^2 \qquad \nu \equiv \sqrt{\frac{3\xi}{2}}$$

- The Z_2 symmetry of the action is preserved by the dynamics.
- The field is *not* classical but rather quantum.
- A homogeneous component description is *completely inaccurate*.

D. Bettoni, JR, JCAP 01 (2020) 002

Classicalization

- Following dynamics needs non-analytical techniques.
- High occupation numbers \rightarrow Classical Lattice Simulations

D. Bettoni, JR, JCAP 01 (2020) 002

Beating Domain Walls

D.Bettoni, A. Lopez-Eiguren, JR, JCAP 01 (2022) 01, 002

Energy distribution

Lattice-based fitting formulas: O(100) 3+1 classical lattice simulations $\rho_{\text{tac}}(\lambda(\mu),\xi) = 16 \mathcal{H}_{\text{kin}}^4 \exp\left(\beta_1(\lambda) + \beta_2(\lambda)\nu + \beta_3(\lambda)\ln\nu\right) \qquad \nu = \sqrt{\frac{3\xi}{2}}$

G. Laverda, JR, JCAP 03 (2024) 033

Gradients are crucial

Radiation-like products for arbitrary potential

$$w_{\chi} = \frac{1}{3} + \frac{2}{3} \frac{(n-2)}{(n+1) + \langle (\nabla \chi/a)^2 \rangle / \langle V \rangle} \qquad V \propto \chi^{2n}$$

D.Bettoni, A. Lopez-Eiguren, JR, JCAP 01 (2022) 01, 002

Onset of radiation domination

Lattice-based fitting formulas: O(100) 3+1 classical lattice simulations

G. Laverda, JR, JCAP 03 (2024) 033

Heating "temperature"

 $\frac{\text{By-product}}{\text{First lattice characterisation}}$ of Ricci reheating

$$T_{\rm ht} \simeq 2.7 \times 10^8 \,\text{GeV} \left(1 + \frac{z_{\rm rad}}{\nu}\right)^{-3/4} \left(\frac{\rho_{\rm rad}}{10^{-8}}\right)^{3/4} \left(\frac{H_{\rm kin}}{10^{11} \,\text{GeV}}\right)^{1/2}$$

D.Bettoni, A. Lopez-Eiguren, JR, JCAP 01 (2022) 01, 002 G. Laverda, JR, JCAP 03 (2024) 033

Beyond tree level

Quantum contributions of heavy SM particles to effective potential important

JR et al., Phys.Rev.D 90 (2014) 027307, Phys.Rev.D 92 (2015) 8, 083512, JCAP 02 (2018) 040

An open question

F. Bezrukov, M. Shaposhnikov, J.Exp.Theor.Phys. 120 (2015) 335-343,

Higgs effective potential

Vacuum stability during kination

G. Laverda, JR, 2402.06000

Scanning of parameter space

- Three-loop renormalisation-group running of the Higgs self-coupling
- Agnostic approach to top quark mass values, $m_t = 170 173 \text{ GeV}$
- Wide range for non-minimal coupling parameter $\xi \sim 1 700$
- Wide range for the onset scale of kination $\mathcal{H}_{kin} \sim 10^6 10^{15} \text{ GeV}$
- O(1000) 3+1-dimensional classical lattice simulations.
- Checking for existence and crossing of the barrier

$$\xi < rac{y_{\Lambda}^4 \mu_{\Lambda}^2}{32 \, e^{3/2} \pi^2 \, \mathcal{H}^2}$$

 $\rho_{\text{tac}}(\lambda(\mu),\xi) < V(h_{\max}(\xi,y_{\Lambda},\mathcal{H},\mu_{\Lambda}))$

Stability constraints on the top mass

Favours lower masses for the top quark

G. Laverda, JR, 2402.06000

Heating the Universe before BBN

Explosive tachyonic Higgs production allows to heat the Universe. Additional restrictions on parameter space

Lower bound on the inflationary scale

G. Laverda, JR, 2402.06000

Gravitational waves

D. Bettoni, G. Domènech, J. Rubio, JCAP 02 (2019) 034

Ultra High-Frequency GW detectors

Inverse Gertsenshtein effect

 $\mathcal{L} = -\frac{1}{4} g^{\mu\rho} g^{\nu\sigma} F_{\mu\nu} F_{\rho\sigma}$ $h_{\mu\nu} \sim \sim \sim \gamma$

Mecanical resonators

Potentially observable

5T external magnetic field, one-meter long cavity with a 5m radius arXiv:2203.15668 [gr-qc] (Phys. Rev. D 108, 124009)

PRELIMINARY

Conclusions

- A non-minimally coupled Higgs is safely stabilized during inflation but undergoes a tachyonic instability during kination.
- The transition between the two phases acts as a natural cosmic clock. triggering a copious non-perturbative production of Higgs particles and bringing its amplitude close to the instability scale.
- Lower top quark masses are generically favored.
- The Higgs field itself can be responsible of heating the Universe after inflation.
- For $m_t = 171.3$ GeV, the heating temperature can be as large as 10^9 GeV.
- Potential gravitational waves signatures

Ευχαριστώ!

A dedicated program

- Quintessential Affleck-Dine baryogenesis with non-minimal couplings, D. Bettoni, J. Rubio Phys.Lett.B 784 (2018) 122-129
- Gravitational waves from global cosmic strings in quintessential inflation,
 D. Bettoni, G. Domènech, J. Rubio, JCAP 02 (2019) 034
- Hubble-induced phase transitions: Walls are not forever.
 D. Bettoni, J. Rubio, JCAP 01 (2020) 002
- 4. Hubble-induced phase transitions on the lattice with applications to Ricci reheating.D. Bettoni, J.Rubio, JCAP 01 (2022) 01, 002
- 5. Ricci reheating reloaded,G. Laverda, JCAP 03 (2024) 033
- From Hubble to Bubble,
 M. Kierkla, G.Laverda, M. Lewicki, A. Mantziris, M.Piani, JHEP 11 (2023) 077
- 7. The rise and fall of the Standard-Model Higgs: electroweak vacuum stability during kination.
 G. Laverda, J. Rubio, JHEP 05 (2024) 339

For a review see D. Bettoni, JR, Galaxies 10 (2022) 1, 22

BACKUP SLIDES

Hubble-induced phase transitions

$$\frac{\mathcal{L}}{\sqrt{-g}} = \frac{M_P^2}{2}R - \frac{1}{2}(\partial\chi)^2 - f(R, R_{\mu\nu})\chi^2 - V(\chi)$$

- Natural triggering mechanism for phase transitions
- Non-thermal & non-perturbative
- Short-lived topological defects

Top mass measurements

BACK

Inverse Gertsenshtein effect, Sec. 4.2.2		
GW-OSQAR II (built) [306]	$(2.7 - 14) \cdot 10^{14} \text{ Hz}$	$h_{c,n,\rm sto} \simeq 8 \cdot 10^{-26}$
GW-CAST (built) [306]	$(5-12) \cdot 10^{18} \text{ Hz}$	$h_{c,n,\mathrm{sto}} \simeq 7 \cdot 10^{-28}$
GW-ALPs II (devised) [306]	$\sim 10^{15}~{\rm Hz}$	$h_{c,n,\rm sto} \simeq 2.8 \cdot 10^{-30}$
Resonant polarization rotation, Sec. 4.2.4 [317]		
Cruise's detector (devised) [318]	$(0.1 - 10^5){\rm GHz}$	$h_{0,n,\text{mono}} \simeq 10^{-18}$
Cruise & Ingley's detector (prototype) [319, 320]	100 MHz	$8.9\cdot10^{-14}$
Enhanced magnetic conversion (theory), Sec. 4.2.5 [324]	$\sim 10 { m ~GHz}$	$h_{c,n,\mathrm{sto}} \simeq 10^{-30} - 10^{-26}$
Bulk acoustic wave resonators (built), Sec. 4.2.6 [330, 331]	(MHz – GHz)	$4.2\cdot 10^{-21} - 2.4\cdot 10^{-20}$
Superconducting rings, (theory), Sec. 4.2.7 [332, 333]	10 GHz	$h_{0,n,\text{mono}} \simeq 10^{-31}$
Microwave cavities, Sec. 4.2.8		
Caves' detector (devised) [335]	500 Hz	$h\simeq 2\cdot 10^{-21}$
Reece's 1st detector (built) [336]	1 MHz	$h\simeq 4\cdot 10^{-17}$
Reece's 2nd detector (built) [337]	10 GHz	$h \simeq 6 \cdot 10^{-14}$
Pegoraro's detector (devised) [338]	$(1 - 10) {\rm GHz}$	$h \simeq 10^{-23}$
Graviton-magnon resonance (theory), Sec. 4.2.9 [339]	(8 – 14) GHz	$1.1 \cdot 10^{-12} - 1.3 \cdot 10^{-13}$