

Centro de Física Teórica de Partículas Instituto Superior Técnico Universidade de Lisboa

The Reduced 2HDM

Gregory Patellis

M.A. May Pech, M. Mondragon, GP, G. Zoupanos

Mon Repos, Corfu

27 August 2024

Motivation

The ad hoc Yukawa and Higgs sectors of the Standard Model induce \sim 20 free parameters. How can they be related to the gauge sector in a more fundamental level?

The straightforward way to induce relations among parameters is to add more symmetries.

 \rightarrow i.e. GUTs.

Another approach is to look for renormalization group invariant (RGI) relations among couplings at the GUT scale that hold up to the Planck scale.

 \rightarrow less free parameters \rightarrow more predictive theories

Reduction of Couplings Basics

An RGI expression among couplings

$$\mathcal{F}(g_1,...,g_A)=0$$

must satisfy the pde

$$\mu \frac{\mathrm{d}\mathcal{F}}{\mathrm{d}\mu} = \sum_{\alpha=1}^{A} \beta_{\alpha} \frac{\partial \mathcal{F}}{\partial g_{\alpha}} = 0$$

Assumption: there are A-1 independent $\mathcal{F}s$ among A couplings.

Finding them is equivalent to solve the ode

$$\beta_g \left(\frac{dg_a}{dg} \right) = \beta_a, \qquad a = 1, ..., A - 1$$

where g is considered the primary coupling.

The above equations are called reduction equations (RE).

Zimmermann (1985)

However, the general solutions of the REs have integration constants.

- ightarrow We just traded an integration constant for each coupling ightarrow we have not reduced the freedom of the parameter space.
- → Assume power series solutions to the REs (which preserve perturbative renormalizability):

$$g_a = \sum_n \rho_a^{(n)} g^{2n(+1)}$$

For some models this *complete reduction* can prove to be too restrictive \rightarrow use fewer $\mathcal{F}s$ as RGI constraints (*partial reduction*).

RoC Applications

- Standard Model
 - ightarrow $m_t \sim 98~GeV$
 - $\rightarrow m_h \sim 65 \, \text{GeV}$

Kubo, Sibold, Zimmermann (1984); (1985)

- Non-Supersymmetric SM Extensions
 - Two Higgs Doublet Models
 - Three Higgs Doublet Models
 - SM + Vector-like Quarks
 - SM + Asymptotically Safe Gravity
- Supersymmetric SM Extensions
 - Reduced MSSM

Mondragon, Tracas, Zoupanos (2014)

- Finite Unified Theories
 - Reduced Minimal N=1 SU(5) Kubo, Mondragon, Zoupanos (1994)
 - All-loop Finite N=1 SU(5) Heinemeyer, Mondragon, Zoupanos (2008)
 - Two-loop Finite $N = 1 SU(3)^3$ Ma, Mondragon, Zoupanos (2004)

Heinemeyer, Mondragon, GP, Tracas, Zoupanos (2020) Heinemeyer, Kalinowski, Kotlarski, Mondragon, GP, Tracas, Zoupanos (2021)

The 2HDM

$$\begin{split} V_h &= & m_{11}^2 \boldsymbol{\Phi}_1^\dagger \boldsymbol{\Phi}_1 + m_{22}^2 \boldsymbol{\Phi}_2^\dagger \boldsymbol{\Phi}_2 - \left(m_{12}^2 \boldsymbol{\Phi}_1^\dagger \boldsymbol{\Phi}_2 + \text{h.c.} \right) \\ &+ \frac{1}{2} \lambda_1 \Big(\boldsymbol{\Phi}_1^\dagger \boldsymbol{\Phi}_1 \Big)^2 + \frac{1}{2} \lambda_2 \Big(\boldsymbol{\Phi}_2^\dagger \boldsymbol{\Phi}_2 \Big)^2 + \lambda_3 \Big(\boldsymbol{\Phi}_1^\dagger \boldsymbol{\Phi}_1 \Big) \Big(\boldsymbol{\Phi}_2^\dagger \boldsymbol{\Phi}_2 \Big) + \lambda_4 \Big(\boldsymbol{\Phi}_1^\dagger \boldsymbol{\Phi}_2 \Big) \Big(\boldsymbol{\Phi}_2^\dagger \boldsymbol{\Phi}_1 \Big) \\ &+ \Bigg[\frac{1}{2} \lambda_5 \Big(\boldsymbol{\Phi}_1^\dagger \boldsymbol{\Phi}_2 \Big)^2 + \lambda_6 \Big(\boldsymbol{\Phi}_1^\dagger \boldsymbol{\Phi}_1 \Big) \Big(\boldsymbol{\Phi}_1^\dagger \boldsymbol{\Phi}_2 \Big) + \lambda_7 \Big(\boldsymbol{\Phi}_2^\dagger \boldsymbol{\Phi}_2 \Big) \Big(\boldsymbol{\Phi}_1^\dagger \boldsymbol{\Phi}_2 \Big) + \text{h.c.} \Bigg] \end{split}$$

- ightarrow We choose all parameters to be real
- ightarrow We choose to work with the Type-II scenario ($u_R^i
 ightarrow \Phi_2$, $d_R^i, e_R^i
 ightarrow \Phi_1$):
 - $\lambda_6 = \lambda_7$ to avoid tree-level FCNCs

and we need

- ullet $\lambda_4 < 0$ to conserve the electric charge and
- $\lambda_1 > 0$, $\lambda_2 > 0$ and $\sqrt{\lambda_1 \lambda_2} + \lambda_3 + \lambda_4 |\lambda_5| > 0$ for the potential to be bounded from below.

A first Attempt

- \rightarrow Reduction on dimensionless parameters, m_{11}^2 , m_{22}^2 and m_{12}^2 remain free, will be fixed to give m_A
- \rightarrow Partial 1-loop reduction on the g_3 y_t λ_i space, g_3 is the primary coupling
- $\rightarrow g_2$, g_1 switched off, will be added as corrections to the reduction process

$$eta_3 \equiv \mathcal{D}g_3 = -7g_3^3$$
 , $eta_2 \equiv \mathcal{D}g_2 = -3g_2^3$, $eta_1 \equiv \mathcal{D}g_1 = 7g_1^3$

$$\beta_t = \beta_{t_0} + \beta_{t_c} = \left(\frac{9}{2}y_t^2 - 8g_3^2\right)y_t + \left(-\frac{9}{4}g_2^2 - \frac{17}{12}g_1^2\right)y_t$$

$$\beta_{\lambda_i} = \beta_{\lambda_{i0}} + \beta_{\lambda_{ic}}$$

$$\beta_{\lambda_{1}} = 12\lambda_{1}^{2} + 4\lambda_{3}^{3} + 4\lambda_{3}\lambda_{4} + 2\lambda_{4}^{2} + 2\lambda_{5}^{2} + 24\lambda_{6}^{2} + \frac{3}{4}(3g_{2}^{4} + g_{1}^{4} + 2g_{2}^{2}g_{1}^{2}) - 3\lambda_{1}(3g_{2}^{2} + g_{1}^{2})$$

$$\beta_{\lambda_{2}} = 12\lambda_{2}^{2} + 4\lambda_{3}^{3} + 4\lambda_{3}\lambda_{4} + 2\lambda_{4}^{2} + 2\lambda_{5}^{2} + 24\lambda_{7}^{2} + 12\lambda_{2}\lambda_{7}^{2} - 12\lambda_{7}^{4} + \frac{3}{4}(3g_{2}^{4} + g_{1}^{4} + 2g_{2}^{2}g_{1}^{2}) - \dots$$

$$\beta_{\lambda_{2}} = \dots$$

where $\mathcal{D}=16\pi^2\mu(\mathbf{d}/\mathbf{d}\mu)$, $\lambda_t=y_t\sin\beta$ and $y_b,\ y_ au$ are considered negligible

Reducing the parameters w.r.t. g_3 , the power series solutions are:

$$y_t = p_t g_3$$
 , $\lambda_i = p_i g_3^2$

Substituting the solutions into the REs:

$$eta_3 rac{d y_t}{d g_3} = eta_{t_0} \quad , \quad eta_3 rac{d \lambda_i}{d g_3} = eta_{\lambda_{i_0}}$$

we get sets of p_i , p_t that depend on $\sin \beta$ and are RGI.

$$\rightarrow m_t \sim \sin \beta 105 \, \text{GeV}$$

Switching on g_2 and g_1 , we have solutions of the form:

$$y_t = p_t g_3 + q_t g_2 + r_t g_1$$
, $\lambda_i = p_i g_3^2 + q_i g_2^2 + r_i g_1^2$

where p_t , p_i are known from the above procedure and now the full REs will be

$$\beta_3 \frac{dy_t}{dg_3} = \frac{\beta_t}{dg_3}$$
, $\beta_3 \frac{d\lambda_i}{dg_3} = \frac{\beta_{\lambda_i}}{dg_3}$

Solving them requires the conditions

$$\mathcal{D}(q_{\alpha}g_2) \sim 0$$
 , $\mathcal{D}(r_{\alpha}g_1) \sim 0$, $a = t, 1, ..., 7$

They hold for $\mu \geq 10^7$ GeV and are not RGI \rightarrow X

Realistic Approach - Reduction at a Boundary Scale

May Pech, M. Mondragon, GP, G. Zoupanos (2023)

Main Idea:

- \rightarrow Solve the REs at a specific scale M_{bdr}
- \rightarrow Above M_{bdry} a covering theory is assumed that makes the solutions RGI
- \rightarrow Use solutions as BCs to run the usual 2HDM RGEs from M_{bdv} to M_{EW}

About the boundary scale:

- Solutions wrt g_2, g_1 demand $M_{bdrv} \ge 10^7$ GeV
- g_2 , g_1 are treated as corrections, should not be comparable to g_3 at the boundary scale. This demands $M_{pdiv} < 10^8$ GeV

$$\rightarrow M_{bdrv} \sim 10^7 \text{ GeV}$$

This is the scale that New Physics appear.

We can now reduce our system using only the following input:

$$g_i(M_{EW})$$
 , m_A

First we focus on the g_3 - y_t reduction, as it can be performed independently from the λ_i 's and we switch off $g_{1,2}$. We find

$$y_t = 0.471g_3$$

Now, switching on the two remaining gauge couplings, we solve the full REs at M_{bdry} , using their respective values $g_{1,2}(M_{bdry})$:

$$y_t = 0.471g_3 - 0.119g_2 + 1.228g_1$$

Choosing the appropriate value for tan β :

$$\tan \beta = 2.2 \pm 0.5$$

we obtain a pole top mass that satisfies the most recent experimental limits:

$$m_t = (172.69 \pm 0.30) \, \text{GeV}$$

 \checkmark

allowing for a 1 GeV theoretical uncertainty due to higher order contributions and the absence of y_b, y_τ

Now we can repeat the procedure for the full system g_3 - y_t - λ_i .

We choose $m_{11}^2, m_{22}^2, m_{12}^2$ values appropriately, in order for the CP odd Higgs scalar mass to be:

$$m_A = 800 \, \text{GeV}$$

Out of all the possible reduction solutions, we look for those that satisfy the light Higgs mass experimental limits:

$$m_{\rm b}^{\rm exp} = (125.25 \pm 0.17) \, {\rm GeV}$$

where we estimate our theoretical calculations to have a 10 GeV uncertainty due to threshold corrections and higher order contributions

There are viable sets of solutions

Conclusions & Outlook

- Partial RoC on the Type-II 2HDM at a boundary scale M_{bdry}
- Input parameters: $g_i(M_{EW})$, m_A
- Top guark and light Higgs boson masses obtained within limits
- Prediction for $\tan \beta \sim 2.2$
- Predicted scale of New Physics: $M_{\rm bdry} \sim 10^7 \, {\rm GeV}$

Next:

- 2-loop analysis
- 2HDM with complex parameters
- realistic description of spontaneous CP violation with minimal input
- natural selection of one of the six symmetries of the Higgs potential
- apply on 3HDM more predictive reduction