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JT/SYK: gateway btw many body quantum chaos and gravity

Outline

idea: realize this scheme with a SO(2, 2)-Poisson Sigma Model: extended
Schwarzian as a coadjoint orbit of the semidirect product Virasoro-Kac-Moody



2D dilaton gravity MODELS general near horizon geometry

• 2D dilaton gravity models describe near extremal black holes, or more
generally, nearly AdS2 spacetimes. (KK-like derivation from arbitrary
stationary black holes) [Carlip,Yoon]

I [g ,Φ] = − 1

16πGN

∫
Σ

dx2√−g(ΦR + V (Φ)) + . . .KK matter fields,

• topological: no propagating degrees of freedom

• dilaton (scalar field) Φ = parameter determines the classical geometry

• Jackiw–Teitelboim (JT) gravity corresponds to a linear choice of dilaton
potential V (Φ) = −ΛΦ with action [Teitelboim, Jackiw, Almheiri, Polchinski]

IJT [g ,Φ] = − 1

16πGN

∫
Σ

√
−g Φ(R − Λ)

• solutions are spacetimes with constant curvature R = Λ. We have: AdS
(Λ < 0) and dS (Λ > 0) versions JT gravity



Jackiw-Teitelboim (JT) gravity model: focus on AdS2

• Λ = −2 gives AdS2: JT solutions well approximate the AdS-factor in the
near horizon geometry of near-extremal black holes in GR (AdS2 × S2)

• symmetries in perfect AdS2:

– SL(2,R) isometry group

– asymptotic symmetries are by definition the subgroup of the 2D diffeos
that leaves the metric asymptotically invariant: the group of
time-translations t → t̃(t): conformal symmetry spontaneously broken to
SL(2,R)



Emergence of Virasoro-like symmetry

• replace asymptotically AdS boundary by a finite boundary = cutting off
AdS2 along a trajectory γ = (t(u), z(u))
(e.g. Euclidean setting, H2 topology) [Maldacena, Stanford,Yang]

Figure 2: In (a) we see the full AdS2 space. In (b) we cut it o↵ at the location of a
boundary curve. In (c) we choose a more general boundary curve. The full geometry of
the cutout space does depend on the choice of the boundary curve. On the other hand,
the geometry of this cutout region remains the same if we displace it or rotate it by an
SL(2) transformation of the original AdS2 space.

We see that t(u) or t̃(u) produce exactly the same cutout shape. Therefore the full set of
di↵erent interior geometries is given by the set of all functions t(u) up to the above SL(2)
transformations. (Or modded out by these SL(2) transformations (2.5)).

It is worth noting that we can also look at the asymptotic symmetries of AdS2. They
are generated by reparametrizations of the asymptotic form

⇣t = "(t), ⇣z = z"0(t) (2.6)

These will map one boundary curve into another. In fact, (2.6) sends the curve t(u) = u
to t(u) = u + "(u).

If we insert these geometries into the action (2.3) the Gauss-Bonnet theorem implies
that we always get the same action, namely the extremal entropy. Thus we have a set of
exact zero modes parametrized by t(u) (up to the SL(2) identification (2.5)).

Notice that, near the boundary, the geometries are indistinguishable, we need to go
through the bulk in order to distinguish them. In fact, this is the realization of the full
reparametrization symmetry that we expect in this problem. In other words, we expect
that SL(2) is enhanced to a full Virasoro like symmetry, which in this case, are just the
reparametrization symmetries. However, the reparametrization symmetry is spontaneously
broken by AdS2. It is broken to SL(2, R). The zero modes are characterized by the
functions t(u). These can be viewed as Goldstone bosons. Except that here we consider
them in the Euclidean problem. We can call these zero modes “boundary gravitons”.
They are similar to the ones that appear in three dimensions. An important di↵erence
with the three dimensional case is that, here, these modes have precisely zero action in the
confromal limit, there is no local conformal invariant action we can write down for them.
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• fix the proper length of γ: g |γ = 1/ε2 => z(u) = εt′(u) + O(ε3)
(asymptotically AdS2 for ε→ 0)

• the full set of different interior geometries is given by the set of all
solutions t(u) (zero modes, Goldstone bosons, boundary gravitons) up to
the PSL(2,R) (Moebius) transformation of the original AdS2 :

t(u)→ t̃(u) =
at(u) + b

ct(u) + d
, with ad − cb = 1 (same cutout shape)

> PSL(2,R) symmetry of AdS2 is promoted to an infinite dimensional
reparametrization on the boundary [Maldacena, Mertens, Cadoni]



NEARLY AdS2 setting

JT= approximate (low dim) AdS2: Φ measures deviations from pure AdS2.
Since Φ is diverging near the boundary (eoms): set Φ∂ = Φr (u)/ε

• the bulk action induces a boundary Gibbons-Hawking-York (GHY) action

IJT [g ,Φ] = − 1

16πGN

∫
Σ

√
−g Φ(R + 2)− 1

8πGN

∫
∂Σ

√
−h Φ∂(K − 1)

• eom’s for Φ imposes R = −2 (AdS2)

• on-shell, gravitational dynamics only involves the location of the
regularized boundary, depending on the boundary value of Φ∂

IJT [g ,Φ∂ ] = − 1

8πGN

∫
∂Σ

du

ε

Φr

ε
(K − 1)

• the extrinsic curvature is computed as

K =
t′(t′2 + z ′2 + zz ′′)− zz ′t′′

(t′2 + z ′2)
3
2

= 1 + ε2Sch(t, u)

[Maldacena, Stanford,Yang, Mertens 23]



Schwarzian theory on the S1 boundary

> the GHY term can written as a Schwarzian action,

IS = − 1

8πGN

∫
∂Σ

du Φr (u)Sch(t, u)

with Sch(t, u) ≡ {t, u} := t′′′

t′ −
3
2

(
t′′

t′

)2

is the Schwarzian derivative,

Φr (u) is an external coupling and the reparametrization t(u) the field
variable

• the boundary gravitons (zero modes) get an effective action determined by
the Schwarzian

!!! Schwarzian = gateway btw many-body quantum chaos and gravity

• Sachdev–Ye–Kitaev (SYK) 1D QM model: N Majorana fermions at finite
temperature T = β−1 interacting via 4-Fermi interactions with random
couplings (J).



SYK model in the low energy limit

• at low temperatures, T � J, in the large N limit, N � 1, the system
develops conformal symmetry, which is spontaneously broken to SL(2,R)
due to finite temperature effects

• in this limit the SYK model is effectively controlled by a field f (τ) whose
dynamics is governed by the Schwarzian action

IS = − N

βJ

∫ β

0

dτ {f , τ}

• the Schwarzian action is not invariant under all reparametrizations of τ ,
but realizes non-linearly the SL(2, R) transformations due to the
invariance of the Schwarzian derivative:

Diff(S1)→ SL(2,R) (nearly conformal)

=> nearly-JT/nearly-SYK holographic duality (AdS2 boundary gravitons ∼
SYK Nambu-Goldstone bosons)

N ∼ 1/GN J ∼ 1/Φr



Question

perspective: spacetime arises as a low energy limit of a well defined UV
theory. What besides SYK?

? It possible to extend JT/SYK within a larger theory-space of possible
holographic relationships?

method: symmetry

• generalize of JT gravity in the BF formulation starting from generalized
symmetries

JT = SL(2,R)-BF theory = (linear) SL(2,R)-Poisson Sigma Model (PSM)

• boundary degrees of freedom are elements of M = Diff(S1)/SL(2, R)

> Schwarzian action arises as the coadjoint orbit action (Kirillov) of
Diff(S1)/SL(2,R)

> properly generalize M and look for its coadjoint orbit action.



JT = SL(2,R)-BF theory

• bulk JT action in a first order formalism can be written in terms of a 2D
BF model with SL(2,R) gauge symmetry [Jackiv, Fukuyama]

SBF =

∫
Σ

Tr(XF )

where F is the curvature of the connection 1-form A = Aa
µ dx

µJa,
X = X a Ja a Lie algebra valued scalar field and Ja the sl(2,R) generators.

• eom’s wrt X give εµνFµν
k = 0

• JT gravity action recovered by identifying the components of the gauge
connection with the Einstein-Cartan variables: A0,1

µ = e0,1
µ , the zweibein on

Σ and A2
µ = ωµ the Lorentz (spin) connection.

• the dilaton field X 2 = Φ and the Ricci curvature as Fµν
2 = Rµν ,

Fµν
k = Tµν

k (torsion for k = 0, 1)

• F = 0→ ωµ = −e−1 εγδ ∂γe
k
δ ekµ with e = det{ekµ}, k = 0, 1.

• mapping back by: gαβ = ehα ekβ ηhk , and spin connection ωµ
ab = ωµε

ab



BF= (linear) SL(2,R)-Poisson Sigma Model

• Poisson sigma model (PSM): 2D topological field theory on Σ, with target
space a finite dimensional Poisson manifold (M,Π) [Ikeda, Strobl & Schaller]

SPSM(X ,A) =

∫
Σ

Ai∧dX i +
1

2
Πij(X )Ai ∧ Aj ,

• (X ,A) real fields, w/ X : Σ 7→ M embedding maps and
A ∈ Ω1(Σ,X ∗(T ∗M)) one-forms on Σ w/ values in the pull-back of the
cotangent bundle over M.

• contact with the BF model requires linear Poisson tensor of Lie algebra
type:

Πij(X ) = f ijk X
k

with f ijk sl(2,R) structure constants

• integrating by parts the linear PSM action one gets

SPSM = SBF −
∫
∂Σ

X iAi



SL(2,R)-Poisson Sigma Model

RMK the boundary term of PSM breaks the gauge invariance and one should
restrict to the gauge transformations that satisfy δgA|∂Σ = 0

! such restriction is responsible for the rise of dynamical boundary degrees of
freedom (PSM formalism makes it explicit)

• variation of the action wrt X and A yields

δSPSM =

∫
Σ

(E .L.) δX i + (E .L.) δAi −
∫
∂Σ

δX iAi

with eoms
DAA = 0, dX + [X ,A] =: δXA = 0

• DAA = 0 => A pure gauge: A = g−1dg

• dX + [X ,A] =: δXA = 0 => X is a stabilizer of A (on-shell)

> dilaton dynamics ∼ infinitesimal gauge transformation preserving A along
X on-shell corresponds to gauge transformations that satisfy δgA|∂Σ = 0



SL(2,R)-Poisson Sigma Model

• given

δSPSM =

∫
Σ

(E .L.) δX i + (E .L.) δAi −
∫
∂Σ

δX iAi

a well-defined variational principle requires:

either fixing the boundary values of the fields => no boundary dynamics (bad)

or adding counter boundary term => matching GHY (good - how?)

• natural solution: boundary Casimir function

S (Σ+∂Σ) = SPSM +
1

2

∫
∂Σ

X iXi du

& extra condition: Xi |∂Σ du = Ai |∂Σ

why the X fields, restricted at the boundary, generate the Poisson algebra of
currents associated with sl(2,R), which admits a natural class of quadratic
functions, the Sugawara tensors, which close the Virasoro algebra

• boundary dynamics is related with the Schwarzian action <=> GHY
[Mertens, Turiaci, Verlinde]



Coadjoint orbit method for Diff(S1)/SL(2,R)

How does such correspondence come about?

• PSM bulk action is invariant under the SL(2,R) gauge group and under
diffeomorphisms.

• PSM boundary action, nonvanishing on-shell, explicitly breaks the Diff(S1)
invariance, since the boundary condition of the fields are not invariant
under reparametrisation of S1.

• the SL(2,R) gauge symmetry is preserved because of the stabilizerness
condition δλA|∂Σ = 0, with λ ∈ sl(2,R).

• PSM boundary action must then depend on fields transforming in some
representation of the coset space Diff(S1)/SL(2,R)

> Schwarzian action arises as the coadjoint orbit action (Kirillov) of the
Virasoro group Diff(S1)/SL(2,R)



Yang–Mills extensions of JT gravity

GOAL generalized models of dilaton gravity based on a gauge group G, with
suitable extension of the Schwarzian dynamics governed by
one-dimensional actions located at the boundary of the space-time.

Recipe:

• generalized JT gravity possible any time the Lie algebra of symmetries
contains an sl(2,R) sub-algebra and another sub-algebra which is
ad-invariant under the first one

• bulk: SL(2,R) ⊂ G : the sl(2,R) subalgebra allows for an identification of
this sl(2)-part with Cartan variables (zweibein and dualized Lorentz
connection).

• boundary: single out residual degrees of freedom, which results in
non-abelian gauge fields minimally coupled with gravity

• e.g. non-abelian BF-theories with gauge group G= SL(2,R) × K
[Grumiller18, ...]

our take: so(2, 2)-Poisson sigma model over a 2D manifold Σ = R × S1



so(2,2) - Poisson Sigma Model

Fields: decomposition pattern is crucial [Jackiv 92]

• Ω be the so(2, 2)-valued connection 1-form over Σ.

• so(2, 2) algebra: [Ji , Jj ] = εkijJk , [Pi ,Pj ] = αεkijJk , [Ji ,Pj ] = εkijPk

• def. new generators Li (+),Ri (−) which transforms like vectors under Ji ’s
action:

Li =
1

2
(Ji + Pi ) −→ [Li , Lj ] = εkijLk close inv. subalg.

s.t. so(2, 2) ' sl(2,R)R ⊕ sl(2,R)L

or decompose so(2,2) non-chiral basis

[Ji , Jj ] = εkijJk , [Li , Lj ] = εkijLk , [Ji , Lj ] = εkijLk .

> so(2, 2) 6= sl(2,R)J ⊕ sl(2,R)L: two sl(2,R)J,L sub-algebras.

• refer to the sl(2,R)J sub-algebra as the gravitational sector and to the
sl(2,R)L as the Yang-Mills sector. Hence

Ω = AiJ
i + BiL

i



so(2,2)- Poisson Sigma Model

• Zi embedding maps Zi : Σ→ so(2, 2)∗ with linear Poisson brackets

{Zi ,Zj} = Πij(Z) = f ijk Z
k

• similar ”non-chiral” decomposition (dual basis):Z = XiJi + YiLi

• Poisson Sigma model:

SPSM(Z,Ω) =

∫
Σ

dΩi ∧ Zi +
1

2
Πij(Z) Ωi ∧ Ωj

• eom: DAA = 0, DΩB = ε hki BhAkL
i ,

δXA = 0, δYΩ = −ε hki XhBkL
i

> on-shell A is pure gauge wrt SL(2,R)J

> on-shell X field is stabilizer for A (Y stabilizer for Ω for suitable b.c.)

DΩB A-sector of the model equivalent to the ordinary JT gravity, while B
behaves like a gauge field minimally coupled with gravity.



Boundary action: coadjoint orbits of (Diff(S1) n LG)/SL(2,R)

• As it is the case for the sl(2,R)-PSM, if we insert a boundary Casimir
counter-term in Z2 and set the same boundary condition Ω|S1 = Z|S1du,
we get a particle on a group action

• on-shell reduces to :

SPSM |S1 =
1

2

∫
S1

(
XiXi + XiYi + YiYi

)
du

RMK expect boundary action to comprise:

– a Schwarzian for the sl(2,R)J -PSM sector (X2)

– a particle-on-a-group term for the YM sector (Y2)

– plus interactions

! picture realised via a strong stabilizerness condition: Xi|S1dτ = −Bi |S1

• together with Ω|S1 = Z|S1du implies Yi = −Xi

=> Z|S1 is no longer so(2, 2)-valued, rather is sl(2,R)-valued: residual SL(2R)
symmetry on S1

=> boundary action given by a coadjoint orbit of a product Diff(S1)n ̂SL(2,R)



Boundary action: coadjoint orbits of (Diff(S1) n LG)/SL(2,R)

What’s left?

• compute the extended Schwarzian action as the coadjoint orbit action of
the Virasoro-Kac-Moody semidirect product group (Diff(S1) n
LG)/SL(2,R)

– the Kac-Moody sector reflects the residual gauge symmetry at the
boundary

– the Virasoro group has the exact same role played in JT gravity

!!! details in LUCIO VACCHIANO’S TALK!



Discussion

Insigths from so(2,2)- Poisson Sigma Model:

• partial breaking of the so(2, 2) gauge symmetry is responsible for the rising
of extra edge modes on the boundary

• the model provides a gravitational dual for SYK-like generalization with
internal symmetries, whose low energy dynamics is characterized by a
diff(S1) n ĝ symmetry [Yoon]

• the so(2, 2) algebra connect the model with 3D gravity: 3D Chern-Simons
theories with WZW term at the boundary, once dimensionally reduced,
give 2D BF theories with the particle on a group action at the 1D
boundary [Mertens 18]

• Chern-Simons-WZW theory whose dimensional reduction gives the
so(2, 2)-PSM is the 3D topological theory describing AdS3 geometry.



Thank You


