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Introduction

A RF R is usually built using a macroscopic body with N ≫ 1 atoms.
Then ”collective” observables like the position X of its CM and its total
momentum P tipically are not significantly affected by the observation of
a system S or another RF R′ with respect to (wrt) R. That’s why RFs
are usually idealized as classical.
But the ultimate quantum nature of these bodies will spoil their classical
(i.e. idealized) properties, via UR, etc; particularly manifest if N ∼ O(1).

Can we formulate a consistent theory of QRFs?

The idea of QRFs was first proposed by Aharonov & Susskind 1967,
Aharonov & Kaufherr 1984. Ever since many hundreds papers.

[arXiv:1712.07207] ”Quantum mechanics and the covariance of physical
laws in quantum reference frames”, by F. Giacomini, E. Castro-Ruiz, Č.
Brukner, Nat. Commun. 10, 494 (2019), is particularly significant.

They all use ”Relational Quantum Mechanics” (C. Rovelli, ...): ∄ unique
”absolute” state of a system S; rather, one state relative to each observer.
Thus, a composite system can be in an entangled state wrt QRF R, a
factorized state wrt QRF R′.



Use of spacetime observables relative to QRFs can heal QFT divergences:

[arXiv:2403.11973], ”Quantum reference frames, measurement schemes
and the type of local algebras in QFT” (by C. Fewster, D. Janssen, L.
Loveridge, K. Rejzner, J. Waldron), proposes a operational framework for
local measurements of QFs on a symmetric background wrt a QRF:
under suitable assumptions the algebra of (relative) observables is a type
II factor (instead of type III1), i.e. has a semifinite, or even finite,
(instead of an infinite) trace, which allows e.g. computing entropy.

This paper builds on ideas+results of ”An Algebra of Observables for de
Sitter Space” by V. Chandrasekaran, R. Longo, G. Penington, E. Witten,
JHEP02(2023)082, [arXiv:2206.10780].

The approach to investigate properties of a QRF can be:

1. bottom-up: start from quantum properties of its microscopic
constituents, operationally measuring spacetime coords wrt it.

2. top-down: study which classical properties of RFs are compatible
with their quantum nature, or must be generalized, and how

Here we adopt 2., focusing on group structure of changes of RFs.



Preliminaries, paradoxes for CRFs. Need generalized groups

Changes of classical reference frames (RF)
g :R 7→R′ in space(time) make up a
Lie group G :
the product gg ′ is the composition of g ,g ′;
the unit is 1 : R 7→ R;
the inverse of g is g−1 :R′ 7→R.

g sharply specifies how R moves wrt R′.

Let x ,x ′ resp. be the (sets of) spacetime coordinates of a generic event
wrt R,R′; g determines the 1-to-1 map x 7→ x ′ . The latter induces a
map (passive transf.) between the dynamical variables used by R,R′ to
describe a physical system S; e.g. for scalar fields the map

γ(g) : ϕ 7→ ϕ
′

is determined by the eq. ϕ(x)
!
= ϕ ′[x ′(x)].

Enforcing these maps assumes R′ has: i) got information about the de-
scription of S by R; ii) sharply determined g , i.e. how R moves wrt R′.



Cartesian coords wrt inertial RFs on X ≡NR/
Minkowski spacetime: x ′µ =(xg)µ ≡xνΛ

ν
µ+yµ

, g≡(Λ,y)∈G ≡ Galilei/Poincaré group,

γ(g) : ϕ 7→ ϕ ′ ≡ ϕ ◁g ,

ϕ ′(x ′)≡ ϕ
(
x ′g−1

)
.

(1)

These maps apply also if S is quantum, e.g. a 0-spin elementary particle:

x̂ 7→ x̂ ′ = x̂Λ+y , p̂ 7→ p̂′ = p̂Λ, ρ 7→ ρ
′, ψ 7→ ψ

′. (2)

All pure (resp. mixed) states ρ (≡density
operator) wrtR are mapped into pure (resp.
mixed) states ρ ′ wrt R′.

The wavefunctions ψ(x) = R⟨x |Ψ⟩R,
ψ ′(x ′) = R′⟨x ′|Ψ′⟩R′ of S wrt resp. R,R′

fulfill |ψ ′(x ′)|2 = |ψ(x)|2, and by Wigner
Thm can be chosen so that ψ ′(x ′) = ψ(x).



However, if R′ has a coarse (i.e., probabilistic) knowledge about R, then
a pure state ρ = |Ψ⟩RR⟨Ψ| is mapped into a mixed state ρ ′.

For instance, if R′ knows exactly Λ, i.e.
the (relative) orientation and velocity of
R, and that the origins’ displacement is
y1,y2 with probabilities 1/2, then

ρ ′ = 1
2 |Ψ

′
y1
⟩R′R′⟨Ψ′

y1
| + 1

2 |Ψ
′
y2
⟩R′R′⟨Ψ′

y2
|,

P(x ′) = 1
2

∣∣ψ ′
y1
(x ′)

∣∣2 + 1
2

∣∣ψ ′
y2
(x ′)

∣∣2; (3)

here ψ ′
y (x

′) = ψ(x ′−y), P(x ′) = Tr
(
|x ′⟩R′R′⟨x ′|ρ ′) is the probability

density to find the particle at position x ′ wrt R′.

More generally, if R′ knows that the origins’ displacement is y with
probability density ρ̃(y), then the state of S wrt R′ will be

ρ
′ =

∫
d4y ρ̃(y) |Ψ′

y ⟩R′R′⟨Ψ′
y |; (4)

this is pure iff ρ̃(y) = δa(y)≡ δ (y −a), for some a ∈ R4.

Thus, purity of states is a frame-dependent notion!



To explain the paradox: ρ̃ is a classical state (probability distribution) of
R wrt R′; it is mixed, and so is the state of S∪R wrt R′, iff ρ̃ ̸= δa.

More formally, regard yµ ,Λ
ν
µ as coordinate functions on G ; by def. they

take the values aµ ,λ
ν
µ when evaluated at the point g ≡ (λ ,a) ∈ G .

Associate to each g ∈ G the projector Pg (on a suitable H ext
R ) such that

yµPg = aµPg = Pgyµ , Λν
µPg = λ

ν
µ Pg = PgΛ

ν
µ .

We can write the most general state of R (w.r.t. R′) in the form

ρR =
∫
G
dg ρ̃(g)Pg , (5)

where dg is the (left and right) G -invariant (Haar) measure on G .
We postulate that the state ρ ′

S of S w.r.t. R′ is obtained from ρR∪S via

ρ
′
S = trHR

[
U (Λ,y)ρR∪S U †(Λ,y)

]
=

∫
da ρ̃(g)U(g)ρSU

†(g), (6)

where U (Λ,y)≡ e i
[
yµ⊗pµ+(lnΛ)ν

µ ηµρLνρ

]
, U(g)≡ e i

[
aµp

µ+(lnλ )ν
µ ηµρLνρ

]
.

In particular, if ρR∪S = ρR⊗PΨ, PΨ = pure state of S w.r.t. R, then

ρ
′
S =

∫
dg ρ̃(g)PU(g)Ψ. (7)

ρ ′
S is mixed unless ρR is pure (ρ̃ = δḡ for some ḡ ∈ G ; ⇒ ρ ′

S = PU(ḡ)Ψ).



The set of (classical) states of R wrt R′ becomes a semigroup if we
define the product by convolution. Sticking to translations,

(ρ̃1 ∗ ρ̃2)(y) =
∫

d4b ρ̃1(b) ρ̃2(y −b); (8)

δ0 plays the role of unit element. A mixed state ρ̃ (e.g. ρ̃ = 1
2δa1 +

1
2δa2)

has no inverse. Only pure states have: the inverse of δa is δ−a.
Hence the group G can be identified with the set of pure states.

Instead of endowing the set of states with the structure of a (semi)group,
one can encode the group structure of G in the Hopf algebra structure of
Fun(G ). This is more convenient, because it allows to replace Fun(G ) by
a noncommutative algebra, as we need for dealing with Quantum
Reference Frames (QRFs; i.e. RF whose ultimate quantum nature cannot
be ignored) and for describing symmetries of a NC spacetime.

Below I consider some NC deformations of X = Minkowski space and G =
Poincaré group P, ideally relating inertial QRFs; −η =diag(−1,1,1,1).



Why NC spacetime?

The idea of noncommutative (NC) spacetime is rather old [Heisenberg].
Possible motivations:

1. framework where to reconcile the principles of QM and GR;

2. inthrinsic regularization mechanism of UV divergences in QFT
(Heisenberg’s motivation);

3. due to the quantum nature of RFs (new!);

4. effective description of string theory in some low energy regime (e.g.
D3-brane with a large B-field).

1. In usual QFT no universal minimum for the localization ∆x of events:
∆x ∼ h̄/∆p can be reduced at will by increasing the energy of the probe.
On the other hand (argument due to [Mead,Wheeler,Bronstein]), by GR
the energy concentration should not cause the formation of a black hole

⇒ ∆x ≳ lp (Plack length). (9)

Doplicher, Fredenhagen & Roberts [DFR95] propose more sophisticated
bounds, and noncommuting xi that could naturally imply such bounds.



NC Moyal spaces; QFT attempts on them

Simplest NC spacetime: constant commutators

[x̂µ , x̂ν ] = i1θµν (10)

with θµν =−θνµ (Grönewold-Moyal-Weyl, briefly ”Moyal”). Theoretical
laboratory to investigate ”noncommutative” QM, QFT. Note that (10)
are translation invariant, not Lorentz-invariant.

Algebra X̂ of functions on Moyal space: generated by 1, x̂µ fulfilling (10),

with θµν ∈R (suitably extended). In [DFR95] θµν ∈Z (X̂ ) is dynamical.

Various inequivalent approaches to QFT on Moyal spaces. I would divide
them according to: quantization approach, spacetime symmetries.

1. Path-integral quantization on Moyal-Euclidean spacetime: T. Filk ,
M. R. Douglas, A.S. Schwarz, N. A. Nekrasov, N. Seiberg, E.
Witten, S. Minwalla, M. Van Raamsdonk, J. Gomis, T. Mehen, L.
Alvarez-Gaume, M.A. Vazquez-Mozo, ...., H. Grosse, R.
Wulkenhaar,...,R.Oeckl, R.J. Szabo, M. Dimitrijevic,...

2. Field=operator-valued, Moyal-Minkowski spacetime. Quantization:
canonical; or á la Wightman; ... DFR, Bahns, Piacitelli, Chaichian,
Balachandran et al, Aschieri, Lizzi,Vitale, Abe, Zahn, GF & Wess,...



Various problems, some interesting features.
E.g. in 1: causality violation, non-unitarity (for θ0i ̸= 0), UV-IR mixing of
divergences, non-renormalizability, claimed changes of statistics, etc.
Some problems may arise because naively deformed Euclidean Feynman
rules are not justified by a Wick rotation.

Standard or deformed Poincaré covariance? ...?

Doplicher-Fredenhagen-Roberts, et Bahns, Piacitelli,...: since 1995:
First canonical quantization of the free fields. θµν 7→ Qµν central Lorentz
tensor (obeying some conditions), becoming on each irrep a set of fixed
constants θµν (joint spectrum of Qµν). ⇒ Poincaré-covariant.
But with interacting fields Lorentz covariance is sooner or later lost.
Doplicher’s speculations: Qµν finally related to v.e.v. of Rµν , in turn
influenced by matter quantum fields through quantum eq.s of motion.

Chaichian et al 2004, Wess 2004, Koch et al 2004, Oeckl 2000:
(10) are not Poincaré -invariant; but “twisted Poincaré” invariant.

Then attempts to construct twisted Poincaré covariant quantum fields
started: Chaichian et al, Balachandran et al, Lizzi-Vitale, Abe, Zahn,
F.-Wess, F. Our framework.



The Hopf algebra
(
H ≡ Fun (P),ε,∆,S

)
xµ 7→ x ′µ = (xg)µ = xνΛ

ν
µ + yµ ≡ xν⊗Λν

µ +1⊗yµ =: ∆r (xµ). (11)

Regard: 1,xµ as generators of X := Fun(X ); 1H ,Λ
ν
µ ,yµ as generators

of the algebra H ≡ Fun (P) of functions on P. The transf. rule (11) is
extended to all of X an algebra map (i.e. ∆r (fg) = ∆r (f )∆r (g), etc.),
the coaction ∆r : X → X ⊗H, f (x) 7→ f (x ′) =:

[
∆r (f )

]
(x).

The group structure of P is encoded in the counit ε : H → C, coproduct
∆ : H → H⊗H, antipode S : H → H, defined on the generators by

ε(Λν
µ) = δ ν

µ, ∆(Λν
µ) = Λν

ρ⊗Λ
ρ

µ, S(Λν
µ) = (ηΛTη)ν

µ ≡ Λ−1ν
µ,

ε(yµ) = 0, ∆(yµ) = yν⊗Λν
µ +1H⊗yµ , S(yµ) =−yνΛ

−1ν
µ ,

(12)

which resp. give the identical, (twice) repeated, inverse change of frame.
ε,∆, S are extended as (anti-)algebra maps; fulfill many properties, e.g.

(id⊗ε)◦∆r = id , (∆⊗id )◦∆r = (id⊗∆r )◦∆r . (13)

Transf. (11) preserves [xµ ,xν ] = 0. Does it preserve [x̂µ , x̂ν ] = i1θµν?

Yes, if we ”quantize” H, i.e. make it a NC Hopf algebra Ĥ, such that
[x̂ ′µ , x̂

′
ν ] = i1θµν holds as well ⇒ all inertial QRFs are equivalent!

[Λ
ρ

µ , ·] = 0, Λ
ρ

µΛ
σ
ν ηρσ =ηµν1H , [ŷµ , ŷν ] = i(θµν1H −θρσΛ

ρ

µΛ
σ
ν );

(14)
[Oeckl 00] for the Euclidean version. Restricted Lorentz: add
detΛ = 1, Λ0

0 > 0. SL(2,C): [Podleś-Woronowicz 96].
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)
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0 > 0. SL(2,C): [Podleś-Woronowicz 96].



The Hopf algebra
(
Ĥ ≡ Funθ (P),ε,∆,S

)
x̂µ 7→ x̂ ′µ = x̂νΛ

ν
µ + ŷµ ≡ x̂ν⊗Λν

µ +1⊗ŷµ =: ∆r (x̂µ). (11)

Regard: 1, x̂µ as generators of X̂ ; 1H ,Λ
ν
µ , ŷµ as generators of the

algebra Ĥ = Funθ (P). The transf. rule (11) is extended to all of X̂ an
algebra map (i.e. ∆r (fg) = ∆r (f )∆r (g), etc.), the coaction

∆r : X̂ → X̂ ⊗ Ĥ, f (x̂) 7→ f (x̂ ′). The counit ε : Ĥ → C, coproduct
∆ : Ĥ → Ĥ⊗ Ĥ, antipode S : Ĥ → Ĥ, defined on the generators by

ε(Λν
µ) = δ ν

µ, ∆(Λν
µ) = Λν

ρ⊗Λ
ρ

µ, S(Λν
µ) = (ηΛTη)ν

µ ≡ Λ−1ν
µ,

ε(ŷµ) = 0, ∆(ŷµ) = ŷν⊗Λν
µ +1H⊗ŷµ , S(ŷµ) =−ŷνΛ

−1ν
µ ,

(12)

resp. give the identical, (twice) repeated, inverse change of frame.
ε,∆, S are extended as (anti-)algebra maps; fulfill many properties, e.g.

(id⊗ε)◦∆r = id , (∆⊗id )◦∆r = (id⊗∆r )◦∆r . (13)

Transf. (11) preserves [x̂µ , x̂ν ] = i1θµν if [Oeckl 2000]:

[Λ
ρ

µ , ·] = 0, Λ
µ

ρΛ
ν
σ η

ρσ = η
µν1H , [ŷµ , ŷν ] = i(θµν1H −θρσΛ

ρ

µΛ
σ
ν ). (14)



Regular representation of Ĥ; coherent states for QRFs

Abbreviating χ := 1Hθ −ΛTθΛ, Ĥ is generated by Λν
µ , ŷµ fulfilling

[Λν
µ , · ] = 0, ΛηΛT = 1Hη , [ŷµ , ŷν ] = i χµν . (15)

It can be faithfully represented on the space V of functions f (y ,λ ) of
real commuting variables yµ ,λ

ν
µ fulfilling ληλT = η , e.g. by

Λν
µ f (y ,λ ) = λ

ν
µ f (y ,λ ), ŷµ f (y ,λ ) =

(
yµ +

i

2
χµρ

∂

∂yρ

)
f (y ,λ ); (16)

reducible representation of Ĥ with the correct commutative limit θ → 0.
In fact, rhs(16b) is the star-product yµ ⋆ f (y ,Λ) induced by the twist

F = exp[ i2θµρp
µ ⊗pρ ], leading to ŷµ ⋆ ŷν − ŷν ⋆ ŷµ = iχµν .

By a suitable orthogonal transf. ŷµ 7→ ŷµ = ŷρQ
ρ

µ (λ ) (15c) become[
ŷ0, ŷ1

]
=−

[
ŷ1, ŷ0

]
= iβ ,

[
ŷ2, ŷ3

]
=−

[
ŷ3, ŷ2

]
= iγ, (17)

where β ,γ are λ -dependent linear combinations of the θµν ; (16) becomes

ŷ0 = y0+
iβ

2

∂

∂y1
, ŷ1 = y1−

iβ

2

∂

∂y0
, ŷ2 = y2+

iγ

2

∂

∂y3
, ŷ3 = y3−

iγ

2

∂

∂y2
.



b1 =
ŷ0+i ŷ1√

2β
, b†

1 =
ŷ0−i ŷ1√

2β
, b2 =

ŷ2+i ŷ3√
2γ

, b†
2 =

ŷ2−i ŷ3√
2γ

(18)

are ladder operators fulfilling the CCR

[b1,b2] = [b†
1,b

†
2] = 0, [ba,b

†
b] = δab. (19)

One can easily show that for all α ≡ (α0,α1,α2,α3) ∈ R4 the

ψα(y ,λ ) =

√
4

π2βγ
exp

[
− (y0−α0)

2+(y1−α1)
2

β
(
λ
) − (y2−α2)

2+(y3−α3)
2

γ
(
λ
) ]

(20)

are normalized coherent states, eigenvectors of b1,b2 with eigenvalues
z1 ≡ (α0+ iα1)/

√
β , z2 ≡ (α2+ iα3)/

√
γ respectively; z ≡ (z1,z2) ∈ C2.

They make up a family of gaussian states centered around (and
parametrized by) the 4 real parameters α ∈ R4, which label all possible
classical translations.



The corresponding expectation values, uncertainties and saturated
Heisenberg uncertainty relations read

⟨ŷµ⟩= αµ , ∆ŷ2 =∆ŷ3 =
√

γ

2
, ∆ŷ0 =∆ŷ1 =

√
β

2
, (21)

∆ŷ0∆ŷ1 =
β

2
, ∆ŷ2∆ŷ3 =

γ

2
. (22)

As λ → I (or as θ → 0) we have β ,γ → 0, and

ψα(y,λ )→ δ
(4)(y−α). (23)

In other words, in this limit the change of reference frame becomes
”classical” (i.e. commutative). This is welcome.
A consequence is the relation, invariant under orthogonal transformations,

∑
µ

(
∆ŷµ

)2
=

√
2Pf(χ)− 1

2 tr(χ
2) (24)

=
√
2e · (b′−b)+2(e ′−e) ·b+(e−e ′)2+(b−b′)2.(25)

where e ′,b′ are the 3-vectors of components e ′i ≡ θ ′
0i , b

′i ≡ 1
2ε ijkθ ′

jk .



Rhs(25) depends on the specific Lorentz transformation λ . Sticking to
λ =rotations, one can easily show the rotation-independent bound

∑
µ

(
∆ŷµ

)2 ≤ 2(e+b) (26)

(here e,b are the norms of e,b). More generally, one can show the bound

∑
µ

(
∆ŷµ

)2 ≤ 4λ
0
0

√
2(e2+b2). (27)
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