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Multiparticle quantization of braided Majorana qubits:

- F. T., First quantization of braided Majorana fermions,

Nucl. Phys. B 980 (2022), 115834; arXiv:2203.01776

- F. T., The parastatistics of braided Majorana fermions,

SciPost Phys. Proc. 14, 046 (2023); arXiv:2312.06693
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Fundamental ingredients:

The mathematical framework for braids appeared in:

- L. Kauffman and H. Saleur, Free fermions and the Alexander-Conway

polynomial, Comm. Math. Phys. 141, 293 (1991).

Parastatistics recovered from graded Hopf algebras endowed with a

braided tensor product:

- S. Majid, Foundations of Quantum Group Theory,

Cambridge University Press, Cambridge (1995).
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Recent results:

- F.T., Volichenko-type metasymmetry of braided Majorana qubits,

arXiv:2406.00876

1 - Quantum group interpretation of the roots of unity truncations recovered
from a (superselected) set of reps of the quantum superalgebra Uq(osp(1|2));

2 - Reconstruction, via suitable intertwining operators, of the braided tensor
products as ordinary tensor products;

3 - Introduction of mixed-brackets for the braided creation/annihilation
operators which define generalized Heisenberg-Lie algebras;

4 - Braided creation/annihilation operators as (meta)symmetries of ordinary
differential equations given by matrix Schrödinger equations in 0 + 1 dimension;

5 - Special case of a third root of unity truncation, a nonminimal realization of

the intertwining operators defines the system as a ternary algebra.
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Symmetries wider than supersymmetry:
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What is a Majorana qubit:

A Z2-graded qubit describes the Hilbert space H(1) of a single Majorana
fermion. |vac〉 is the bosonic vacuum and |ψ〉 is the fermionic excited state:

|vac〉 :=

(
1
0

)
, |ψ〉 :=

(
0
1

)
.

The 2× 2 matrix operators acting on the graded qubit are:

α =

(
1 0
0 0

)
, β =

(
0 1
0 0

)
, γ =

(
0 0
1 0

)
, δ =

(
0 0
0 1

)
,

where α, δ are even (bosonic) and β, γ are odd (fermionic) matrices.
Their (anti)commutators define the gl(1|1) superalgebra:

[α, β] = β, [α, γ] = −γ, [α, δ] = 0, [δ, β] = −β, [δ, γ] = γ,

{β, β} = {γ, γ} = 0, {β, γ} = α + δ.

The Z2-grading is given by

gl(1|1) = gl(1|1)[0] ⊕ gl(1|1)[1], with α, δ ∈ gl(1|1)[0] and β, γ ∈ gl(1|1)[1].
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The matrices γ, β are a pair of fermionic creation/annihilation operators:

{γ, γ} = {β, β} = 0, {γ, β} = I2, β|vac〉 = 0, |ψ〉 = γ|vac〉.

Since bosons/fermions are superselected, the linear superposition of states
belonging to different graded sectors is not allowed. Therefore, the Hilbert
space is graded:

H(1) = H(1)
[0] ⊕H

(1)
[1] ≡ C1|1.

The elements of its even and odd sectors are

c0|vac〉 ∈ H(1)
[0] , c1|ψ〉 ∈ H(1)

[1] , with c0, c1 ∈ C.

A physical state is recovered by taking into account the irrelevance of the
phase of a normalized vector. The above system describes two inequivalent
physical states which are just |vac〉 and |ψ〉.
They correspond to a classical 1 bit of information (off/on states).
Just like the physically inequivalent states of an ordinary qubit are specified by
points of the S2 Bloch sphere, Z2 (which is equivalent to a classical bit)
represents “the Bloch sphere of the graded qubit”.
The single-particle quantum Hamiltonian can be taken to be

H := γβ = δ =

(
0 0
0 1

)
.

Then 0 is the vacuum energy and 1 the energy eigenvalue of the excited state.
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The multi-particle Hilbert space

The Z2-graded N-particle Hilbert space H(N) is a subset of the tensor product
of N single-particle Hilbert spaces H(1) = C(1|1):

H(N) ⊂ H⊗N .

The N-particle vacuum |vac〉N is the tensor product of N single-particle vacua:

|vac〉N = |vac〉 ⊗ . . .⊗ |vac〉 (N times).

The construction of the multiparticle observables and excited states is
made in terms of an operation, the coproduct, defined for a Hopf algebra.

In our case the Hopf algebra is a Universal Enveloping Algebra (denoted as
U ≡ U(g)) of a graded Lie algebra.

A Hopf algebra is characterized by compatible structures (unit and

multiplication), costructures (counit and coproduct) and antipode.
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The coproduct ∆ is a map

∆ : U → U ⊗ U

which satisfies the coassociativity property

(∆⊗ id)∆(U) = (id ⊗∆)∆(U) for U ∈ U ,
∆(n+1) = (∆⊗ id)∆(n) = (id ⊗∆)∆(n).

For any UA,UB ∈ U , the further property

∆(UAUB) = ∆(UA)∆(UB)

implies that the action on any given U ∈ U(g) is recovered from the action of
the coproduct on the Hopf algebra unit 1 and the Lie algebra elements g ∈ g:

∆(1) = 1⊗ 1, ∆(g) = 1⊗ g + g ⊗ 1.

Let R be a representation of the Universal Enveloping Algebra U on a vector
space V . The representation of the operators induced by the coproduct will be
denoted with a hat:

for R : U → V , ∆̂ := ∆|R ∈ End(V ⊗ V ), with ∆̂(U) ∈ V ⊗ V .
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The coassociativity implies

∆̂(n)(U) ∈ V ⊗ . . .⊗ V (n + 1 times).

The N-particle Hamiltonians H(N) are obtained by applying the N-particle

coproducts ∆(N−1) to the single-particle Hamiltonian H = δ;
an N-particle excited state is created by applying ∆(N−1) to the creation
operator γ:

H(N) = ̂∆(N−1)(δ), γ(N) = ̂∆(N−1)(γ),

For N = 2, 3, . . ., we get:

H(2) = I2 ⊗ δ + δ ⊗ I2,
H(3) = I2 ⊗ I2 ⊗ δ + I2 ⊗ δ ⊗ I2 + δ ⊗ I2 ⊗ I2,
γ(2) = I2 ⊗ γ + γ ⊗ I2,
γ(3) = I2 ⊗ I2 ⊗ γ + I2 ⊗ γ ⊗ I2 + γ ⊗ I2 ⊗ I2

and so on.
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The braided tensor product

The introduction of a non-trivial braiding requires specifying how Lie
superalgebra generators are braided in a tensor product.
Let a, b, c, d be four generators of a Lie superalgebra represented by
n-dimensional matrices. The braiding is expressed as

(a⊗ b) · (c ⊗ d) = (a⊗ In) ·Ψ(b, c) · (In ⊗ d),

Ψ(b, c) is a n2 × n2 matrix which encodes the braiding of b and c.
The dots in the right hand side denote ordinary matrix multiplication.
Ψ(b, c) needs to satisfy certain braiding conditions.

For braided Majorana fermions we only need to specify the braidings of δ and γ.
The unique nontrivial braiding matrix is Ψ(γ, γ) which encodes the braiding
properties of the Majorana fermions (since γ is their creation operator):

Ψ(δ, δ) = δ ⊗ δ, Ψ(δ, γ) = γ ⊗ δ, Ψ(γ, δ) = δ ⊗ γ

and

Ψ(γ, γ) ≡ Ψt(γ, γ), where, for t ∈ C∗, Ψt(γ, γ) = Bt · γ ⊗ γ.
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Bt is a 4× 4 constant matrix which depends on the parameter t 6= 0 and
satisfies the braiding conditions; the dot in the r.h.s. denotes the standard
matrix multiplication. C∗ ≡ C\{0} is the punctured complex plane without
the origin.

A consistent choice for Bt is

Bt =


1 0 0 0
0 1− t t 0
0 1 0 0
0 0 0 −t

 .

Bt is related to both the Burau representation of the braid group and the
R-matrix of the quantum group Uq(gl(1|1)).

The consistency is the braid relation satisfied by Bt :

(Bt ⊗ I2) · (I2 ⊗ Bt) · (Bt ⊗ I2) = (I2 ⊗ Bt) · (Bt ⊗ I2) · (I2 ⊗ Bt).
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Properties

I - Bt is dynamically compatible, since it commutes with the 2-particle
Hamiltonian H(2):

[H(2),Bt ] = 0.

II - for any integer N, the N-particle creation operator γ(N) creates one
quantum of energy:

[H(N), γ(N)] = γ(N).

III - Bt is bosonic. The even (odd) nonvanishing entries of the gl(1|1)
generators can be expressed as bullets (stars); in the tensor products we get

(
• ∗
∗ •

)
⊗
(
• ∗
∗ •

)
=


• ∗ ∗ •
∗ • • ∗
∗ • • ∗
• ∗ ∗ •

 .
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Truncations at roots of unity:

The t roots of unity which satisfy the polynomial equations produce
truncations in multiparticle Hilbert spaces (and corresponding energy spectra)
of the braided Majorana fermions.

The braided tensor product implies that

(I4 ⊗ γ) · (γ ⊗ I4) = Ψt(γ, γ) = −tγ ⊗ γ.

By taking into account that γ2 = 0 simple computations show that, for
N = 2, 3, the only nonvanishing powers of γ(N) are

γ(2) = 1 · (I2 ⊗ γ + γ ⊗ I2),

γ2
(2) = (1− t) · (γ ⊗ γ),

γ(3) = 1 · (I2 ⊗ I2 ⊗ γ + I2 ⊗ γ ⊗ I2 + γ ⊗ I2 ⊗ I2),

γ2
(3) = (1− t) · (I2 ⊗ γ ⊗ γ + γ ⊗ I2 ⊗ γ + γ ⊗ γ ⊗ I2),

γ3
(3) = (1− t)(1− t + t2) · (γ ⊗ γ ⊗ γ).
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Important notion: “root of unity level”

A “level-k” root of unity, for k = 2, 3, 4, . . ., a solution tk of the bk(tk) = 0
equation such that, for any k ′ < k, bk′(tk) 6= 0.

Physical significance of a level-k root of unity: the corresponding braided
multiparticle Hilbert space can accommodate at most k − 1 Majorana spinors.

The special point t = 1, being the solution of the b2(t) ≡ 1− t = 0 equation,
is a level-2 root of unity.
It givesthe ordinary total antisymmetrization of the fermionic wavefunctions.
The t = 1 level-2 root of unity encodes the Pauli exclusion principle of ordinary
fermions.

With an abuse of language, the t = −1 root of unity, which does not solve any

bk(t) = 0 equation, can be called a root of unity of ∞ level.
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Example: the 5 roots of b6(t) = 1− t + t2 − t3 + t4 − t5

are classified, for t = exp(iθ), into:

level-2 root, θ = 0,
level-3 roots θ = π/3 and 5π/3,
level-6 roots θ = 2π/3 and 4π/3.

Physical significance of the level:

I - truncation of the energy spectrum: a level k root
accommodates at most k inequivalent energy levels in the
multiparticle states.

II - statistics’ viewpoint: a level k root implies that at most
k − 1 Majorana parafermions can be created.

Comment: the lowest level k = 2 for t = 1 implies that the
Majorana particles are ordinary fermions obeying the Pauli
exclusion principle.
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Roots of unity, levels up to 3:

L2L2

L3L3

L3L3

XX
-1.0 -0.5 0.5 1.0

-1.0

-0.5

0.5

1.0
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Roots of unity, levels up to 4:

L2L2

L3L3

L4L4

L4L4

L3L3

XX
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-1.0
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Roots of unity, levels up to 6:

L2L2

L3L3

L3L3

L4L4

L4L4

L5L5

L5L5

L5L5
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Roots of unity, levels up to 8:

L2L2

L3L3

L3L3

L4L4

L4L4
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Comment: the multiparticle energy spectra only depend on the
“roots of unity levels”.

Let’s present some tables
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Level k = 2 root of unity: t = 1; the N-particle energy levels are

E\N 1 2 3 4 5 6 7

2

1 X X X X X X X

0 X X X X X X X

Comment: this table corresponds to the ordinary, totally antisymmetrized,
Majorana fermions, with only E = 0, 1 energy eigenvalues for any N.

Level k = 3 roots of unity, given by t = e iϑ with ϑ = 1
3
π, 5

3
π:

E\N 1 2 3 4 5 6 7

3

2 X X X X X X

1 X X X X X X X

0 X X X X X X X

Comment: the energy eigenvalues are E = 0, 1, 2 for any multiparticle sector

with N ≥ 2.
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Level k = 4 roots of unity, given by t = e iϑ with ϑ = 1
2
π, 3

2
π:

E\N 1 2 3 4 5 6 7

4

3 X X X X X

2 X X X X X X

1 X X X X X X X

0 X X X X X X X

Comment: a “plateau” is reached; starting from N ≥ 3 the energy eigenvalues
are E = 0, 1, 2, 3.

Level k = 5 roots of unity given by t = e iϑ, ϑ = 1
5
π, 3

5
π, 7

5
π, 9

5
π:

E\N 1 2 3 4 5 6 7

5

4 X X X X

3 X X X X X

2 X X X X X X

1 X X X X X X X

0 X X X X X X X

Comment: the plateau is shifted at N ≥ 4, with energy eigenvalues

E = 0, 1, 2, 3, 4.
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General formulas:

Truncated cases at level-k: N-particle energy eigenvalues E given by

E = 0, 1, . . . ,N for N < k,

E = 0, 1, . . . , k − 1 for N ≥ k.

Comment: the plateau is reached for the maximal energy level k − 1; this is the
maximal number of braided Majorana fermions that can be accommodated in a
multiparticle Hilbert space.

Untruncated case for t = −1 (level-∞):

E = 0, 1, . . . ,N for any N.

Comment: there is no plateau; the energy eigenvalues grow linearly with N.
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II - solutions of open questions and new results
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Convenient parametrization of roots of unity levels

Set for t belonging to the |t| = 1 unit circle:

t = −e2iπg , for real values g ∈ [0, 1[.

Level-s roots of unity Ls and the L∞ untruncated case are given by

Ls : g =
r

s
with r , s mutually prime integers,

L∞ : g = 0.

At the first orders the g values are

L∞ = 0; L2 = 1
2
; L3 = 1

3
, 2

3
; L4 = 1

4
, 3

4
; L5 = 1

5
, 2

5
, 3

5
, 4

5
.

The physics only depends on the s level and not on a given particular
representative; without loss of generality one can set r = 1, so that

Ls : gs =
1

s
and ts = eπi(

2
s
−1).

The g = 0 case of the untruncated L∞ level is recovered in the limit

g∞ = lim
s→∞

gs = 0.
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A quantum group derivation of the truncations
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Naively one could expect to directly work with the quantum superalgebra
Uq(gl(1|1)). This option is not viable: the creation operator γ entering is
nilpotent and the same is true for its Uq(gl(1|1)) quantum group counterpart.
Due to the homomorphism of the coproduct, we get the nilpotent quantum
group expression ∆q(γ)2 = ∆q(γ) ·∆q(γ) = ∆q(γ2) = 0 for the Uq(gl(1|1))
coproduct.

On the other hand a nonvanishing (∆(γ))2 6= 0 coproduct induced by the
braiding is essential to produce the multi-particle spectra of the braided
Majorana qubits. Clearly, some other construction has to be done.

The solution is found by working within the quantum superalgebra

Uq(osp(1|2)), inducing the multi-particle states by applying its coproduct to a

specific representation and, furthermore, implementing a consistent

superselection of the energy spectra. These steps allow to recover the

multi-particle spectra of the braided Majorana qubits.
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Another realization of the building blocks:

braided tensors via intertwining operators
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The braiding relation

(I2 ⊗br γ) · (γ ⊗br I2) = −t(γ ⊗br I2) · (I2 ⊗br γ) = −t(γ ⊗br γ).

can be expressed in terms of an ordinary tensor product ⊗ by introducing a
suitably defined intertwining operator Wt :

(γ ⊗br I2) 7→ γ ⊗ I2, (I2 ⊗br γ) 7→Wt ⊗ γ.

The mappings

(I2 ⊗br γ) · (γ ⊗br I2) 7→ (Wt ⊗ γ) · (γ ⊗ I2) = (Wtγ)⊗ γ
(γ ⊗br I2) · (I2 ⊗br γ) 7→ (γ ⊗ I2) · (Wt ⊗ γ) = (γWt)⊗ γ

imply a consistency condition for the 2× 2 interwining operator Wt given by

Wtγ = (−t)γWt .

A solution, expressed in terms of the t = −e2iπg position, is

Wt = cos(−πg) · I2 + i sin(−πg) · X , where X =

(
1 0
0 −1

)
.

New building blocks:

2P : A†1 := γ ⊗ I2, A†2 := Wt ⊗ γ;

3P : B†1 := γ ⊗ I2 ⊗ I2, B†2 := Wt ⊗ γ ⊗ I2, B†3 := Wt ⊗Wt ⊗ γ.
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The 2-particle creation and annihilation operators belong to a non-standard odd
sector of a Z2-graded decomposition of 4× 4 matrices: the nonvanishing entries
(denoted with “∗”) of the even (odd) sector M0 (M1) are accommodated in

M0 ≡


∗ 0 0 ∗
0 ∗ ∗ 0
0 ∗ ∗ 0
∗ 0 0 ∗

 , M1 ≡


0 ∗ ∗ 0
∗ 0 0 ∗
∗ 0 0 ∗
0 ∗ ∗ 0

 .

The Z2 grading is respected since

Mi ·M ′j = M ′′i+j for i , j = 0, 1, with i + j = 0, 1 mod 2.

The 2-particle creation building blocks A†1,A
†
2 and their conjugate are

A†1 =


0 0 0 0
0 0 0 0
1 0 0 0
0 1 0 0

 , A†2 =


0 0 0 0

e−iπg 0 0 0
0 0 0 0
0 0 e iπg 0

 ,

A1 =


0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0

 , A2 =


0 e iπg 0 0
0 0 0 0
0 0 0 e−iπg

0 0 0 0

 .

An even 4× 4 central charge c is defined as c = diag(1, 1, 1, 1).
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Leites-Serganova introduced in 1990 the notions of:
metamanifold, metaspace, metasymmetry,

Volichenko algebra

Metasymmetries are transformations acting on “metaspaces”: they do not
respect even/odd gradings and generalize the Z2-grading preserving symmetries
of ordinary superalgebras.

They lead to “mixed-brackets” which interpolate ordinary
commutators/anticommutators.

They are impllemented in Volichenko algebras which are “metabelian”:
(metabelianess means that for any x , y , z triple of operators the ordinary
[[x , y ], z] = 0 commutators are vanishing.

The operators entering the mixed-brackets generalized Heisenberg-Lie algebras
do not satisfy the metabelianess condition: they are not Volichenko (just the
2-particle subalgebras spanned by either the creation or the annihilation
operators are).

Despite of that the notion of metasymmetry can be applied to the

mixed-brackets Heisenberg-Lie algebras.
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from Leites-Serganova, NATO ARW Proc., Kiev 2000:
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Introduction of the

“mixed-brackets”
generalized fermionic Heisenberg-Lie algebras

(satisfied by the creation/annihilation operators
of the multiparticle braided Majorana qubits)

Here: 2-particle example
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Definition

For two operators A,B, the mixed-bracket is defined as

(A,B)θAB = i sin θAB [A,B] + cos θAB{A,B}.

with the angle θAB to be determined.

Property:

(B,A)−θAB = (A,B)θAB .

35 / 61



Level-s 2-particle operators:

A†1 =


0 0 0 0
0 0 0 0
1 0 0 0
0 1 0 0

 , A†2 =


0 0 0 0

e−iπ/s 0 0 0
0 0 0 0

0 0 e iπ/s 0

 ,

A1 =


0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0

 , A2 =


0 e iπ/s 0 0
0 0 0 0

0 0 0 e−iπ/s

0 0 0 0

 ,

c = diag(1, 1, 1, 1).

Rename them:

G0 = c , G1 = A†1, G2 = A†2, G3 = A3, G4 = A4.

Mixed-brackets:

(GI ,GJ)θIJ for I , J = 0, 1, 2, 3, 4.
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Level-s 2-particle generalized fermionic Heisenberg-Lie algebra:

(G1,G3)θ13 = (G3,G1)θ31 = (G2,G4)θ24 = (G4,G2)θ42 = G0.

All other (GI ,GJ)θIJ brackets are vanishing.

Determination of the θIJ angles:

θIJ =
s + 2

4s
π · µIµJ · (νI − νJ).

where µI , µJ , νI , νJ are determined as follows
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Let

NL = −1

2
· diad(1, 1,−1,−1), NR = −1

2
diag(1,−1, 1,−1)

and define for a given operator G :

[NL,G ] = λLG , [NR ,G ] = λRG .

We can set

µ = λL + λ3, ν = λ2
L − λ2

R .

The corresponding µI , νI values for GI are read from the table

µ ν

G0 0 0
G1 1 1
G2 1 −1
G3 −1 1
G4 −1 −1
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Comments:

The generalized mixed-brackets level-s multiparticle Heisenberg-Lie algebras
have formally the same presentation of the ordinary Heisenberg-Lie algebras.

The 2-particle construction is immediately generalized to the N-particle case.

We get

(Ai ,A
†
j ) = δij · c = δij · I (all other brackets are vanishing)

for the suitable angles entering (·, ·).
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The s →∞ limit which reproduces
a bosonic spectrum for the graded Majorana qubits

In that limit the 2-particle operators are:

A†1 =


0 0 0 0
0 0 0 0
1 0 0 0
0 1 0 0

 , A†2 =


0 0 0 0
1 0 0 0
0 0 0 0
0 0 1 0

 ,

A1 =


0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0

 , A2 =


0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0

 ,

c = diag(1, 1, 1, 1).

They close a Z2 × Z2-graded extension of the 2-particle fermionic Heisenberg

algebra:
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Z2 × Z2-graded Lie superalgebra with grading assignment:

c ∈ 00 (boson),

A1,A
†
1 ∈ 10 (parafermions),

A2,A
†
2 ∈ 01 (parafermions),

∈ 11 (empty exotic boson sector).

{A1,A
†
1} = {A2,A

†
2} = c,

{A1,A1} = {A2,A2} = {A†1,A
†
1} = {A†2,A

†
2} = 0,

[A1,A2] = [A1,A
†
2] = [A†1,A2] = [A†1,A

†
2] = 0,

[c, ∗] = 0.
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Dynamical “metasymmetry” of the

mixed-brackets Heisenberg-Lie algebras
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The mixed-brackets generalizations of the fermionic Heisenberg-Lie algebras
appear as dynamical symmetry of Ordinary Differential Equations given by
Matrix Schrödinger equations in 0 + 1 dimensions.

2-particle example: Matrix Schrödinger equation(
i∂t · I4 − H2

)
Ψ(t) = 0,

where H2 = diag(0, 1, 1, 2) and Ψ(t) is a 4-component vector.
The Ψij(t) solutions can be expressed in terms of the creation (A†1,A

†
2) and

annihilation (A1,A2) operators defined for the given angle πg :

Ψ00(t) = v00, where vT
00 = (1, 0, 0, 0),

Ψ10(t) = e−itA†1v00 = e−itv10, where vT
10 = (0, 0, 1, 0),

Ψ01(t) = e−itA†2v00 = e−itv01, where vT
01 = (0, e iπg , 0, 0),

Ψ11(t) = e−2itA†1A
†
2v00 = e−2itv11, where vT

11 = (0, 0, 0, e iπg ).

By setting

S†1 = e−itA†1, S†2 = e−itA†2, S1 = e itA1, S2 = e itA2,

we end up with four plus one symmetry operators (the extra operator being
the 4× 4 identity operator c := I4) satisfying

[S], i∂t · I4 − H2] = 0 for S] = S†1 , S†2 , S1, S2, c.

These operators close the 2-particle mixed-bracket generalization of the

fermionic Heisenberg-Lie algebra.
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Nonminimal realization of the intertwining operators:

Connection with ternary algebras

In the minimal matrix representation, the N-particle sector of the braided
Majorana qubits is realized by 2N × 2N matrices. Equivalent descriptions which
produce isomorphic Hilbert spaces can be obtained from nonminimal
representations.

Let’s consider the third root of unity; an example of a set of nonminimal

representations is given by 2 · 6N−1 × 2 · 6N−1 matrices. Unlike the minimal

representations with the special third root of unity case this nonminimal set

encodes a Z3 ternary grading.
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The ternary construction of the braided Majorana qubits employs tensor

products of the three 3× 3 matrices Qi (defined for j = e i
2
3
π with j3 = 1) and

their Q†i hermitian conjugates:

Q1 =

 0 1 0
0 0 j
j2 0 0

 , Q2 =

 0 j 0
0 0 1
j2 0 0

 , Q3 =

 0 1 0
0 0 1
1 0 0

 ,

Q†1 =

 0 0 j
1 0 0
0 j2 0

 , Q†2 =

 0 0 j
j2 0 0
0 1 0

 , Q†3 =

 0 0 1
1 0 0
0 1 0

 .

A consistent Z3 grading can be assigned by setting, mod 3,

deg(Qi ) = 1, deg(Q†i ) = 2, for i = 1, 2, 3.

The non-minimal building blocks of the braided 2-particle are

Ã†1 = γ ⊗ I2 ⊗ Q1, Ã†2 = γ ⊗ I2 ⊗ Q2, Ã1 = γ† ⊗ I2 ⊗ Q†1 , Ã2 = γ† ⊗ I2 ⊗ Q†2 .

They satisfy the same relations as their minimal counterparts.
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Note about quons:
The “mixed brackets” which interpolate commutators and anticommutators
can be defined for other types of parastatistics. The most notable example is
the algebra of quons introduced by Greenberg and Mohapatra. Quons are
q-deformed oscillators, defined for −1 ≤ q ≤ 1 which interpolate between
fermions (q = −1) and bosons (q = 1). The “q-mutators” of n
creation/annihilation a†i , ai quons, with i = 1, 2, . . . , n are defined to satisfy

aia
†
j − qa†i aj = δij .

It is a trivial exercise to express the q-mutator of one (n = 1) quon as a mixed
bracket, interpolating commutator and anticommutator. One has to set

aa† − qa†a = 1 ⇔ cos2(θq) · [a, a†] + sin2(θq) · {a, a†} = 1,

where the angle θq, comprised in the range θq ∈ [0, π/2], is given by

θq = arcsin

(√
1− q

2

)
, (q = 1− 2 sin2 θq).

The Volichenko-type mixed brackets which define the generalized fermionic
Heisenberg-Lie algebras and give the multi-particle parastatistics of the braided
Majorana qubits is not reproduced by the the quonic “mixed brackets”
formulas.
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Braid statistics (anyons) have been experimentally observed
in two-dimensional material. They can also have relevant
applications.

What about parastatistics?
(beyond bosons/fermions in any D)

(Permutation group, not braid group, with S2 = I)
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Along the years some arguments have been put forward to
explain why fundamental paraparticles have not been
observed in Nature.

Main idea: paraparticles are not observable because they can
be reproduced by ordinary particles

(Conventionality of parastatistics’ argument)

A nice and nuanced discussion is found in the following paper
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Recent advances challenge the
“Conventionality of parastatistics” argument
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Theoretical advances

(based on the “n-bit parastatistics”)
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Z2 × Z2-graded superalgebras

00 10 01 11
00 [·, ·] [·, ·] [·, ·] [·, ·]
10 [·, ·] {·, ·} [·, ·] {·, ·}
01 [·, ·] [·, ·] {·, ·} {·, ·}
11 [·, ·] {·, ·} {·, ·} [·, ·]

Comment. In Z2 × Z2-graded superalgebra physics the
particles are accommodated in 2 bits of information:

- ordinary bosons (00),
- exotic bosons (11),
- parafermions of (10) type,
- parafermions of (01) type.
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Further theoretical advances
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Experimental advances
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Thanks for the attention!
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