A toy model for supergravity

Fridrich Valach

University of Hertfordshire

w/ Julian Kupka and Charles Strickland-Constable

$\lfloor\mathcal{N}=1$ supergravity in 10 dimensions

$\mathcal{N}=1$ supergravity in 10 dimensions

Field content:

- \circ metric $g_{\mu\nu}$ (graviton)
- \circ 2-form $B_{\mu\nu}$ (Kalb–Ramond field)
- \circ density Φ (dilaton; $\Phi = \sqrt{|g|}e^{-2\varphi})$

 \circ vector-spinor ψ^μ (gravitino) \circ spinor ρ (dilatino; $\rho = \gamma_{\mu} \psi^{\mu} - \lambda$)

Field content:

- \circ metric $g_{\mu\nu}$ (graviton)
- \circ 2-form $B_{\mu\nu}$ (Kalb–Ramond field)
- \circ density Φ (dilaton; $\Phi = \sqrt{|g|}e^{-2\varphi})$

 \circ vector-spinor ψ^μ (gravitino) \circ spinor ρ (dilatino; $\rho = \gamma_{\mu} \psi^{\mu} - \lambda$)

Generalised geometry: [Coimbra–Strickland-Constable–Waldram '11] \circ $E = TM \oplus T^*M$ with inner product $\langle x + \alpha, y + \beta \rangle := \alpha(y) + \beta(x)$

$\mathcal{N}=1$ supergravity in 10 dimensions.

Field content:

- \circ metric $g_{\mu\nu}$ (graviton)
- \circ 2-form $B_{\mu\nu}$ (Kalb–Ramond field)
- \circ density Φ (dilaton; $\Phi = \sqrt{|g|}e^{-2\varphi})$

 \circ vector-spinor ψ^μ (gravitino) \circ spinor ρ (dilatino; $\rho = \gamma_{\mu} \psi^{\mu} - \lambda$)

Generalised geometry: [Coimbra–Strickland-Constable–Waldram '11]

- \circ $E = TM \oplus T^*M$ with inner product $\langle x + \alpha, y + \beta \rangle := \alpha(y) + \beta(x)$
- \circ trade $g + B$ for a subspace $TM \oplus T^*M \supset C := \{x + (g + B)(x, \cdot) \mid x \in TM\}$

Field content:

- \circ metric $g_{\mu\nu}$ (graviton)
- \circ 2-form $B_{\mu\nu}$ (Kalb–Ramond field)
- \circ density Φ (dilaton; $\Phi = \sqrt{|g|}e^{-2\varphi})$

 \circ vector-spinor ψ^μ (gravitino) \circ spinor ρ (dilatino; $\rho = \gamma_{\mu} \psi^{\mu} - \lambda$)

Generalised geometry: [Coimbra–Strickland-Constable–Waldram '11]

- \circ $E = TM \oplus T^*M$ with inner product $\langle x + \alpha, y + \beta \rangle := \alpha(y) + \beta(x)$
- \circ trade $g + B$ for a subspace $TM \oplus T^*M \supset C := \{x + (g + B)(x, \cdot) \mid x \in TM\}$
- \circ fields: C , Φ , $\rho\in{\mathcal S}$, $\psi\in{\mathcal S}\otimes{\mathcal C}^\perp$ $\quad(S=$ spinors for $C)$

Field content:

- \circ metric $g_{\mu\nu}$ (graviton)
- \circ 2-form $B_{\mu\nu}$ (Kalb–Ramond field)
- \circ density Φ (dilaton; $\Phi = \sqrt{|g|}e^{-2\varphi})$

 \circ vector-spinor ψ^μ (gravitino) \circ spinor ρ (dilatino; $\rho = \gamma_{\mu} \psi^{\mu} - \lambda$)

Generalised geometry: [Coimbra–Strickland-Constable–Waldram '11]

- \circ $E = TM \oplus T^*M$ with inner product $\langle x + \alpha, y + \beta \rangle := \alpha(y) + \beta(x)$
- \circ trade $g + B$ for a subspace $TM \oplus T^*M \supset C := \{x + (g + B)(x, \cdot) \mid x \in TM\}$
- \circ fields: C , Φ , $\rho\in{\mathcal S}$, $\psi\in{\mathcal S}\otimes{\mathcal C}^\perp$ $\quad(S=$ spinors for $C)$

$$
\mathcal{S}=\int \Phi(\mathcal{R}-\bar{\rho}\rlap{\,/}D\rho-\bar{\psi}^\alpha\rlap{\,/}D\psi_\alpha-2\bar{\rho}D_\alpha\psi^\alpha+\text{h.o.f.t.})
$$

Field content:

- \circ metric $g_{\mu\nu}$ (graviton)
- \circ 2-form $B_{\mu\nu}$ (Kalb–Ramond field)
- \circ density Φ (dilaton; $\Phi = \sqrt{|g|}e^{-2\varphi})$

 \circ vector-spinor ψ^μ (gravitino) \circ spinor ρ (dilatino; $\rho = \gamma_{\mu} \psi^{\mu} - \lambda$)

Generalised geometry: [Coimbra–Strickland-Constable–Waldram '11]

- \circ $E = TM \oplus T^*M$ with inner product $\langle x + \alpha, y + \beta \rangle := \alpha(y) + \beta(x)$
- \circ trade $g + B$ for a subspace $TM \oplus T^*M \supset C := \{x + (g + B)(x, \cdot) \mid x \in TM\}$
- \circ fields: C , Φ , $\rho\in{\mathcal S}$, $\psi\in{\mathcal S}\otimes{\mathcal C}^\perp$ $\quad(S=$ spinors for $C)$

$$
\mathcal{S}=\int \Phi(\mathcal{R}-\bar{\rho}\rlap{\,/}D\rho-\bar{\psi}^\alpha\rlap{\,/}D\psi_\alpha-2\bar{\rho}D_\alpha\psi^\alpha+\text{h.o.f.t.})
$$

 \circ in fact can take E any Courant algebroid \rightsquigarrow e.g. heterotic supergravity [CMTW '14]

Field content:

- \circ metric $g_{\mu\nu}$ (graviton)
- \circ 2-form $B_{\mu\nu}$ (Kalb–Ramond field)
- \circ density Φ (dilaton; $\Phi = \sqrt{|g|}e^{-2\varphi})$

 \circ vector-spinor ψ^μ (gravitino) \circ spinor ρ (dilatino; $\rho = \gamma_{\mu} \psi^{\mu} - \lambda$)

Generalised geometry: [Coimbra–Strickland-Constable–Waldram '11]

- \circ $E = TM \oplus T^*M$ with inner product $\langle x + \alpha, y + \beta \rangle := \alpha(y) + \beta(x)$
- \circ trade $g + B$ for a subspace $TM \oplus T^*M \supset C := \{x + (g + B)(x, \cdot) \mid x \in TM\}$
- \circ fields: C , Φ , $\rho\in{\mathcal S}$, $\psi\in{\mathcal S}\otimes{\mathcal C}^\perp$ $\quad(S=$ spinors for $C)$

$$
S = \int \Phi(\mathcal{R} - \bar{\rho}\bar{\phi}\rho - \bar{\psi}^{\alpha}\bar{\phi}\psi_{\alpha} - 2\bar{\rho}D_{\alpha}\psi^{\alpha} + \text{h.o.f.t.})
$$

 \circ in fact can take E any Courant algebroid \rightsquigarrow e.g. heterotic supergravity [CMTW '14] **• Idea:** take $V = E$ and $E = \mathfrak{a} \longrightarrow$ a finite-dimensional theory

Data: Lie algebra g with an invariant inner product of signature $(9, 1)$ or $(5, 5)$ or $(9, 1)$

Data: Lie algebra g with an invariant inner product of signature $(9, 1)$ or $(5, 5)$ or $(9, 1)$

 \rightsquigarrow let S_{+} be the spaces of the Majorana-Weyl spinors

Data: Lie algebra g with an invariant inner product of signature $(9, 1)$ or $(5, 5)$ or $(9, 1)$

 \rightsquigarrow let S_{+} be the spaces of the Majorana-Weyl spinors

Field content:

- $\circ~$ boson $\sigma \in \mathbb{R}^{>0}$ (dilaton)
- \circ fermion $\rho \in \Pi S_{+}$ (dilatino)

Data: Lie algebra g with an invariant inner product of signature $(9, 1)$ or $(5, 5)$ or $(9, 1)$

 \rightsquigarrow let S_{+} be the spaces of the Majorana-Weyl spinors

Field content:

- $\circ~$ boson $\sigma \in \mathbb{R}^{>0}$ (dilaton)
- \circ fermion $\rho \in \Pi S_{+}$ (dilatino)

Action and symmetries:

Data: Lie algebra g with an invariant inner product of signature $(9, 1)$ or $(5, 5)$ or $(9, 1)$

 \rightsquigarrow let S_{+} be the spaces of the Majorana-Weyl spinors

Field content:

- $\circ~$ boson $\sigma \in \mathbb{R}^{>0}$ (dilaton)
- \circ fermion $\rho \in \Pi S_{+}$ (dilatino)

Action and symmetries:

$$
S(\sigma,\rho):=\mathcal{R}\sigma^2-\bar{\rho}\mathcal{D}\rho,\qquad \mathcal{D}:= -\tfrac{1}{12}f_{abc}\gamma^{abc},\quad \mathcal{R}:=\mathcal{D}^2=-\tfrac{1}{24}f^{abc}f_{abc}\in\mathbb{R}
$$

Data: Lie algebra g with an invariant inner product of signature $(9, 1)$ or $(5, 5)$ or $(9, 1)$

 \rightsquigarrow let S_{+} be the spaces of the Majorana-Weyl spinors

Field content:

- $\circ~$ boson $\sigma \in \mathbb{R}^{>0}$ (dilaton)
- \circ fermion $\rho \in \Pi S_{+}$ (dilatino)

Action and symmetries:

$$
S(\sigma,\rho) := \mathcal{R}\sigma^2 - \bar{\rho}\mathcal{D}\rho, \qquad \vec{\mathcal{D}} := -\frac{1}{12}f_{abc}\gamma^{abc}, \quad \mathcal{R} := \vec{\mathcal{D}}^2 = -\frac{1}{24}f^{abc}f_{abc} \in \mathbb{R}
$$

$$
\begin{array}{lll} \hbox{generalised diffeomorphisms} & \delta_{\zeta}\sigma=0 & \delta_{\zeta}\rho=\frac{1}{4}\zeta^a f_{abc}\gamma^{bc}\rho & \zeta\in\mathfrak{g} \\ \hbox{supersymmetry} & \delta_{\epsilon}\sigma=\sigma^{-1}\bar{\rho}\epsilon & \delta_{\epsilon}\rho=\rlap{\hspace{0.2cm}}\phi\epsilon & \epsilon\in\Pi S_- \end{array}
$$

Data: Lie algebra g with an invariant inner product of signature $(9, 1)$ or $(5, 5)$ or $(9, 1)$

 \rightsquigarrow let S_{+} be the spaces of the Majorana-Weyl spinors

Field content:

- $\circ~$ boson $\sigma \in \mathbb{R}^{>0}$ (dilaton)
- \circ fermion $\rho \in \Pi S_+$ (dilatino)

Action and symmetries:

$$
S(\sigma,\rho):=\mathcal{R}\sigma^2-\bar{\rho}\rlap{\,/}D\rho,\qquad \rlap{\,/}D:= -\tfrac{1}{12}f_{abc}\gamma^{abc},\quad \mathcal{R}:=\rlap{\,/}D^2=-\tfrac{1}{24}f^{abc}f_{abc}\in\mathbb{R}
$$

generalised diffeomorphisms 1 $\frac{1}{4}\zeta^a f_{abc} \gamma^{bc} \rho \qquad \zeta \in \mathfrak{g}$ supersymmetry $\delta_\epsilon \sigma = \sigma^{-1} \bar \rho \epsilon \qquad \delta_\epsilon \rho = \rlap{\,/}D \epsilon \qquad \epsilon \in \Pi S_-$

$$
[\delta_{\epsilon_1},\delta_{\epsilon_2}]\rho=\delta_{\zeta}\rho+\delta_{\epsilon}\rho-\tfrac{1}{2}\zeta_{\mathsf{a}}\gamma^{\mathsf{a}}\rlap{\,/}D\rho,\qquad \zeta^{\mathsf{a}}:=2\sigma^{-2}\bar\epsilon_2\gamma^{\mathsf{a}}\epsilon_1,\quad \epsilon:=-\tfrac{1}{2}\zeta_{\mathsf{a}}\gamma^{\mathsf{a}}\rho
$$

BV space:

 $T^*[-1](\mathbb{R}^{>0} \times \Pi S_+ \times \mathfrak{g}[1] \times \Pi S_- [1])$

BV space:

$$
\mathcal{T}^*[-1](\mathbb{R}^{>0}\times \Pi \mathcal{S}_+\times \mathfrak{g}[1]\times \Pi \mathcal{S}_-[1])
$$

$$
S_{BV} = \mathcal{R}\sigma^2 - \bar{\rho}\rlap{\,/}D\rho - \sigma^*\sigma^{-1}(\bar{\rho}e) + \frac{1}{4}\xi^a f_{abc}(\bar{\rho}^*\gamma^{bc}\rho) + \bar{\rho}^*\rlap{\,/}D\,e
$$

$$
- \frac{1}{4}\xi^a f_{abc}(\bar{e}^*\gamma^{bc}e) + \frac{1}{2}\sigma^{-2}(\bar{e}\gamma^a e)(\bar{e}^*\gamma_a\rho) + \frac{1}{2}f^a{}_{bc}\xi^*_a\xi^b\xi^c
$$

$$
- \xi^*_a\sigma^{-2}(\bar{e}\gamma^a e) + \frac{1}{8}\sigma^{-2}(\bar{e}\gamma_a e)(\bar{\rho}^*\gamma^a\rho^*).
$$

BV space:

$$
\mathcal{T}^*[-1](\mathbb{R}^{>0}\times \Pi \mathsf{S}_+\times \mathfrak{g}[1]\times \Pi \mathsf{S}_-[1])
$$

$$
S_{BV} = \mathcal{R}\sigma^2 - \bar{\rho}\rlap{\,/}D\rho - \sigma^*\sigma^{-1}(\bar{\rho}e) + \frac{1}{4}\xi^a f_{abc}(\bar{\rho}^*\gamma^{bc}\rho) + \bar{\rho}^*\rlap{\,/}D\,e
$$

$$
- \frac{1}{4}\xi^a f_{abc}(\bar{e}^*\gamma^{bc}e) + \frac{1}{2}\sigma^{-2}(\bar{e}\gamma^a e)(\bar{e}^*\gamma_a\rho) + \frac{1}{2}f^a{}_{bc}\xi^*_a\xi^b\xi^c
$$

$$
- \xi^*_a\sigma^{-2}(\bar{e}\gamma^a e) + \frac{1}{8}\sigma^{-2}(\bar{e}\gamma_a e)(\bar{\rho}^*\gamma^a\rho^*).
$$

 ${S_{BV}, S_{BV}} = 0 \implies Q := {S_{BV}, \cdot}$ is a differential

Fierz identities:

 $\{S_{BV},S_{BV}\}=0$ needs $(\bar\lambda\gamma_s\lambda)\bar\lambda\gamma^s=0$ for any even chiral spinor $\lambda\leadsto\dim\mathfrak{g}=10$

Fierz identities:

 $\{S_{BV},S_{BV}\}=0$ needs $(\bar\lambda\gamma_s\lambda)\bar\lambda\gamma^s=0$ for any even chiral spinor $\lambda\leadsto\dim\mathfrak{g}=10$

Topological twist à la Costello-Li: [Costello-Li '16]

Fierz identities:

 $\{S_{BV},S_{BV}\}=0$ needs $(\bar\lambda\gamma_s\lambda)\bar\lambda\gamma^s=0$ for any even chiral spinor $\lambda\leadsto\dim\mathfrak{g}=10$

Topological twist à la Costello-Li: [Costello-Li '16]

What are the points of the BV space where Q_{BV} vanishes and $e \neq 0$?

Fierz identities:

 $\{S_{BV},S_{BV}\}=0$ needs $(\bar\lambda\gamma_s\lambda)\bar\lambda\gamma^s=0$ for any even chiral spinor $\lambda\leadsto\dim\mathfrak{g}=10$

Topological twist à la Costello-Li: [Costello-Li '16]

What are the points of the BV space where Q_{BV} vanishes and $e \neq 0$?

$$
\vec{\psi}e = 0, \qquad \bar{e}\gamma^a e = 0, \qquad \vec{\psi}\rho^* = 2\sigma^{-2}\xi^*_{a}\gamma^a e + \frac{1}{4}\sigma^{-2}(\bar{\rho}^*\gamma^a\rho)\gamma_a e
$$

Fierz identities:

 $\{S_{BV},S_{BV}\}=0$ needs $(\bar\lambda\gamma_s\lambda)\bar\lambda\gamma^s=0$ for any even chiral spinor $\lambda\leadsto\dim\mathfrak{g}=10$

Topological twist à la Costello-Li: [Costello-Li '16]

What are the points of the BV space where Q_{BV} vanishes and $e \neq 0$?

$$
\vec{\psi}e = 0, \qquad \bar{e}\gamma^a e = 0, \qquad \vec{\psi}\rho^* = 2\sigma^{-2}\xi^*_{a}\gamma^a e + \frac{1}{4}\sigma^{-2}(\bar{\rho}^*\gamma^a\rho)\gamma_a e
$$

implies that the (bosonic) background ($\sigma > 0$, $\rho = 0$) is supersymmetric, and $\mathcal{R} = 0$

Fierz identities:

 $\{S_{BV},S_{BV}\}=0$ needs $(\bar\lambda\gamma_s\lambda)\bar\lambda\gamma^s=0$ for any even chiral spinor $\lambda\leadsto\dim\mathfrak{g}=10$

Topological twist à la Costello-Li: [Costello-Li '16]

What are the points of the BV space where Q_{BV} vanishes and $e \neq 0$?

$$
\vec{\psi}e = 0, \qquad \bar{e}\gamma^a e = 0, \qquad \vec{\psi}\rho^* = 2\sigma^{-2}\xi^*_{a}\gamma^a e + \frac{1}{4}\sigma^{-2}(\bar{\rho}^*\gamma^a\rho)\gamma_a e
$$

implies that the (bosonic) background ($\sigma > 0$, $\rho = 0$) is supersymmetric, and $\mathcal{R} = 0$ \implies analogue of the Calabi–Yau condition

Fierz identities:

 $\{S_{BV},S_{BV}\}=0$ needs $(\bar\lambda\gamma_s\lambda)\bar\lambda\gamma^s=0$ for any even chiral spinor $\lambda\leadsto\dim\mathfrak{g}=10$

Topological twist à la Costello-Li: [Costello-Li '16]

What are the points of the BV space where Q_{BV} vanishes and $e \neq 0$?

$$
\vec{\psi}e = 0, \qquad \bar{e}\gamma^a e = 0, \qquad \vec{\psi}\rho^* = 2\sigma^{-2}\xi^*_a\gamma^a e + \frac{1}{4}\sigma^{-2}(\bar{\rho}^*\gamma^a\rho)\gamma_a e
$$

implies that the (bosonic) background ($\sigma > 0$, $\rho = 0$) is supersymmetric, and $\mathcal{R} = 0$

- \implies analogue of the Calabi–Yau condition
- \implies expansion around this point should give an analogue of the BCOV theory

Fierz identities:

 $\{S_{BV},S_{BV}\}=0$ needs $(\bar\lambda\gamma_s\lambda)\bar\lambda\gamma^s=0$ for any even chiral spinor $\lambda\leadsto\dim\mathfrak{g}=10$

Topological twist `a la Costello–Li: [Costello–Li '16]

What are the points of the BV space where Q_{BV} vanishes and $e \neq 0$?

$$
\vec{p}e = 0, \qquad \bar{e}\gamma^a e = 0, \qquad \vec{p}\rho^* = 2\sigma^{-2}\xi^*_a\gamma^a e + \frac{1}{4}\sigma^{-2}(\bar{\rho}^*\gamma^a\rho)\gamma_a e
$$

implies that the (bosonic) background ($\sigma > 0$, $\rho = 0$) is supersymmetric, and $\mathcal{R} = 0$

 \implies analogue of the Calabi–Yau condition

 \implies expansion around this point should give an analogue of the BCOV theory

Thank you for your attention!