Instituto de Física Teórica presents:

YUKAWAS

• NEUTRINOS @ NEUTRINOS

by Fernando Marchesano

based on 2403.07979 & 2406.14609 w/Luis E. Ibáñez & Gonzalo F. Casas

WHAT IS THIS TALK ABOUT?

&

Strings

- Yukawas in 4d N=1 chiral CY orientifold vacua
- The limit $Y \rightarrow 0$: What goes wrong?
- Kinetic terms of chiral fields
- Light gonion & KK towers
- Massive U(1)'s and monopoles

Pheno

- Dirac vs. Majorana neutrinos
- How to get small Dirac masses. As a consequence:
 - All scales fixed
 - + Low M_s and 2 large dimensions
 - ↑ A_{cc} and large dimensions

Yukawas in type IIA orientifolds

4d $\mathcal{N} = 1$ chiral EFTs based on intersecting D6-branes

Yukawas arise from worldsheet instantons connecting three intersections hosting chiral matter

 H^k

 q^{j}

С

Blumenhagen et al. '00

qj

Yukawas in type IIA orientifolds

Some questions

8

Pheno

- Can we reproduce the fermion mass hierarchies of the SM + ν's in string theory?
- Initial strategy: use $Y_{ijk}^{\text{tree}} + Y_{ijk}^{\text{np}}$ + see-saw mechanism for ν 's

Blumenhagen, Cvetic, Weigand'06 Ibáñez & Uranga'06

- However, in practice it is not that easy: *Ibáñez*, Schellekens, Uranga'07
- So what if we tried to obtain the hierarchies directly from *Y*^{tree}?
- Neutrinos should be Dirac, and we are close to the limit $Y \rightarrow 0$

SWAMPY

- What happens when $Y \rightarrow 0$?
- Do Yukawas behave like gauge couplings in quantum gravity?
 Palti '20 Cribiori & Farakos '23
- Does Y → 0 happen at infinite distance only? If yes, why?
 What goes wrong with the EFT?
- Do towers of light particles arise when $Y \rightarrow 0$? Is there a WGC-like bound $m \le YM_P$?

Yukawas @ infinite distance

How do we implement $Y \rightarrow 0$?

$$Y_{ijk} = e^{K/2} \left[K_{i\bar{i}} K_{j\bar{j}} K_{k\bar{k}} \right]^{-1/2} \left(W_{ijk}^{\text{tree}} + W_{ijk}^{\text{np}} \right)$$

In principle one can move in field space to set $W_{ijk}^{tree} = 0$ for some entries However:

- _ There is no guarantee that $W^{\rm np}_{ijk}=0$
- A continuous limit $W^{\rm np}_{ijk} \rightarrow 0$ is typically at infinite distance
- The rank of W_{ijk}^{tree} is oftentimes topological *Cecotti et al. '09*

Our strategy will be to take $K_{iar{i}} o \infty$

Kähler metrics and gonions

$$K_{i\bar{i}} = e^{K/2 - \phi_4} \prod_{r=1}^{3} \left[\frac{\Gamma(|\chi_i^r|)}{\Gamma(1 - |\chi_i^r|)} \right]^{1/2} \xrightarrow{|\theta^3| \simeq |\theta^1| + |\theta^2|}{\Gamma(x) \simeq \frac{1}{x} + \dots} \simeq \left[\frac{e^{2\phi_4} |\theta^3|}{|\theta^1| |\theta^2|} \right]^{1/2}$$

Kinetic terms blow up for small intersection angles. Precisely in this limit a tower of light open string oscillations appears \rightarrow gonions

Berkooz, Douglas, Leigh'96 Aldazábal et al. '00

Yukawas and gonions

$$Y_{ijk}^{\text{tree}} = e^{K/4 - 3\phi_4/2} \Theta_{ijk} W_{ijk}$$

Due to locality, all this is valid in a CY as well:

$$|Y_{ijk}|^2 \simeq B e^{-2\phi_4} \frac{m_{\text{gon}}^i}{M_{\text{P}}} \frac{m_{\text{gon}}^j}{M_{\text{P}}} \frac{m_{\text{gon}}^k}{M_{\text{P}}}$$

$$|Y| \to 0 \implies \frac{m'_{\text{gon}}}{M_{\text{P}}} \to 0 \quad \text{for some } i$$

 $e^{-\phi_4} \gg 1$ control regime

Large complex structure limits: $e^{\phi_4} \rightarrow 0 \implies \frac{m_{\text{gon}}}{M_{\text{P}}} = e^{\phi_4} \frac{m_{\text{gon}}}{M_{\text{s}}} < e^{\phi_4} \rightarrow 0$

Yukawas and gonions

$$Y_{ijk}^{\text{tree}} = e^{K/4 - 3\phi_4/2} \Theta_{ijk} W_{ijk}$$

Due to locality, all this is valid in a CY as well:

$$|Y_{ijk}|^2 \simeq B e^{-2\phi_4} \frac{m_{\text{gon}}^i}{M_{\text{P}}} \frac{m_{\text{gon}}^j}{M_{\text{P}}} \frac{m_{\text{gon}}^k}{M_{\text{P}}}$$

$$|Y| \to 0 \implies \frac{m_{\text{gon}}^i}{M_{\text{P}}} \to 0 \quad \text{ for some } i$$

Special case: $\mathcal{N} = 2$ sector involved

$$K_{i\bar{i}} \simeq e^{K/2} h_{i\bar{i}} \implies |Y_{ijk}|^2 \simeq h_{i\bar{i}}^{-1} \frac{m_{\text{gon}}^j}{M_s} \frac{m_{\text{gon}}^k}{M_s}$$

e.g. mirror of local IIB models

Conlon, Cremades, Quevedo'06

 $e^{-\phi_4} \gg 1$ control regime

Large complex structure limits:

$$e^{\phi_4} \rightarrow 0 \implies \frac{m_{\text{gon}}}{M_{\text{P}}} = e^{\phi_4} \frac{m_{\text{gon}}}{M_s} < e^{\phi_4} \rightarrow 0$$

Gonions and monopoles

$$K_{i\bar{i}} \simeq \left[\frac{e^{2\phi_4}|\theta^3|}{|\theta^1||\theta^2|}\right]^{1/2} \simeq e^{2\phi_4} \left(\frac{M_P}{m_{\text{gon}}^i}\right)^{1/2}$$

Ideally, one would like to express the Kähler metrics in terms of complex structure moduli vevs, instead of intersection angles

Extremely challenging beyond toroidal geometries

Idea: relate intersection angles with FI-terms, in turn related to the tensions of 4d EFT strings that couple to massive U(1)'s, and end on their monopoles

$$\left(\theta^1 + \theta^2 + \theta^3\right) M_s^2 = g^2 \xi = Q^K T_{\mathrm{D4},K}$$

Estimate:

$$m_{\text{gon,min}}^2 \sim \min_K \{g^2 Q^K T_{\text{D4},K}\}$$

4d EFT string T only vanishes at infinite distance boundaries

Lanza et al. '21

The limit $Y \rightarrow 0$

Using this estimate, one obtains the following picture:

- $Y \rightarrow 0$ implies $g \rightarrow 0$, for some gauge coupling
- There is always a tower of CY KK modes below the gonion tower
- If they scale similarly, the KK towers are equally or more dense than the gonion towers \rightarrow dimensions open up in pairs

- Typical asymptotic behaviour of the Yukawas: $Y \sim \frac{1}{\mu^r}$ $r = \frac{1}{4}, \frac{1}{2}, \frac{3}{4}, 1$

- Species scale: $M_{\rm s}$ or $T_{\rm D4}$

The limit $Y \rightarrow 0$

Wide casuistic, but there are some prototypical scenarios:

Neutrino physics

NEUTRINO NATURE

MAJORANA OR

- Involve O(1) D-brane instantons
- Large M_s, instanton cycle small
- Specific intersection angles with SM branes. In practice not easy

DIRAC

- Small Dirac masses arise at small angles: boundaries of field space
- Small 4d dilaton $\rightarrow M_s$ small
- Swampland criteria prefer Dirac over Majorana. Bound $m_{\nu}^{\min} \lesssim \Lambda_{cc}^{1/4}$

Ibáñez, Martin-Lozano, Valenzuela'17 Hamada & Shiu'17

Neutrinos @ infinite distance

Example: five-stack D-brane model

Aldazábal et al. '00, Wijnholt & Verlinde'05 Antoniadis & Rondeau'21

 $SU(3) \times SU(2) \times U(1)_a \times U(1)_b \times U(1)_c \times U(1)_{\tilde{c}} \times U(1)_d$ $Q_Y = \frac{2}{3}Q_a + \frac{1}{2}Q_b + Q_c$ $Q_{\nu} = Q_{\tilde{c}} - Q_d$ $g_{\nu} \rightarrow 0$ $g_a, g_b, g_c \sim \text{const.}$ ν_R Small volume \boldsymbol{a} Large volume $\mathcal{N} = 2$ sectors b H_{u}

Example: five-stack D-brane model

Aldazábal et al. '00, Wijnholt & Verlinde'05 Antoniadis & Rondeau'21

 $SU(3) \times SU(2) \times U(1)_a \times U(1)_b \times U(1)_c \times U(1)_{\tilde{c}} \times U(1)_d$ $Q_Y = \frac{2}{3}Q_a + \frac{1}{2}Q_b + Q_c$ $Q_{\nu} = Q_{\tilde{c}} - Q_d$ $g_{\nu} \to 0$ $g_a, g_b, g_c \sim \text{const.}$ 6 BULK BLOW-UP U(2) Q_L e_L Small volume U(3) U(1) $\mathcal{N} = 2$ sectors Q_R U(1)

Mirror type IIB picture:

Example: five-stack D-brane model

Aldazábal et al. '00, Wijnholt & Verlinde'05 Antoniadis & Rondeau'21

 $SU(3) \times SU(2) \times U(1)_a \times U(1)_b \times U(1)_c \times U(1)_{\tilde{c}} \times U(1)_d$

 $g_a, g_b, g_c \sim \text{const.}$

 $Q_{\nu} = Q_{\tilde{c}} - Q_d$ $g_{\nu} \to 0$

Mirror type IIB picture:

Example: five-stack D-brane model

Aldazábal et al. '00, Wijnholt & Verlinde'05 Antoniadis & Rondeau'21

 $SU(3) \times SU(2) \times U(1)_a \times U(1)_b \times U(1)_c \times U(1)_{\tilde{c}} \times U(1)_d$

$$Q_Y = \frac{2}{3}Q_a + \frac{1}{2}Q_b + Q_c$$

)

We grow the modulus that controls g_{ν}

$$\operatorname{Re} f_{\nu\nu} = u \to \infty \implies g_{\nu} \simeq \frac{1}{u^{1/2}} \to 0$$

Yukawa $Y_{\nu,ij} H_u L^i \nu_R^j$:

$$Y_{\nu,ij} \simeq e^{-\phi_4} \left(\frac{m_{\text{gon},\nu}^i}{M_{\text{P}}}\right)^{1/2} \left(\frac{m_{\text{gon},L}^j}{M_{\text{P}}}\right)^{1/2} \left(\frac{m_{\text{gon},H_u}}{M_{\text{P}}}\right)^{1/2} \simeq \left(\frac{m_{\text{gon},\nu}^i}{M_{\text{P}}}\right)^{1/2} \simeq g_{\nu}$$

Due to $U(1)_{\nu}$ anomaly cancellation FI-terms shrink:

$$m_{\mathrm{gon},\nu} \sim \frac{M_{\mathrm{P}}}{u} \sim g_{\nu}^2 M_{\mathrm{P}}$$

$$Q_{\nu} = Q_{\tilde{c}} - Q$$

The neutrino scales

$$g_{\nu} \sim u^{-1/2} \rightarrow 0$$

 $m_{\mathrm{gon},\nu} \sim g_{\nu}^2 M_{\mathrm{P}}$

 $Y_{\nu,ij} \sim g_{\nu}$

Case in which two dimensions open up:

 $m_{\rm KK} \sim m_{\rm winding} \sim g_{\nu}^2 M_{\rm P}$

Species scale = string scale

$$\Lambda_{\rm sp} \simeq M_s \simeq g_\nu M_{\rm P}$$

The neutrino scales

$$g_\nu \sim u^{-1/2} \to 0$$

 $m_{\text{gon},\nu} \sim g_{\nu}^2 M_{\text{P}}$

 $Y_{\nu,ij} \sim g_{\nu}$

Case in which two dimensions open up:

 $m_{\rm KK} \sim m_{\rm winding} \sim g_{\nu}^2 M_{\rm P}$

Species scale = string scale

$$\Lambda_{\rm sp} \simeq M_s \simeq g_\nu M_{\rm P}$$

Assuming $Y_{\nu,i} \simeq Y_{\nu} \simeq 7 \times 10^{-13}$:

String Scale	SM gonions	ν_R tower	large dim	Vector boson	Gravitino
M_s	$m_{ m gon}^{ m SM}$	$m_{ m gon}^{ u}$	$m_{ m KK/w}$	$M_{V_{ u}}$	$m_{3/2}$
$g_ u M_{ m P}$	$\lesssim M_s$	$g_ u^2 M_{ m P}$	$g_ u^2 M_{ m P}$	$g_ u ar{H} - g_ u M_{ m P}$	$\lesssim M_s^2/M_{ m P}$
$g_{\nu} = Y_{\nu,3} , \ 700 \ {\rm TeV}$	$\lesssim 700~{\rm TeV}$	$500 \ \mathrm{eV}$	$500 \ \mathrm{eV}$	$0.5~\mathrm{eV}\text{-}$ 700 TeV	$\lesssim 500 \ {\rm eV}$

 M_s too low for more than two large dimensions!!

The cosmological constant and neutrinos

By compactifying the SM on a circle, Swampland criteria [AdS instability and AdS distance Conjectures] provide the following bound for Dirac neutrinos: Ibáñez, Martin-Lozano, Valenzuela'17 Hamada & Shiu'17 Gonzalo, Ibáñez, Valenzuela'21

 $m_{\nu}^{\min} \lesssim \Lambda_{\rm cc}^{1/4}$

Using that
$$m_{\nu,i} \simeq Y_{\nu,i} \langle H_u \rangle \implies Y_{\nu}^{\min} \lesssim \frac{\Lambda_{cc}^{1/4}}{M_{EW}}$$

 \implies gonion tower \implies two large dimensions

similar to Castellano, Ibáñez, Herráez'23

Conclusions

- In the context of SM-like type IIA orientifold compactifications, we have explored limits of small Yukawa couplings.
- Small Yukawas always come with i) a light tower of gonions (massive replicas of the chiral fields at the intersection) and ii) small gauge couplings. They appear at infinite distance boundaries of the moduli space.
- There is a wide casuistic, but things narrow down when we want to apply this setup to obtain realistic Dirac neutrino masses => universal scheme.
- Key model building feature: massive $U(1)_{\nu}$ under which right-handed neutrinos are charged, but independent of hypercharge: take $g_{\nu} \rightarrow 0$ (e.g. flavour 7-branes).
- All relevant scales fixed in terms of g_{ν} . Low string scale and two large dimensions, close to possible test in future colliders.

Thank you!

BACKUP SLIDES

Neutrino scales

String Scale	SM gonions	ν_R tower	large dim	Vector boson	Gravitino
M_s	$m_{ m gon}^{ m SM}$	$m_{ m gon}^{ u}$	$m_{ m KK/w}$	$M_{V_{ u}}$	$m_{3/2}$
$g_ u M_{ m P}$	$\lesssim M_s$	$g_ u^2 M_{ m P}$	$g_ u^2 M_{ m P}$	$g_ u ar{H} - g_ u M_{ m P}$	$\lesssim M_s^2/M_{ m P}$
$g_{\nu} = Y_{\nu,3}$, 700 TeV	$\lesssim 700~{\rm TeV}$	$500 \ \mathrm{eV}$	$500 \ \mathrm{eV}$	$0.5~\mathrm{eV}\text{-}$ 700 TeV	$\lesssim~500~{ m eV}$
$g_{\nu} = Y_{\nu,1} , \ 10 \ { m TeV}$	$\lesssim 10 { m ~TeV}$	$0.1 \mathrm{~eV}$	$0.1 \mathrm{~eV}$	10^{-3} eV - 10 TeV	$\lesssim 0.1 \ { m eV}$

Table 3: Spectrum of masses and scales from imposing Dirac character to neutrino masses in string theory. Numerical results are shown for two limiting cases with $g_{\nu} \simeq Y_{\nu,3} \simeq 7 \times 10^{-13}$ and $g_{\nu} \simeq Y_{\nu,1} \simeq 10^{-14}$.