DSU 2024, Corfu, September 11 Implications of Recent Experimental & Theoretical Results on Electroweak Precision Tests

JOHANNES GUTEN

UTENBERG /ERSITÄT MAINZ

JGU

Section 1

* Introduction

- * the over-constrained Standard Model
- * the weak mixing angle
- * Latest developments
 - * M_Z (CDF)
 - ★ M_W (ATLAS and CDF)
 - ★ \[\vee vee (update) \]
- * Hadronic vacuum polarization

* $\alpha(M_Z)$

* $sin^2\theta_W(0)$

***** g–2

* α_s and N_v from the Z pole

The over-constrained SM

low-energy precision

The $E = mc^2$ of the SM

 $\sin^2 \theta_W = \frac{{g'}^2}{g^2 + {g'}^2} = 1 - \frac{M_W^2}{M_Z^2} = \frac{\pi \alpha}{\sqrt{2}G_F M_W^2}$

Radiative corrections

$sin^2\theta^{\ell}_{eff}$ anno 2024

Parity Violating e- Scattering (PVES) — Elastic

Qweak @ CEBAF (JLab)

- hydrogen (completed)
- $E_e = 1149 \text{ MeV}$
- $|Q| = 158 \text{ MeV} (\theta = 7.9^{\circ})$
- $A_{PV} = 2.3 \times 10^{-7}$
- $\Delta A_{\rm PV} = \pm 4.1\%$
- $\Delta Q_{W}(p) = \pm 6.25\%$

$sin^2\theta_W = 0.2383 \pm 0.0011$

FFs from fit to ep asymmetries

arXiv:1905.08283

8

Parity Violating e⁻ Scattering (PVES)

Running MS weak mixing angle

updated from Ferro-Hernández & JE arXiv:1712.09146

for dark Z interpretation Eduardo Peinado's talk tomorrow

Discriminating new physics

- * Z-Z' mixing: modification of Z vector coupling
- * oblique parameters: STU (also need M_W and Γ_Z)
- * new amplitudes: off- versus on-Z pole measurements (e.g. heavy Z')

* dark Z: renormalization group evolution (low versus very low energy measurements)

Latest developments

Mz anno 2024 [GeV]

91.18

91.19

;----

$M_W - m_t$

 $m_t = 175.2 \pm 1.8 \text{ GeV}$ (indirect) **I.4** σ above $m_t = 172.61 \pm 0.58 \text{ GeV}$ (Tevatron + LHC)

Freitas & JE, PDG (2024) figure: Rodolfo Ferro

$M_H - m_t$

Freitas & JE, PDG (2024) figure: Rodolfo Ferro

S - T

Freitas & JE, PDG (2024) figure: Rodolfo Ferro

S	-0.05 ± 0.07
Т	0.00 ± 0.06

T constrains doublet mass splittings Spyros Argyropoulos' talk Monday afternoon

 $(2 \text{ GeV})^2 < \sum_i \frac{N_C^i}{3} \Delta m_i^2 < (44 \text{ GeV})^2$

Hadronic vacuum polarization

chronology of a_{μ} [×10⁹ – 1165900]

g_{μ} -2, $\alpha(M_Z)$ and $\sin^2\theta_W(0)$

- $\Delta \alpha_{\text{had}}(2 \text{ GeV}) = (58.84 \pm 0.51) \times 10^{-4}$
- $\Delta \alpha_{\text{had}}(2 \text{ GeV}) = (60.30 \pm 0.43) \times 10^{-4}$

$$\Delta M_W = -2.7 \text{ MeV}$$

 $\Delta M_H = -7.0 \text{ MeV}$

Ferro-Hernàndez, Kuberski & JE, arXiv:2406.16691

...if there is time...

α_s from the Z pole

observable	α _s (Mz)	comment
Γ _Z = 2495.5 ± 2.3 MeV	0.1215 ± 0.0048	<mark>update:</mark> Γ _Z = +0.3 MeV
σ _{had} = 41.481 ± 0.033 nb	0.1201 ± 0.0065	update: $\Delta \sigma_{had} = -60 \text{ pb}$
$R_e = \Gamma_{had} / \Gamma_e = 20.804 \pm 0.050$	0.1295 ± 0.0082	
$R_{\mu} = \Gamma_{had} / \Gamma_{\mu} = 20.784 \pm 0.034$	0.1264 ± 0.0054	m _µ ≠ 0
$R_{\tau} = \Gamma_{had} / \Gamma_{\tau} = 20.764 \pm 0.045$	0.1157 ± 0.0072	$m_{\tau} \neq 0$
B _W (had) = 0.6736 ± 0.0018	0.098 ± 0.025	recent (LEP 2 + CMS)
combination	0.1223 ± 0.0028	future lepton collider ~ 10-4
global fit	0.1185 ± 0.0016	includes τ decays

electromagnetic beam-beam effects improved Bhabha X section (luminosity)

Voutsinas et al., arXiv:1908.01704 Janot & Jadach, arXiv:1912.02067

- * after more than 50 years of electroweak precision physics, still no conclusive evidence for BSM * M_W , M_Z , m_t , M_H (and m_c) have all been successfully predicted before their discoveries
- - * the infamous conflict in muon g–2 reduced to about 2.4 σ
 - * recent LEP luminosity update confirms $N_v = 3$ <u>active</u> neutrinos, but α_s somewhat high
 - * new CDF M_W result ~ 7 σ higher than other measurements !!!
- * outlook
 - * high precision PVES (P2, MOLLER, SoLID) competitive alternatives to high energy frontier
 - * leap in precision expected from future lepton collider(s) ILC, CEPC, FCC–ee, CLIC, μ collider

Thank You