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Introduction

In 2020, a new model for nonlinear ED was proposed as the unique
conformal and duality-invariant extension of Maxwell theory

LModMax(F ) = −1

4
cosh(γ) F 2 +

1

4
sinh(γ)

√
(F 2)2 + (F F̃ )2 , γ ≥ 0

Bandos, Lechner, Sorokin & Townsend (2020)

Much interest has been directed towards understanding its dynamics,
but studies of its quantum properties are limited due to
computational difficulty

Non-minimal operator =⇒ standard HK techniques not applicable!

LModMax(F ) is not generated as a one-loop quantum correction
Pinelli (2021)

Loop quantum corrections to the theory must be higher-derivative!

Goal: Identification of consistent higher-derivative deformations of
ModMax which may contribute to a low-energy effective action
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Review of electromagnetic duality

We will study duality as a continuous symmetry of the equations of
motion

Gaillard & Zumino (1981,1997), Gibbons & Rasheed (1995)

Maxwell electrodynamics in a vacuum is the best known example of a
self-dual theory (also conformal in four dimensions)

∇⃗ · E⃗ = 0 ∇⃗ × E⃗ + ∂B⃗
∂t = 0

∇⃗ · B⃗ = 0 ∇⃗ × B⃗ − ∂E⃗
∂t = 0

Invariant under the continuous U(1) deformation

E⃗ + iB⃗ −→ eiφ(E⃗ + iB⃗) , φ ∈ R

It is an interesting area of research to see what nonlinear U(1) duality
invariant systems may be constructed e.g. Born-Infeld theory

Born & Infeld (1934), Schrödinger (1935)
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Duality in Maxwell electrodynamics

Electrodynamics is described by a gauge field Ab

δζAb = Dbζ , [Da,Db] =
1

2
Rab

cdMcd

The corresponding gauge-invariant field strength is

Fab = DaAb −DbAa −→ LMaxwell(F ) = −1

4
F abFab

The Bianchi identity (BI) and the equation of motion (EoM) read

DbF̃ab := Db
(1
2
εabcdF

cd
)
= 0 , DbFab = 0

BI and EoM are preserved by the U(1) transformations

δφFab = φF̃ab , δφF̃ab = −φFab , φ ∈ R

Remarkably, the energy-momentum (EM) tensor is U(1)-invariant

T ab =
1

2
(F + iF̃ )ac(F − iF̃ )bdηcd = F acF bdηcd − 1

4
ηabF cdFcd

The scalings δλFab = λFab preserve EoM and BI but not the EM tensor!
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Duality in nonlinear electrodynamics

Consider the nonlinear Lagrangian L(F ) = −1
4F

abFab +O(F 4)

G̃ab(F ) :=
1

2
εabcd G

cd(F ) = 2
∂L(F )
∂F ab

, G (F ) = F̃ +O(F 3)

The Bianchi identity and the equation of motion read

DbF̃ab = 0 , DbG̃ab = 0

Preserved by the U(1) transformations

δφFab = φGab , δφGab = −φFab , φ ∈ R
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Duality in nonlinear electrodynamics

Lagrangian is not invariant under U(1) duality rotations, instead

δφ

(
L(F )− 1

4
F abG̃ab

)
= 0 , δφL(F ) = δφFab

∂L(F )
∂Fab

Duality invariance leads to the fundamental constraint on L(F )

G ab G̃ab + F ab F̃ab = 0 ,

known as the self-duality equation
Gibbons & Rasheed (1995), Gaillard & Zumino (1997)

Important properties of U(1) duality-invariant models
1 Given an invariant parameter g , ∂L(F ; g)/∂g is duality-invariant.

Implies duality-invariance of energy-momentum tensor!
2 Self-duality under Legendre transformations

LD(FD) :=
(
L(F )− 1

2
F abF̃D

ab

)∣∣∣
F=F (FD )

, FD
ab = ∂aA

D
b − ∂bA

D
a

LD(F ) = L(F )
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Ivanov-Zupnik (auxiliary variable) formulation

Ivanov & Zupnik (2001, 2002)

In general, the equation G abG̃ab+F abF̃ab = 0 is very difficult to solve!

Consider instead the model with auxiliary variables Vab = −Vba

L(F ,V ) =
1

4
F abFab +

1

2
V abVab − V abFab + Lint(V ) .

Equation of motion for Vab is algebraic

Vab = Fab −
∂Lint(V )

∂V ab
=⇒ L(F ,V ) → L(F )

Condition of U(1) duality invariance:

Lint(V ) = Lint(ν, ν̄) , ν := V ab
+ V+ab ,

V ab
± =

1

2

(
V ab ± iṼ ab

)
, Ṽ± = ∓iV± , V = V+ + V−

G ab G̃ab + F ab F̃ab = 0 =⇒ Lint(ν, ν̄) = Lint(νν̄)
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ModMax electrodynamics

Maxwell electrodynamics is also conformal; action is Weyl invariant

δσDa = σDa − (Dbσ)Mab , δσFab = 2σFab

What conformal & U(1) invariant models for electrodynamics exist
beyond the free case?

Solution: Unique one parameter family of models
Bandos, Lechner, Sorokin & Townsend (2020)

Kosyakov (2020)

LModMax(F ) = −1

4
cosh(γ) F 2 +

1

4
sinh(γ)

√
(F 2)2 + (F F̃ )2

γ ≥ 0 is necessary as superluminal propagation is possible for γ < 0

Auxiliary variable formulation (unique conformal interaction):
Kuzenko (2021)

Lint(νν̄) = κ
√
νν̄ , sinh(γ) =

κ

1− (κ/2)2
, κ ∈ R
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Quantum corrections to ModMax theory

LModMax(F ) = −1

4
cosh(γ) F 2 +

1

4
sinh(γ)

√
(F 2)2 + (F F̃ )2

Lagrangian cannot be perturbatively expanded about Fµν = 0

Linearise about a solution to ModMax equations of motion

∂νFµν − ∂ν
[
(ωω̄)−1/2

(
Re(ω)Fµν + Im(ω)F̃µν

)]
tanh(γ) = 0 .

Here ω = α+ iβ, α = 1
4F

µνFµν and β = 1
4 F̃

µνFµν .

Quantisation proves to be very difficult about a generic solution

Significantly simplifies by splitting about constant background Fµν

Fµν = FB
µν + FQ

µν , DρF
B
µν = 0 .

At the one-loop level no quantum corrections arise!
Pinelli (2021)
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Quantum corrections to ModMax theory

Quantum corrections absent for DρF
B
µν = 0, but higher-derivative

corrections are possible

One-loop log. divergences should respect Weyl and duality invariance
Fradkin & Tseytlin (1985)
Roiban & Tseytlin (2012)

Computing higher-derivative deformations of ModMax maintaining
Weyl and U(1) symmetry is easier than obtaining one-loop corrections

Such deformations are also valid higher-derivative extensions of the
model as they maintain its defining properties/symmetries
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Duality rotations for higher-derivative electrodynamics

Need to generalise the GZGR formalism to higher-derivative models
Kuzenko & Theisen (2001)

1 Work with the action S[F ] instead of L(F ) to simplify expressions
2 Definition of G̃ab

G̃ ab[F ] = 2
δS[F ]
δF ab

3 Self-duality equation∫
d4x e

(
G̃ abG̃ab + F̃ abFab

)
= 0

where Fab = −Fba, but otherwise unconstrained

Action S[F ] is unambiguously defined as a functional of an
unconstrained two-form Fab; no dependence on DbF̃

ab
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Higher-derivative extension of IZ formulation

The IZ reformulation is obtained by replacing the S[F ] with

S[F ,V ] =

∫
d4x e

{
1

4
F abFab +

1

2
V abVab − V abFab

}
+Sint[V ] ,

Imposing the equation of motion reduces auxiliary action to S [F ]

δ

δVab
S[F ,V ] = 0 =⇒ S[F ,V ] → S[F ]

The self-duality equation turns into∫
d4x e Ṽab

δSint[V ]

δVab
= 0

Note: if interaction takes the form Sint[ν, ν̄], ν = V ab
+ V+ab, then the

SD equation reduces to

Sint[e
2iφν, e−2iφν̄] = Sint[ν, ν̄] , φ ∈ R
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Higher-derivative deformations of ModMax theory

Kuzenko & ER (2024)

Need to identify Weyl-invariant HD functionals SHD[V ]

S[F ,V ] =

∫
d4x e

{
1

4
F abFab +

1

2
V abVab − V abFab + κ

√
νν̄

}
+SHD[V ] ,

which solve the self-duality equation

The space of solutions is quite large. Specifically:

SHD[V ] =

∫
d4x e

√
νν̄ H(Σ,Υ, Ῡ,Ξn, Ξ̄n)

where we have defined the Weyl-invariant fields:

Σ =
□c(νν̄)

1/8

(νν̄)3/8
, Υ =

ν̄1/4□cν
1/4

√
νν̄

, Ξn =
Ψ̄n∆0Ψ

n

√
νν̄

, Ψ =
ν

ν̄
,

□c =
(
D2 − 1

6
R
)
, ∆0 = (DaDa)

2 + 2Da
(
Rab Db − 1

3RDa

)
.

Note that ∆0 is the Fradkin-Tseytlin operator Fradkin & Tseytlin (1982)
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Example of elimination of auxiliary variables

Kuzenko & ER (2024)

Consider, as an example, the following deformation of ModMax

Sint[V ] =

∫
d4x e

{
κ
√
νν̄ + g(νν̄)−1/4

[
□c(νν̄)

1/8
]2}

, g ∈ R

Eliminating the auxiliary fields to quadratic order in g gives

S = SMM +

∫
d
4x e

{
gΩ

− 1
2
(
□cΩ

1
4
)2 +

g2Ω
− 3

2

4(1 − (κ/2)2)(1 + (κ/2)2)2

(
2c (Ω

− 1
2 2cΩ

1
4 ) − Ω

− 3
4 (2cΩ

1
4 )2

)2

×
{(

3 − 12(κ/2)2 + 20(κ/2)4
)
(ω + ω̄) − 4(κ/2)

(
2 + κ/2 − 5(κ/2)2 + 2(κ/2)3

+ 9(κ/2)4 + (κ/2)5
)
Ω

}}
+ O(g3)

where we have defined

Ω =

(
1 + (κ/2)2

)
(ωω̄)

1
2 − (κ/2)(ω + ω̄)(

1− (κ/2)2
)2 =

1

2
(cosh γ + 1)

∂LMM

∂γ
.

Note that Ω is manifestly invariant under ModMax duality rotations!
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Duality-invariant observables

The leading contribution to the deformation was manifestly invariant
under ModMax duality rotations

Ω =

(
1 + (κ/2)2

)
(ωω̄)

1
2 − (κ/2)(ω + ω̄)(

1− (κ/2)2
)2 =⇒ δφΩ = 0

In perturbation theory, the leading contribution to the deformation of
any self-dual theory must be duality-invariant!

Theorem: Any two duality-invariant local observables are functionally
dependent

Ferko, Smith, Kuzenko & Tartaglino-Mazzucchelli (2024)

Way out: Consider functionals involving derivatives of Fab

I =
√
ω(1 + cosh γ)−

√
ω̄ sinh γ , δφI = iφI ,

J = I
(
2c

√
Ī
)2

=⇒ δφJ = 0

Kuzenko, ER (2024)
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In-out vacuum amplitude for ModMax

The family of higher-derivative deformations of ModMax is very big!

Want to single out those deformations of ModMax which may
contribute to a low-energy effective action of the theory

Consider the in-out vacuum amplitude

Z =

∫
[DAa][DVab] δ

[
∇aA

a − ξ
]
Det(∇2) exp

{
i

ℏ
SMM[F ,V ]

}
,

SMM[F ,V ] =

∫
d4x e

{
1

4
F abFab +

1

2
V abVab − V abFab + κ

√
νν̄

}
The functional ℏ−1SMM[F ,V ] is invariant under rescalings

ℏ → λ2ℏ , Fab(x) → λFab(x) , Vab(x) → λVab(x)

The effective action ΓMM[F ,V ] is expected to share this symmetry
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ModMax effective action

Kuzenko & ER (2024)

Posit that (a local part of) the effective action has the form

ΓMM[F ,V ] = SMM[F ,V ] +
∞∑
n=1

ℏnΓ(n)[V ]

and possesses the following properties:
1 ℏ−1ΓMM[F ,V ] is invariant under the rescalings
2 each functional Γ(n)[V ] is Weyl invariant
3 each functional Γ(n)[V ] obeys the self-duality equation∫

d4x e Ṽab
δΓ(n)[V ]

δVab
= 0

Implies that the ModMax coupling
∫
d4x e

√
νν̄ cannot be generated

as a one loop quantum correction!
Possible solution for general n

Γ(n)[V ] = gn

∫
d4x e

[
□c(νν̄)

1/8
]2n

(νν̄)(3n−2)/4
, gn ∈ R
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ModMax one-loop effective action

Kuzenko & ER (2024)

Keeping in mind these arguments, our ansatz for Γ(1)[V ] is:

Γ(1)[V ] =

∫
d4x e

√
νν̄

{
g1Υ

2 + ḡ1Ῡ
2 + g2ΥῩ +

4∑
n=1

g
(n)
3 Ξn + g4Σ

2
}

= ℏ
∫

d4x e
{g1ν̄

1
2 (2cν

1
4 )2 + ḡ1ν

1
2 (2c ν̄

1
4 )2

(νν̄)
1
2

+ g2
2cν

1
42c ν̄

1
4

(νν̄)
1
4

+
4∑

n=1

g
(n)
3 Ψ̄n20Ψ

n + g4
(2c(νν̄)

1
8 )2

(νν̄)
1
4

}
,

where g1 ∈ C and g2, g
(n)
3 , g4 ∈ R.

Rescaling symmetry has lead to significant restrictions on the
structure of the one-loop deformation!
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ModMax one-loop effective action

Kuzenko & ER (2024)

Eliminating the auxiliary fields to leading order in ℏ leads to the
higher-derivative action

ΓMM[F ] = SMM[F ] + ℏ
∫

d4x e

{
g1Ī(2c

√
I)2 + ḡ1I(2c

√
Ī)2

2Ω

+ g2
2c

√
I2c

√
Ī√

2Ω
+

4∑
n=1

g
(n)
3

I2n

Ī2n
∆0

Ī2n

I2n
+ g4Ω

− 1
2

(
□cΩ

1
4

)2}}
+O(ℏ2)

Should be emphasised that the sector linear in ℏ is duality invariant!

All structures may contribute to the one-loop effective action for
ModMax, but explicit calculations remain to be completed
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On-shell vanishing structures

We excluded a priori structures containing the primary vector fields

χ
(1)
a = DbVab , χ

(2)
a = DbṼab

Considering these contributions as deformations to Maxwell theory,
they lead to trivial contributions once auxiliaries are eliminated

χ
(1)
a = DbFab + . . . , χ

(2)
a =����*

0
DbF̃ab + . . .

Recall that DbFab = 0 on-shell for Maxwell electrodynamics

These structures could potentially arise at the one-loop level, but
further analysis is required
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Concluding comments

Outcomes:
Classified consistent higher-derivative deformations of ModMax
Identified new duality-invariant local observables
Provided general ansatz for one-loop deformation

Future work:
Study of on-shell vanishing structures
Extension to N = 1 super ModMax

Bandos, Lechner, Sorokin & Townsend (2021)
Kuzenko (2021)

Existence of N = 2 super ModMax?
Kuzenko & ER (2021)

Explicit computation of one-loop effective action (Bosonic and N = 1)
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