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Introduction – Matter-antimatter asymmetry

Observations consistently show that there are more particles than
antiparticles:

ηB =
nB

nγ
≈ 6× 10−10 .

Conditions for baryon asymmetry:1

Baryon-number violation.
C and CP violation.
Deviation from equilibrium.

Direct evidence of CP violation!

1Sakharov’s conditions (A.D. Sakharov, JETP Lett. 5 (1967) 24).
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Introduction – Leptogenesis

A popular scenario of baryon asymmerty production is baryogenesis
through leptogenesis:

CP and L violation from new physics.
New particles fall out of equilibrium.
Baryon asymmetry generated when via (B+L)-violating
(non-perturbative) sphaleron interactions.
Baryon asymmetry freezes at T ≈ 130 GeV.

Violation of L-number terms are naturally connected to neutrino
masses.
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Introduction – Resonant leptogenesis

“Resonant” leptogenesis: Enhancement of CP violation due to
through the mixing of (two) nearly degenerate heavy Majorana
neutrinos.2

⇒ Leptogenesis with small masses!

2A. Pilaftsis, Phys. Rev. D 56 (1997), 5431-5451. A. Pilaftsis and
T. E. J. Underwood, Nucl. Phys. B 692 (2004), 303-345.
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Model – Yukawa structure

Tri-resonant model:

−LνR = hν
ijLiΦ̃νR,j +

1

2
νCR,i (mM )ij νR,j +H.c. ,

hν = hν
0 + δhν .

hν
0 =



a aω aω2

b b ω b ω2

c c ω c ω2


 ,

with ω = exp

(
2πi

3

)
; i.e. generator of Z3.3

Reason: Tree-level and 1-loop neutrino masses vanish at leading
order of hν

0 . Dominant contribution comes from δhν .

3 Same results are obtained if ω is a generator of Z3n.
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Model – Tri-resonant leptogenesis

CP asymmetry, is enhanced if two right-handed neutrinos obey

|mNα
−mNβ

| ∼ Γβ/2 .

Tri-resonant case produces even larger asymmetry:
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Initial conditions: Neutrinos
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Initial conditions: Leptons
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The initial conditions do not really matter!
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Varying relativistic DOFs: The devil in details?
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Varying relativistic DOFs: how?
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Varying relativistic DOFs: What about “attractors”?

Baryon number is disturbed by
d log heff

d log T
.

⇒ There may not be enough time to recover before Tsph.
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Varying relativistic DOFs: Tsph dependence?

Also (sometimes) results in dependence on Tsph.

⇒ We need accurate computation of both
d log heff

d log T
and Tsph.
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Varying relativistic DOFs: So what?
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Final results
We solve the transport equations in the mass basis of the heavy
neutrinos.4

Possible probe: µ → e transitions within Titanium.5

Note the difference below mN1 ≈ 100 GeV.

4P. S. Bhupal Dev, P. Millington, A. Pilaftsis and D. Teresi, Nucl. Phys. B 886 (2014),
569-664 [arXiv:1404.1003 [hep-ph]].

5The PRISM/PRIME Project, Nuclear Physics B - Proceedings Supplements 218
(2011), no. 1 44–49.
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Summing up...

What to take home:

Tri-resonant leptogenesis works.

Masses below the TeV scale.

Varying degrees of freedon must be included.

As for the future:
Multi-resonant leptogenesis?

Study known models including varying heff , to find how much
they change.

Extensions of TRL might introduce additional CP violations or
mixing, making the parameter space better?
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Thank you!


	Introduction
	Matter-antimatter asymmetry
	Leptogenesis
	Resonant leptogenesis

	Model
	Yukawa structure
	Tri-resonant leptogenesis

	Leptogenesis
	Initial conditions: Neutrinos
	Initial conditions: Leptons
	Varying relativistic DOFs: The devil in details?
	Varying relativistic DOFs: how?
	Varying relativistic DOFs: What about ``attractors''?
	Varying relativistic DOFs: Tsph dependence?
	Varying relativistic DOFs: So what?

	Final results
	Summing up...

