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Talk overview

Brief motivation

L∞-algebras of classical field theories

Braided L∞-algebra of ϕ3 theory

Homological perturbation theory

Results:

Correlation functios

Schwinger-Dayson equations

Braided Wick theorem

ρ-Minkowski noncommutativity

Outlook



Brief motivation

⋆ BV formalism is developed for gauge quantum field theories [Weinberg ’96; Gomis

et al ’94]

⋆ BV formalism has natural structure encoded in L∞-algebra [Hohm, Zwiebach ’17;

Jurco et al. ’18; Costello, Gwilliam ’16, ’21]

⋆ Amplitude program in quantum field theories (recursion relations) [Elvang,

Huang ’15]

⋆ Double copy method connects gauge theories to quantum gravity [Berm et all

’10; Borsten et al ’21].

⋆ Consistent quantization of nonperturbative noncommutative field theories and

resolving the issues of UV/IR mixing and existence of non-planar diagrams

[Minwalla et al. ’99; Balachandran et al. ’06; Bu et al. ’06 Fioere, Wess ’07; Aschieri et al. ’08]



L∞-algebras of classical field theories - mini dictionary

Classical field theory → L∞-algebra (V , ℓn, ⟨_,_⟩)

Fields, ghosts and antifields → V = · · · ⊕ V0 ⊕ V1 ⊕ V2 ⊕ V3 ⊕ . . .

· · · ⊕ ghosts ⊕ fields ⊕ EoM ⊕ Noether id ⊕ . . .

Classical action S → S(A) =
∞∑
n=1

(−1)
n(n−1)

2 ⟨A, ℓn(A, . . . ,A)⟩

Spacetime noncommutativity

via Drinfel’d twist formalism

→ Braided L∞-algebra (V , ℓ⋆n , ⟨_,_⟩⋆)

Polynomials in fields φ2 → Simmetised tensor algebra SymR(V [2])

e.g. φ3, φ4 v1 ⊙⋆ v2 = (−1)|v1||v2|Rα(v2)⊙⋆ Rα(v1)

Tensor product algebra → Extending algebraic structure to new L∞-algebra

SymR(V [2])⊗ V where brackets and pairing respect:

ℓ⋆ext2 (a1 ⊗ v1, a2 ⊗ v2) = ±
(
a1 ⊙⋆ Rα(a2)

)
⊗

ℓ⋆2
(
Rα(v1), v2

)
⟨⟨a1 ⊗ v1, a2 ⊗ v2⟩⟩⋆ = ±

(
a1 ⊙⋆ Rα(a2)

)
· ⟨Rα(v1), v2⟩⋆

Poisson structure → {_,_}⋆ : SymR(V [2]) ⊗ SymR(V [2]) →

(SymR(V [2]))[1]



L∞-algebras of classical field theories - mini dictionary

Classical BV action SBV → Braided BV action S⋆
BV ∈ SymR(V [2])

Classical master equation

{SBV ,SBV }PB = 0

→ {S⋆
BV ,S

⋆
BV }⋆ = 0

Solution as expansion in

antifields:

Solution as expansion in brackets via contracted

coordinate functions ξ = τk ⊗ τk ∈ SymR(V [2])⊗ V :

SBV = S+(antifield)·(. . . )+. . . → S⋆
BV = 1

2
⟨⟨ξ, ℓ⋆ext1 (ξ)⟩⟩⋆ − 1

3!
⟨⟨ξ, ℓ⋆ext2 (ξ, ξ)⟩⟩⋆ + . . . where

we identify S⋆
BV = S⋆

(0)
+ S⋆

int

BV Laplacian ∆BV appears

in quantum master equation
1
2
{SBV , SBV } = iℏ∆BV SBV

→ Braided BV Laplacian nontrivialy defined via pairing of

field φ and corresponding antifield

φ+: ∆BV(φ⊙⋆ φ+) = ±⟨φ,φ+⟩⋆



Braided L∞-algebra of ϕ3 theory

⋆ Massive real scalar field in 4D Minkowski spacetime and qubic interaction ϕ3

⋆ The underlying graded vector space is V = V1 ⊕ V2, where

V1 = V2 = Ω0(R1,3)

⋆ V1 is the space of fields ϕ, V2 is the space of antifields/EoM ϕ+

⋆ There are just the first two brackets

ℓ⋆1 (ϕ) = ℓ1(ϕ) = −(□+m2)ϕ & ℓ⋆2 (ϕ1, ϕ2) = −λϕ1 ⋆ ϕ2

⋆ Equipping the structure with the cyclic pairing

⟨ϕ, ϕ+⟩⋆ =

∫
d4x ϕ ⋆ ϕ+

⋆ Braided MC action is:

S⋆(ϕ) =
1

2
⟨ϕ, ℓ1(ϕ)⟩⋆ −

1

3!
⟨ϕ, ℓ2(ϕ, ϕ)⟩⋆

=

∫
d4x

(1

2
ϕ
(
− □−m2

)
ϕ−

λ

3!
ϕ ⋆ ϕ ⋆ ϕ

)
.

⋆ At the classical level, this action is the same as in the usual ϕ3
⋆ theory!



Braided L∞-algebra of ϕ3 theory

⋆ Define contracted coordinate functions ξ ∈ SymR(V [2])⊗ V

ξ =

∫
k

(
ek ⊗ e

k + e
k ⊗ ek

)
,

⋆ Define and calculate the interaction action

S⋆
int = −1

6
⟨⟨ξ, ℓ⋆ ext

2 (ξ, ξ)⟩⟩⋆ =

∫
k

V (k1, k2, k3)e
k
1 ⊙⋆ ek2 ⊙⋆ ek3 ,

⋆ We naturally chose plane waves as basis vectors in momentum space,

ek(x) = eik·x and ek(x) = e−ik·x

⋆ The twist we use is the Moyal-Weyl twist F = e−
i
2
θµν∂µ⊗∂ν

⋆ Vertex has a simple form implying regular momentum conservation law:

V (k1, k2, k3) = − λ

3!
e

i
2

∑
a<b ki ·θkj (2π)4δ(k1 + k2 + k3)

⋆ The twist we can also use is the ρ-Minkowski twist F = e−
iθ
2
(∂z⊗∂φ−∂φ⊗∂z )



Homological perturbation theory

⋆ ℓ1 acts as differential creating cochain complex (V , ℓ1) that can be related to

cochain complex of its cohomology (H•(V ), 0) via maps: contracting

homotopy (in our case it it the propagator) h : V → V of degree −1,

inclusion i : H•(V ) → V and projection p : V → H•(V )

⋆ Strong deformation retract is defined when aforementioned maps fulfill

certain conditions

⋆ Homological perturbation lemma states that strong deformation retract is

stable i.e. deformation ℓ1 → ℓ1 + δ deforms other maps (ĩ , p̃, h̃) such that

strong deformation retracts conditions hold

⋆ Correlation functions in momentum space are then:

G̃n(p1, . . . , pn) =
∞∑
m=1

P
(
(δH)m(ep1 ⊙⋆ · · · ⊙⋆ epn )

⋆ Deformation can be chosen to be δ = iℏ∆BV for free theory or

δ = {S⋆
int ,_}+ iℏ∆BV for interacting theory



Results: Correlation functions in ϕ3 theory
⋆ Propagator in free theory is the same as in regular theory

G⋆
2 (p1, p2)

(0) = i ℏ∆BVH
(
e
p1 ⊙⋆ e

p2
)
= (i ℏ)

(2π)4δ(p1 + p2)

p21 − m2

⋆ In MW case, two point function at 1-loop have no NC contributions, no

nonplanar diagrams and no UV/IR mixing and is the same as in regular theory

Consistent with [Oeckel ’00]
⋆ In MW case, the final result for the connected 3-point function is:

G⋆
3 (p1, p2, p3)

(1)|connected =
∑
cyclic

e
i
2
p3·θp2 ×


108 ×

p1p2

p3

+ 72 ×

p1p2

p3

+ 108 ×

p1p2

p3


⋆ NC contribution appears as a phase factor in external momenta. No UV/IR

mixing! Consistent with [Oeckel ’00]



Results: Schwinger-Dayson equations

⋆ Schwinger-Dyson equations are EoM corresponding to Green’s functions

⋆ SD equations were analyzed in the commutative QFT and from the

perspective of homotopy algebras [K. Konosu ’23; K. Konosu and J. Totsuka-Yoshinaka

’24; K. Konosu and Y. Okawa ’24]

⋆ In this approach, SD equations are coming from the Homological

perturbation lemma in the recursion of the form:

P̃ = P̃δH

⋆ P̃ is deformed projection map P, an extension of map p. When acting on

SymR(V [2]) it generates all n-point functions Gn

⋆ Acting on the symmetrized product of basis elements, it recursively relates

different correlation functions G⋆
k :

G̃n(p1, . . . , pn) = P̃δH(ep1 ⊙⋆ · · · ⊙⋆ epn )



Results: Braided Wick theorem

⋆ In free theory and using MW twist, where δ = iℏ∆BV, SD equation is:

G̃⋆0
2n (p1, . . . , p2n) =

1

2n

n∑
α ̸=β

ei pβ ·θ(pα+1+···+pβ−1) ϕα ϕβ ·

· G̃⋆0
2n−2(p1, . . . , p̂α, . . . , p̂β , . . . , p2n)

⋆ The solution of SD equation in free theory is the general expression for the

braided Wick there:

G̃⋆0
2n (p1, . . . , p2n) =

1

n! 2n

∑
σ∈S2n

e
− i

2

∑
i<j

pi ·θ pj
n∏

k=1

ϕσ(2k−1) ϕσ(2k) ,

⋆ Braided Wick theorem for 4-point function reads:

G̃⋆
4 (k1, k2, k3, k4)

(0) = ϕ1 ϕ2 ϕ3 ϕ4 + ϕ1 ϕ4 ϕ2 ϕ3 + e i k3·θ k2 ϕ1 ϕ3 ϕ2 ϕ4



General: ρ-Minkowski noncommutativity

⋆ In Cartesian and polar coordinates ρ-Minkowski twist is:

F = e−
iθ
2
(∂z⊗(x∂y−y∂x )−(x∂y−y∂x )⊗∂z ) = e−

iθ
2
(∂z⊗∂φ−∂φ⊗∂z )

⋆ In Cartesian coordinates it describes space-time noncommutativity of Lie

algebra type, in polar coordinate of MW type:

[ẑ , x̂ ] = −iθŷ , [ẑ , ŷ ] = +iθx̂ ;
[
ẑ , eiφ̂

]
= iθeiφ̂

⋆ Standard noncommutative quantization, based on ⋆-product approach, was

done in ϕ4 case [M. D. Ćirić et al ’18]

⋆ The phenomenon of UV/IR mixing appears and the model contains

nonplanar diagrams. Conservation of momenta is deformed.



Preliminar results: ρ-Minkowski braiding of ϕ3 theory

⋆ Instead of MW twist, we applied ρ-Minkowski twist to our plane waves ek

and produced the fallowing vertex:

V (k1, k2, k3) = − λ

3!
e
θ
∑

a<b(kbz (kay∂kax −kax∂kay )−kaz (kby∂kbx
−kbx∂kby

))·

· (2π)4δ⋆(k1 +⋆ k2 +⋆ k3)

⋆ Deformed momentum conservation law apeares!

δ⋆(k1 +⋆ k2 +⋆ k3) =

∫
x

e−ik1x ⋆ e−ik2x ⋆ e−ik3x

⋆ Two point function at one loop level contains a nonplanar diagram leading to

UV/IR mixing!



Preliminar results: ρ-Minkowski braiding of ϕ3 theory

⋆ Since Cartesian coordinates don’t respect the symmetry of our twist, we can

change the basis: (x , y) → (ρ, φ)

⋆ Functions that solve EoM and can be used as basis vectors for the space of

(anti)fields are of the form:

eE ,kz ,l,α(t, r , z , φ) =
√
αJl(αr) · e ilφ · e−iEt · e ikz z , EoM : α2 = k2

x + k2
y

⋆ Calculations so far suggest that there are no traces of nonplanar diagrams

and UV/IR mixing in this basis!

⋆ Since noncommutativity in this basis is of MW form, it can be expected that

results are analogous to MW case.

⋆ How can this be?! We have to understand the results better. Work in

progress...



Outlook

⋆ Well established algebraic techniques were applied in details in ϕ3 theory

using Moyal-Wayle twist

⋆ Some further algebraic techniques were developed

⋆ ρ-Minkowski twist in ϕ3 theory is currently under investigation with very

interesting preliminary results that should be clarified

⋆ Future work will be dedicated to the analysis of non-Abelian gauge theories

⋆ Aiming for construction of amplitudes needed for double copy approach



Results: Schwinger-Dyson equations, an example

⋆ In the interacting ϕ3 theory, using MW twist and deformation of form

δ = {S⋆
int ,_}+ iℏ∆BV, SD equation in case of n = 2 yields:

p2p1 = p2p1 +
3

2
× p1 p2 +

3

2
× p1 p2
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