Workshop on Noncommutative and Generalized Geometry in String theory, Gauge theory and Related Physical Models

Corfu, September 2024

Homotopy Algebra Techniques for Noncommutative Quantum Field Theories

Djordje Bogdanović

University of Belgrade, Faculty of Physics, Belgrade, Serbia

based on:

DjB, M. D. Ćirić, V. Radovanović, R. J. Szabo, BV quantization of braided scalar field theory,

arXiv:2304.14073, DjB, M. D. Cirić, V. Radovanović, R. J. Szabo, G. Trojani, Braided scalar quantum field

theory, arXiv:2406.0237 and with F. Lizzi, P. Vitale, R. J. Szabo, M. D. Ćirić, Work in progress

Talk overview

[Brief motivation](#page-2-0)

L∞[-algebras of classical field theories](#page-3-0) Braided L_{∞} [-algebra of](#page-5-0) ϕ^3 theory [Homological perturbation theory](#page-7-0)

[Results:](#page-8-0)

[Correlation functios](#page-8-0)

[Schwinger-Dayson equations](#page-9-0)

[Braided Wick theorem](#page-10-0)

 ρ [-Minkowski noncommutativity](#page-11-0)

[Outlook](#page-14-0)

Brief motivation

- \star BV formalism is developed for gauge quantum field theories [Weinberg '96; Gomis et al '94]
- $★$ BV formalism has natural structure encoded in L_{∞} -algebra [Hohm, Zwiebach '17; Jurco et al. '18; Costello, Gwilliam '16, '21]
- \star Amplitude program in quantum field theories (recursion relations) [Elvang, Huang '15]
- \star Double copy method connects gauge theories to quantum gravity [Berm et all '10; Borsten et al '21].
- \star Consistent quantization of nonperturbative noncommutative field theories and resolving the issues of UV/IR mixing and existence of non-planar diagrams [Minwalla et al. '99; Balachandran et al. '06; Bu et al. '06 Fioere, Wess '07; Aschieri et al. '08]

 L_{∞} -algebras of classical field theories - mini dictionary

Spacetime noncommutativity via Drinfel'd twist formalism Polynomials in fields φ^2 e.g. φ^3 , φ

Classical field theory \rightarrow L_{∞} -algebra $(V, \ell_n, \langle , \rangle)$ Fields, ghosts and antifields $\rightarrow V = \cdots \oplus V_0 \oplus V_1 \oplus V_2 \oplus V_3 \oplus \cdots$ $\cdots \oplus$ ghosts \oplus fields \oplus EoM \oplus Noether id $\oplus \ldots$ Classical action S \rightarrow $S(A) = \sum_{n=1}^{\infty} (-1)^{\frac{n(n-1)}{2}} \langle A, \ell_n(A, ..., A) \rangle$ \rightarrow Braided L $_{\infty}$ -algebra $(V,\ell_{n}^{\star},\langle_,_\rangle_{\star})$ \rightarrow Simmetised tensor algebra $\text{Sym}_{\mathcal{R}}(V[2])$

4
$$
v_1 \odot_{\star} v_2 = (-1)^{|v_1||v_2|} R_{\alpha}(v_2) \odot_{\star} R^{\alpha}(v_1)
$$

Tensor product algebra \rightarrow Extending algebraic structure to new L_{∞} -algebra $\operatorname{Sym}_{\mathcal{R}}(V[2]) \otimes V$ where brackets and pairing respect: $\ell_2^{\star ext} (a_1 \otimes v_1, a_2 \otimes v_2) = \pm (a_1 \odot_{\star} R_{\alpha}(a_2)) \otimes$ $\ell_2^{\star}(\mathsf{R}^\alpha(\mathsf{v}_1), \mathsf{v}_2)$ $\langle \hspace{-0.2em} \langle a_1 \otimes \mathsf{v}_1, a_2 \otimes \mathsf{v}_2 \rangle\hspace{-0.2em} \rangle_{\star} = \pm \big(\mathsf{a}_1 \odot_\star \mathsf{R}_\alpha(\mathsf{a}_2) \big) \cdot \langle \mathsf{R}^\alpha(\mathsf{v}_1), \mathsf{v}_2 \rangle_{\star}$ Poisson structure $\rightarrow \{ , \} \star : \text{Sym}_{\mathcal{R}}(V[2]) \otimes \text{Sym}_{\mathcal{R}}(V[2]) \rightarrow$ $(\mathrm{Sym}_{\mathcal{R}}(V[2]))[1]$

L_{∞} -algebras of classical field theories - mini dictionary

Classical master equation $\rightarrow \{S_{BV}^{\star}, S_{BV}^{\star}\}_\star = 0$ $\{S_{BV}, S_{BV}\}_{PB} = 0$

Solution as expansion in antifields:

$$
S_{BV} = S + (antified) \cdot (\dots) + \dots
$$

BV Laplacian Δ_{BV} appears in quantum master equation $\frac{1}{2} \{ S_{BV}, S_{BV} \} = i \hbar \Delta_{BV} S_{BV}$

Classical BV action S_{BV} \longrightarrow Braided BV action $S_{BV}^{\star} \in \text{Sym}_{\mathcal{R}}(V[2])$

Solution as expansion in brackets via contracted coordinate functions $\xi = \tau_k \otimes \tau^k \in \mathrm{Sym}_\mathcal{R}(V[2]) \otimes V$: $S_{BV} = S + (antified) \cdot (\dots) + \dots \quad \rightarrow \quad S_{BV}^{\star} = \frac{1}{2} \langle \xi, \ell_1^{\star \text{ext}}(\xi) \rangle_{\star} - \frac{1}{3!} \langle \xi, \ell_2^{\star \text{ext}}(\xi, \xi) \rangle_{\star} + \dots$ where we identify $\mathcal{S}_{\rm BV}^{\star}=\mathcal{S}_{(0)}^{\star}+\mathcal{S}_{\rm int}^{\star}$

> \rightarrow Braided BV Laplacian nontrivialy defined via pairing of field φ and corresponding antifield

$$
\varphi^+\colon \Delta_{\mathrm{BV}}(\varphi\odot_\star\varphi^+)=\pm\langle\varphi,\varphi^+\rangle_\star
$$

Braided L_{∞} -algebra of ϕ^3 theory

- \star Massive real scalar field in 4D Minkowski spacetime and qubic interaction ϕ^3
- \star The underlying graded vector space is $V = V_1 \oplus V_2$, where $V_1 = V_2 = \Omega^0(\mathbb{R}^{1,3})$
- \star $\,$ V_{1} is the space of fields ϕ , $\,V_{2}$ is the space of antifields/EoM ϕ^{+}
- \star There are just the first two brackets

$$
\ell_1^{\star}(\phi) = \ell_1(\phi) = -(\Box + m^2)\phi \And \ell_2^{\star}(\phi_1, \phi_2) = -\lambda\phi_1 \star \phi_2
$$

 \star Equipping the structure with the cyclic pairing

$$
\langle \phi, \phi^+ \rangle_{\star} = \int d^4x \ \phi \star \phi^+
$$

 \star Braided MC action is:

$$
S_{\star}(\phi) = \frac{1}{2} \langle \phi, \ell_1(\phi) \rangle_{\star} - \frac{1}{3!} \langle \phi, \ell_2(\phi, \phi) \rangle_{\star}
$$

=
$$
\int d^4 x \left(\frac{1}{2} \phi \left(-\Box - m^2 \right) \phi - \frac{\lambda}{3!} \phi \star \phi \star \phi \right).
$$

 \star At the classical level, this action is the same as in the usual ϕ_\star^3 theory!

Braided L_{∞} -algebra of ϕ^3 theory

 \star Define contracted coordinate functions $\xi \in \mathrm{Sym}_{\mathcal{R}}(V[2]) \otimes V$

$$
\boldsymbol{\xi} = \int_k \ \big(\boldsymbol{\mathsf{e}}_k \otimes \boldsymbol{\mathsf{e}}^k + \boldsymbol{\mathsf{e}}^k \otimes \boldsymbol{\mathsf{e}}_k \big),
$$

 \star Define and calculate the interaction action

$$
\mathcal{S}^\star_{\rm int} = -\frac{1}{6} \langle\!\langle \xi, \ell_2^{\star\, \text{ext}}(\xi, \xi) \rangle\!\rangle_\star = \int_k V(k_1, k_2, k_3) e_1^k \odot_\star e_2^k \odot_\star e_3^k,
$$

- \star We naturally chose plane waves as basis vectors in momentum space, $e^{k}(x) = e^{ik \cdot x}$ and $e_{k}(x) = e^{-ik \cdot x}$
- \star The twist we use is the Moyal-Weyl twist ${\cal F}=e^{-\frac{{\rm i}}{2}\theta^{\mu\nu}\partial_{\mu}\otimes \partial_{\nu}}$
- \star Vertex has a simple form implying regular momentum conservation law:

$$
V(k_1, k_2, k_3) = -\frac{\lambda}{3!} e^{\frac{i}{2} \sum_{a < b} k_i \cdot \theta k_j} (2\pi)^4 \delta(k_1 + k_2 + k_3)
$$

 \star The twist we can also use is the ρ -Minkowski twist ${\cal F}=e^{-\frac{i\theta}{2}(\partial_z\otimes\partial_\varphi-\partial_\varphi\otimes\partial_z)}$

Homological perturbation theory

- $\star \ell_1$ acts as differential creating cochain complex (V, ℓ_1) that can be related to cochain complex of its cohomology $(H^{\bullet}(V),0)$ via maps: contracting homotopy (in our case it it the propagator) h : $V \rightarrow V$ of degree -1, inclusion $i : H^{\bullet}(V) \to V$ and projection $p : V \to H^{\bullet}(V)$
- \star Strong deformation retract is defined when aforementioned maps fulfill certain conditions
- \star Homological perturbation lemma states that strong deformation retract is stable i.e. deformation $\ell_1 \to \ell_1 + \delta$ deforms other maps $(\tilde{i}, \tilde{p}, \tilde{h})$ such that strong deformation retracts conditions hold
- \star Correlation functions in momentum space are then:

$$
\tilde{G}_n(p_1,\ldots,p_n)=\sum_{m=1}^{\infty} \mathrm{P}\big((\delta \mathrm{H})^m(e_1^p\odot_\star\cdots\odot_\star e_n^p)
$$

 \star Deformation can be chosen to be $\delta = i\hbar\Delta_{\rm BV}$ for free theory or

 $\delta = \{ \mathcal{S}^\star_{\text{int}}, _\} + i \hbar \Delta_{\text{BV}}$ for interacting theory

Results: Correlation functions in ϕ^3 theory

 \star Propagator in free theory is the same as in regular theory

$$
G_2^{\star}(p_1, p_2)^{(0)} = \mathrm{i} \; \hbar \; \Delta_{\rm BV} H(e^{p_1} \; \odot_{\star} \; e^{p_2}) = (\mathrm{i} \; \hbar) \frac{(2\pi)^4 \delta(p_1 + p_2)}{p_1^2 - m^2}
$$

- \star In MW case, two point function at 1-loop have no NC contributions, no nonplanar diagrams and no UV/IR mixing and is the same as in regular theory Consistent with [Oeckel '00]
- \star In MW case, the final result for the connected 3-point function is:

 \star NC contribution appears as a phase factor in external momenta. No UV/IR mixing! Consistent with [Oeckel '00]

Results: Schwinger-Dayson equations

- \star Schwinger-Dyson equations are EoM corresponding to Green's functions
- \star SD equations were analyzed in the commutative QFT and from the perspective of homotopy algebras [K. Konosu '23; K. Konosu and J. Totsuka-Yoshinaka '24; K. Konosu and Y. Okawa '24]
- \star In this approach, SD equations are coming from the Homological perturbation lemma in the recursion of the form:

$$
\tilde{P} = \tilde{P} \delta H
$$

- \star \tilde{P} is deformed projection map P, an extension of map p. When acting on $\operatorname{Sym}_{\mathcal{R}}(V[2])$ it generates all *n*-point functions G_n
- \star Acting on the symmetrized product of basis elements, it recursively relates different correlation functions G_k^{\star} :

$$
\tilde{G}_n(p_1,\ldots,p_n)=\tilde{P}\delta H(e_1^p\odot_\star\cdots\odot_\star e_n^p)
$$

Results: Braided Wick theorem

 \star In free theory and using MW twist, where $\delta = i\hbar\Delta_{\rm BV}$, SD equation is:

$$
\tilde{G}_{2n}^{*0}(p_1,\ldots,p_{2n})=\frac{1}{2n}\sum_{\alpha\neq\beta}^n e^{i\,p_\beta\cdot\theta(p_{\alpha+1}+\cdots+p_{\beta-1})}\,\phi_{\underline{\alpha}}\,\underline{\phi}_{\beta}\cdot\hat{\sigma}_{2n-2}(p_1,\ldots,\hat{p}_\alpha,\ldots,\hat{p}_\beta,\ldots,p_{2n})
$$

 \star The solution of SD equation in free theory is the general expression for the braided Wick there:

$$
\tilde{G}_{2n}^{*0}(p_1,\ldots,p_{2n})=\frac{1}{n!\,2^n}\,\sum_{\sigma\in S_{2n}}{\rm e}^{-\frac{i}{2}\,\sum_{i
$$

 \star Braided Wick theorem for 4-point function reads:

$$
\tilde{G}_4^{\star}(k_1, k_2, k_3, k_4)^{(0)} = \phi_1 \, \phi_2 \, \phi_3 \, \phi_4 + \phi_1 \, \phi_4 \, \phi_2 \, \phi_3 + e^{i k_3 \cdot \theta k_2} \, \phi_1 \, \phi_3 \, \phi_2 \, \phi_4
$$

General: ρ-Minkowski noncommutativity

 \star In Cartesian and polar coordinates ρ -Minkowski twist is:

$$
\mathcal{F}=e^{-\frac{i\theta}{2}(\partial_z\otimes(x\partial_y-y\partial_x)-(x\partial_y-y\partial_x)\otimes\partial_z)}=e^{-\frac{i\theta}{2}(\partial_z\otimes\partial_\varphi-\partial_\varphi\otimes\partial_z)}
$$

 \star In Cartesian coordinates it describes space-time noncommutativity of Lie algebra type, in polar coordinate of MW type:

$$
\left[\hat{z}, \hat{x}\right] = -i\theta\hat{y}, \quad \left[\hat{z}, \hat{y}\right] = +i\theta\hat{x}; \qquad \left[\hat{z}, e^{i\hat{\varphi}}\right] = i\theta e^{i\hat{\varphi}}
$$

- \star Standard noncommutative quantization, based on \star -product approach, was done in ϕ^4 case [M. D. Ćirić et al '18]
- \star The phenomenon of UV/IR mixing appears and the model contains nonplanar diagrams. Conservation of momenta is deformed.

Preliminar results: ρ -Minkowski braiding of ϕ^3 theory

 \star Instead of MW twist, we applied ρ -Minkowski twist to our plane waves e k and produced the fallowing vertex:

$$
V(k_1, k_2, k_3) = -\frac{\lambda}{3!} e^{\theta \sum_{a < b} (k_{bz} (k_{ay} \partial_{k_{ax}} - k_{ax} \partial_{k_{ay}}) - k_{az} (k_{by} \partial_{k_{bx}} - k_{bx} \partial_{k_{by}}))} \cdot (2\pi)^4 \delta^*(k_1 + k_2 + k_3)
$$

 \star Deformed momentum conservation law apeares!

$$
\delta^{\star}(k_1 +_{\star} k_2 +_{\star} k_3) = \int_{x} e^{-ik_1x} \star e^{-ik_2x} \star e^{-ik_3x}
$$

 \star Two point function at one loop level contains a nonplanar diagram leading to UV/IR mixing!

Preliminar results: ρ -Minkowski braiding of ϕ^3 theory

- \star Since Cartesian coordinates don't respect the symmetry of our twist, we can change the basis: $(x, y) \rightarrow (\rho, \varphi)$
- \star Functions that solve EoM and can be used as basis vectors for the space of (anti)fields are of the form:

$$
e_{E,k_z,l,\alpha}(t,r,z,\varphi) = \sqrt{\alpha}J_l(\alpha r) \cdot e^{il\varphi} \cdot e^{-iEt} \cdot e^{ik_z z}, \quad EoM : \alpha^2 = k_x^2 + k_y^2
$$

- \star Calculations so far suggest that there are no traces of nonplanar diagrams and UV/IR mixing in this basis!
- \star Since noncommutativity in this basis is of MW form, it can be expected that results are analogous to MW case.
- \star How can this be?! We have to understand the results better. Work in progress...

Outlook

- \star Well established algebraic techniques were applied in details in ϕ^3 theory using Moyal-Wayle twist
- \star Some further algebraic techniques were developed
- \star ρ -Minkowski twist in ϕ^3 theory is currently under investigation with very interesting preliminary results that should be clarified
- \star Future work will be dedicated to the analysis of non-Abelian gauge theories
- \star Aiming for construction of amplitudes needed for double copy approach

Results: Schwinger-Dyson equations, an example

 \star In the interacting ϕ^3 theory, using MW twist and deformation of form $\delta = \{S_{\text{int}}^{\star}, _\} + i\hbar\Delta_{\text{BV}}$, SD equation in case of $n = 2$ yields:

$$
p_1 \longrightarrow p_2 = p_1 \longrightarrow p_2 + \frac{3}{2} \times p_1 \longrightarrow p_2 + \frac{3}{2} \times p_1 \longrightarrow p_2 \longrightarrow p_2
$$