Workshop on Noncommutative and Generalized Geometry in String theory, Gauge theory and Related Physical Models

Corfu, September 2024

Homotopy Algebra Techniques for Noncommutative Quantum Field Theories

Djordje Bogdanović

University of Belgrade, Faculty of Physics, Belgrade, Serbia

based on:

DjB, M. D. Ćirić, V. Radovanović, R. J. Szabo, BV quantization of braided scalar field theory,

arXiv:2304.14073, DjB, M. D. Ćirić, V. Radovanović, R. J. Szabo, G. Trojani, Braided scalar quantum field

theory, arXiv:2406.0237 and with F. Lizzi, P. Vitale, R. J. Szabo, M. D. Ćirić, Work in progress

Talk overview

Brief motivation

 L_∞ -algebras of classical field theories

Braided L_{∞} -algebra of ϕ^3 theory

Homological perturbation theory

Results:

Correlation functios

Schwinger-Dayson equations

Braided Wick theorem

 ρ -Minkowski noncommutativity

Outlook

Brief motivation

- BV formalism is developed for gauge quantum field theories [Weinberg '96; Gomis et al '94]
- * BV formalism has natural structure encoded in L_{∞} -algebra [Hohm, Zwiebach '17; Jurco et al. '18; Costello, Gwilliam '16, '21]
- Amplitude program in quantum field theories (recursion relations) [Elvang, Huang '15]
- * Double copy method connects gauge theories to quantum gravity [Berm et all '10; Borsten et al '21].
- Consistent quantization of nonperturbative noncommutative field theories and resolving the issues of UV/IR mixing and existence of non-planar diagrams
 [Minwalla et al. '99; Balachandran et al. '06; Bu et al. '06 Fioere, Wess '07; Aschieri et al. '08]

L_{∞} -algebras of classical field theories - mini dictionary

Classical field theory Fields, ghosts and antifields

Classical action S

Tensor product algebra

Poisson structure

- $\begin{array}{ll} \rightarrow & L_{\infty}\text{-algebra } \left(V, \ell_n, \langle _, _ \rangle\right) \\ \rightarrow & V = \cdots \oplus V_0 \oplus V_1 \oplus V_2 \oplus V_3 \oplus \cdots \\ & \cdots \oplus \text{ ghosts } \oplus \text{ fields } \oplus \text{ EoM } \oplus \text{ Noether id } \oplus \cdots \\ \rightarrow & \mathcal{S}(A) = \sum_{n=1}^{\infty} (-1)^{\frac{n(n-1)}{2}} \langle A, \ell_n(A, \ldots, A) \rangle \\ \rightarrow & \text{ Braided } L_{\infty}\text{-algebra } (V, \ell_n^{\star}, \langle _, _ \rangle_{\star}) \end{array}$
- $\begin{array}{l} \rightarrow \quad \mbox{Simmetised tensor algebra } {\rm Sym}_{\mathcal{R}}(V[2]) \\ v_1 \odot_{\star} v_2 = (-1)^{|v_1||v_2|} R_{\alpha}(v_2) \odot_{\star} R^{\alpha}(v_1) \end{array}$
- $\begin{array}{lll} & \rightarrow & \text{Extending algebraic structure to new } L_{\infty}\text{-algebra} \\ & & \text{Sym}_{\mathcal{R}}(V[2]) \otimes V \text{ where brackets and pairing respect:} \\ & & \ell_2^{\star\text{ext}}(a_1 \otimes v_1, a_2 \otimes v_2) = \pm (a_1 \odot_{\star} \mathsf{R}_{\alpha}(a_2)) \otimes \\ & & \ell_2^{\star}(\mathsf{R}^{\alpha}(v_1), v_2) \\ & & & \langle a_1 \otimes v_1, a_2 \otimes v_2 \rangle_{\star} = \pm (a_1 \odot_{\star} \mathsf{R}_{\alpha}(a_2)) \cdot \langle \mathsf{R}^{\alpha}(v_1), v_2 \rangle_{\star} \\ & \rightarrow & \{_, _\}_{\star} : & \text{Sym}_{\mathcal{R}}(V[2]) \otimes & \text{Sym}_{\mathcal{R}}(V[2]) \rightarrow \\ & & (\text{Sym}_{\mathcal{R}}(V[2]))[1] \end{array}$

L_{∞} -algebras of classical field theories - mini dictionary

Classical BV action $S_{BV} \rightarrow Braided BV$ action $S_{BV}^{\star} \in Sym_{\mathcal{R}}(V[2])$

Classical master equation $\rightarrow \{S_{BV}^{\star}, S_{BV}^{\star}\}_{\star} = 0$ $\{S_{BV}, S_{BV}\}_{PB} = 0$

Solution as expansion in antifields:

$$S_{BV} = S + (antifield) \cdot (\dots) + \dots$$

BV Laplacian Δ_{BV} appears in quantum master equation $\frac{1}{2}{S_{BV}, S_{BV}} = i\hbar\Delta_{BV}S_{BV}$ Solution as expansion in brackets via contracted coordinate functions $\xi = \tau_k \otimes \tau^k \in \operatorname{Sym}_{\mathcal{R}}(V[2]) \otimes V$: $\rightarrow \quad \mathcal{S}^{\star}_{\mathrm{BV}} = \frac{1}{2} \langle\!\!\langle \boldsymbol{\xi}, \ell_1^{\star ext}(\boldsymbol{\xi}) \rangle\!\!\rangle_{\star} - \frac{1}{3!} \langle\!\!\langle \boldsymbol{\xi}, \ell_2^{\star ext}(\boldsymbol{\xi}, \boldsymbol{\xi}) \rangle\!\!\rangle_{\star} + \dots$ where we identify $\mathcal{S}^{\star}_{\mathrm{BV}} = \mathcal{S}^{\star}_{(0)} + \mathcal{S}^{\star}_{\mathrm{int}}$

 $\label{eq:stability} \rightarrow \quad \mbox{Braided BV Laplacian nontrivialy defined via pairing of field φ and corresponding antifield $$

 φ^+ : $\Delta_{\mathrm{BV}}(\varphi \odot_\star \varphi^+) = \pm \langle \varphi, \varphi^+ \rangle_\star$

Braided L_{∞} -algebra of ϕ^3 theory

- \star Massive real scalar field in 4D Minkowski spacetime and qubic interaction ϕ^3
- * The underlying graded vector space is $V = V_1 \oplus V_2$, where $V_1 = V_2 = \Omega^0(\mathbb{R}^{1,3})$
- $\star~V_1$ is the space of fields ϕ , V_2 is the space of antifields/EoM ϕ^+
- \star There are just the first two brackets

$$\ell_1^{\star}(\phi) = \ell_1(\phi) = -(\Box + m^2)\phi \& \ell_2^{\star}(\phi_1, \phi_2) = -\lambda\phi_1 \star \phi_2$$

* Equipping the structure with the cyclic pairing

$$\langle \phi, \phi^+ \rangle_\star = \int \mathrm{d}^4 x \ \phi \star \phi^+$$

★ Braided MC action is:

$$\begin{split} S_{\star}(\phi) &= \frac{1}{2} \langle \phi, \ell_1(\phi) \rangle_{\star} - \frac{1}{3!} \langle \phi, \ell_2(\phi, \phi) \rangle_{\star} \\ &= \int \, \mathrm{d}^4 x \, \left(\frac{1}{2} \, \phi \left(- \Box - m^2 \right) \phi - \frac{\lambda}{3!} \phi \star \phi \star \phi \right) \end{split}$$

 \star At the classical level, this action is the same as in the usual ϕ^3_{\star} theory!

Braided L_{∞} -algebra of ϕ^3 theory

* Define contracted coordinate functions $\xi \in \operatorname{Sym}_{\mathcal{R}}(V[2]) \otimes V$

$$\boldsymbol{\xi} = \int_{k} (\mathbf{e}_{k} \otimes \mathbf{e}^{k} + \mathbf{e}^{k} \otimes \mathbf{e}_{k}),$$

* Define and calculate the interaction action

$$\mathcal{S}_{\mathrm{int}}^{\star} = -\frac{1}{6} \langle\!\!\langle \xi, \ell_2^{\star} \, {}^{ext}(\xi, \xi) \rangle\!\!\rangle_{\star} = \int_k V(k_1, k_2, k_3) \mathbf{e}_1^k \odot_{\star} \mathbf{e}_2^k \odot_{\star} \mathbf{e}_3^k,$$

- * We naturally chose plane waves as basis vectors in momentum space, $e^k(x) = e^{ik \cdot x}$ and $e_k(x) = e^{-ik \cdot x}$
- \star The twist we use is the Moyal-Weyl twist ${\cal F}=e^{-rac{i}{2} heta^{\mu
 u}\partial_{\mu}\otimes\partial_{
 u}}$
- * Vertex has a simple form implying regular momentum conservation law:

$$V(k_1, k_2, k_3) = -\frac{\lambda}{3!} e^{\frac{i}{2}\sum_{a < b} k_i \cdot \theta k_j} (2\pi)^4 \delta(k_1 + k_2 + k_3)$$

* The twist we can also use is the ρ -Minkowski twist $\mathcal{F} = e^{-\frac{i\theta}{2}(\partial_z \otimes \partial_{\varphi} - \partial_{\varphi} \otimes \partial_z)}$

Homological perturbation theory

- * ℓ₁ acts as differential creating cochain complex (V, ℓ₁) that can be related to cochain complex of its cohomology (H[•](V), 0) via maps: contracting homotopy (in our case it it the propagator) h : V → V of degree -1, inclusion i : H[•](V) → V and projection p : V → H[•](V)
- Strong deformation retract is defined when aforementioned maps fulfill certain conditions
- * Homological perturbation lemma states that strong deformation retract is stable i.e. deformation $\ell_1 \rightarrow \ell_1 + \delta$ deforms other maps ($\tilde{i}, \tilde{p}, \tilde{h}$) such that strong deformation retracts conditions hold
- * Correlation functions in momentum space are then:

$$ilde{G}_n(p_1,\ldots,p_n) = \sum_{m=1}^{\infty} \mathsf{P}((\delta\mathsf{H})^m(e_1^p \odot_{\star} \cdots \odot_{\star} e_n^p))$$

 $\star\,$ Deformation can be chosen to be $\delta=\mathrm{i}\hbar\Delta_{\mathrm{BV}}$ for free theory or

$$\delta = \{\mathcal{S}^{\star}_{int}, _\} + \mathrm{i}\hbar\Delta_{\mathrm{BV}}$$
 for interacting theory

Results: Correlation functions in ϕ^3 theory

 \star Propagator in free theory is the same as in regular theory

$$G_2^{\star}(p_1, p_2)^{(0)} = \mathrm{i}\,\hbar\,\Delta_{\mathrm{BV}} H\left(e^{p_1}\odot_{\star}e^{p_2}\right) = (\mathrm{i}\,\hbar)\frac{(2\pi)^4\delta(p_1+p_2)}{p_1^2 - m^2}$$

- In MW case, two point function at 1-loop have no NC contributions, no nonplanar diagrams and no UV/IR mixing and is the same as in regular theory Consistent with [Oeckel '00]
- \star In MW case, the final result for the connected 3-point function is:

 NC contribution appears as a phase factor in external momenta. No UV/IR mixing! Consistent with [Oeckel '00]

Results: Schwinger-Dayson equations

- $\star\,$ Schwinger-Dyson equations are EoM corresponding to Green's functions
- SD equations were analyzed in the commutative QFT and from the perspective of homotopy algebras [К. Копоsu '23; К. Копоsu and J. Totsuka-Yoshinaka '24; К. Копosu and Y. Okawa '24]
- In this approach, SD equations are coming from the Homological perturbation lemma in the recursion of the form:

 $\tilde{\mathsf{P}}=\tilde{\mathsf{P}}\delta\mathsf{H}$

- * $\tilde{\mathsf{P}}$ is deformed projection map P, an extension of map *p*. When acting on $\operatorname{Sym}_{\mathcal{R}}(V[2])$ it generates all *n*-point functions G_n
- Acting on the symmetrized product of basis elements, it recursively relates different correlation functions G^{*}_k:

$$\tilde{G}_n(p_1,\ldots,p_n) = \tilde{\mathsf{P}}\delta\mathsf{H}(e_1^p\odot_{\star}\cdots\odot_{\star}e_n^p)$$

Results: Braided Wick theorem

 $\star\,$ In free theory and using MW twist, where $\delta=i\hbar\Delta_{\rm BV},$ SD equation is:

$$\begin{split} \tilde{G}_{2n}^{\star 0}(p_1,\ldots,p_{2n}) &= \frac{1}{2n} \sum_{\alpha\neq\beta}^n e^{i \, p_\beta \cdot \theta(p_{\alpha+1}+\cdots+p_{\beta-1})} \phi_{\underline{\alpha}} \phi_{\beta} \cdot \\ & \cdot \tilde{G}_{2n-2}^{\star 0}(p_1,\ldots,\hat{p}_{\alpha},\ldots,\hat{p}_{\beta},\ldots,p_{2n}) \end{split}$$

 The solution of SD equation in free theory is the general expression for the braided Wick there:

$$\tilde{G}_{2n}^{\star 0}(p_1,\ldots,p_{2n}) = \frac{1}{n! \, 2^n} \sum_{\sigma \in S_{2n}} e^{-\frac{1}{2} \sum_{i < j} p_i \cdot \theta p_j} \prod_{k=1}^n \phi_{\sigma(2k-1)} \phi_{\sigma(2k)},$$

* Braided Wick theorem for 4-point function reads:

$$\tilde{G}_{4}^{\star}(k_{1},k_{2},k_{3},k_{4})^{(0)} = \phi_{1}\phi_{2}\phi_{3}\phi_{4} + \phi_{1}\phi_{4}\phi_{2}\phi_{3} + e^{i k_{3}\cdot\theta k_{2}}\phi_{1}\phi_{3}\phi_{2}\phi_{4}$$

General: ρ -Minkowski noncommutativity

 \star In Cartesian and polar coordinates ho-Minkowski twist is:

$$\mathcal{F} = e^{-\frac{\mathrm{i}\theta}{2}(\partial_z \otimes (x\partial_y - y\partial_x) - (x\partial_y - y\partial_x) \otimes \partial_z)} = e^{-\frac{\mathrm{i}\theta}{2}(\partial_z \otimes \partial_\varphi - \partial_\varphi \otimes \partial_z)}$$

 In Cartesian coordinates it describes space-time noncommutativity of Lie algebra type, in polar coordinate of MW type:

$$[\hat{z}, \hat{x}] = -\mathrm{i}\theta\hat{y}, \quad [\hat{z}, \hat{y}] = +\mathrm{i}\theta\hat{x}; \qquad \left[\hat{z}, e^{\mathrm{i}\hat{arphi}}\right] = \mathrm{i}\theta e^{\mathrm{i}\hat{arphi}}$$

- \star Standard noncommutative quantization, based on $\star\mbox{-product approach, was}$ done in ϕ^4 case [M. D. Ćirić et al '18]
- The phenomenon of UV/IR mixing appears and the model contains nonplanar diagrams. Conservation of momenta is deformed.

Preliminar results: ρ -Minkowski braiding of ϕ^3 theory

 Instead of MW twist, we applied ρ-Minkowski twist to our plane waves e^k and produced the fallowing vertex:

$$V(k_1, k_2, k_3) = -\frac{\lambda}{3!} e^{\theta \sum_{a < b} (k_{bz}(k_{ay} \partial_{k_{ax}} - k_{ax} \partial_{k_{ay}}) - k_{az}(k_{by} \partial_{k_{bx}} - k_{bx} \partial_{k_{by}}))} \cdot (2\pi)^4 \delta^*(k_1 + k_2 + k_3)$$

* Deformed momentum conservation law apeares!

$$\delta^{\star}(k_{1} +_{\star} k_{2} +_{\star} k_{3}) = \int_{x} e^{-ik_{1}x} \star e^{-ik_{2}x} \star e^{-ik_{3}x}$$

 Two point function at one loop level contains a nonplanar diagram leading to UV/IR mixing!

Preliminar results: ρ -Minkowski braiding of ϕ^3 theory

- * Since Cartesian coordinates don't respect the symmetry of our twist, we can change the basis: $(x, y) \rightarrow (\rho, \varphi)$
- Functions that solve EoM and can be used as basis vectors for the space of (anti)fields are of the form:

$$\mathbf{e}_{E,k_z,l,\alpha}(t,r,z,\varphi) = \sqrt{\alpha} J_l(\alpha r) \cdot \mathbf{e}^{il\varphi} \cdot \mathbf{e}^{-iEt} \cdot \mathbf{e}^{ik_z z}, \quad \textit{EoM}: \alpha^2 = k_x^2 + k_y^2$$

- Calculations so far suggest that there are no traces of nonplanar diagrams and UV/IR mixing in this basis!
- ★ Since noncommutativity in this basis is of MW form, it can be expected that results are analogous to MW case.
- * How can this be?! We have to understand the results better. Work in progress...

Outlook

- $\star\,$ Well established algebraic techniques were applied in details in ϕ^3 theory using Moyal-Wayle twist
- \star Some further algebraic techniques were developed
- * ρ -Minkowski twist in ϕ^3 theory is currently under investigation with very interesting preliminary results that should be clarified
- \star Future work will be dedicated to the analysis of non-Abelian gauge theories
- $\star\,$ Aiming for construction of amplitudes needed for double copy approach

Results: Schwinger-Dyson equations, an example

* In the interacting ϕ^3 theory, using MW twist and deformation of form $\delta = \{S_{int}^*, _\} + i\hbar\Delta_{BV}$, SD equation in case of n = 2 yields:

$$p_1 - p_2 = p_1 - p_2 + \frac{3}{2} \times p_1 - p_2 + \frac{3}{2} \times p_1 - p_2$$