

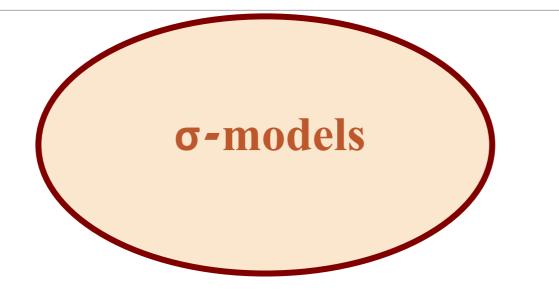
Exceptional symmetry as a symmetry principle for sigma models

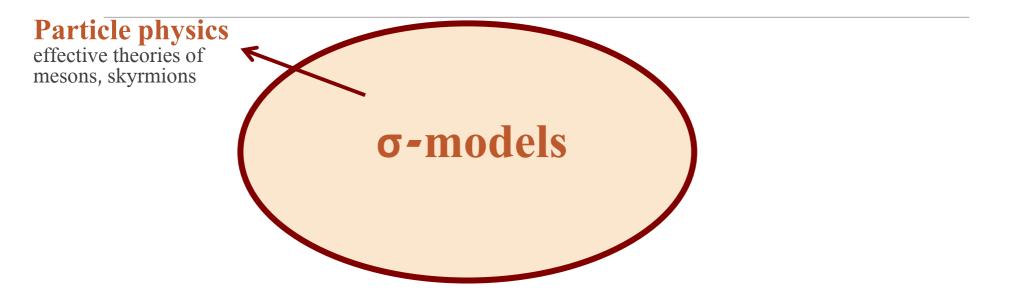
David Osten (University of Wrocław)

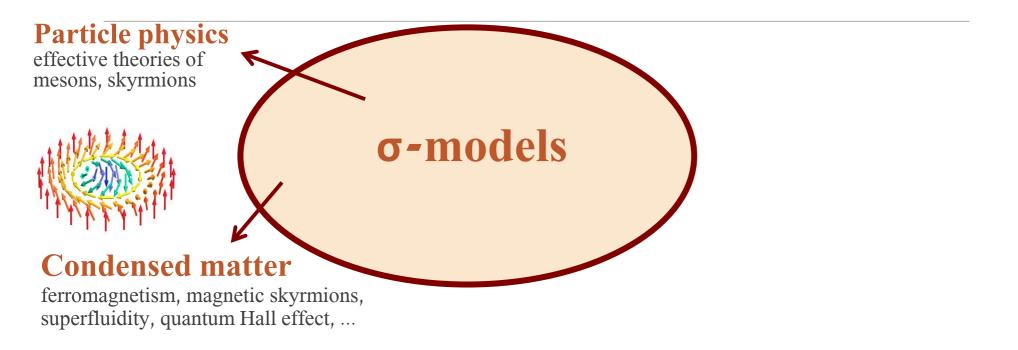
Workshop on Noncommutative and Generalized Geometry in String theory, Gauge theory and Related Physical Models,

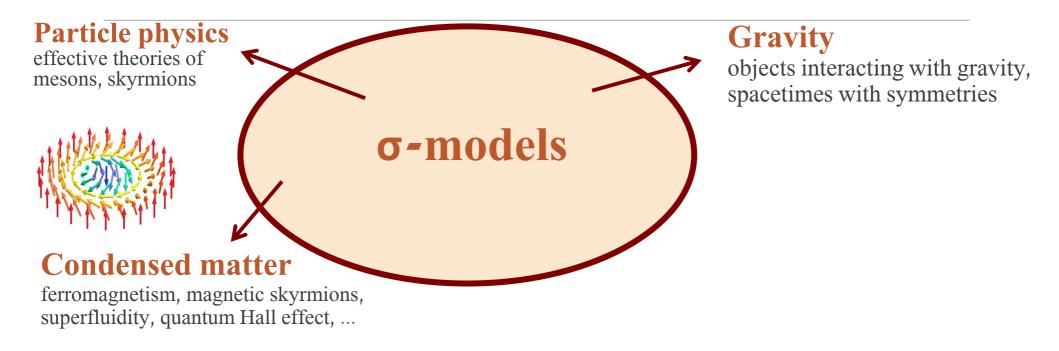
Corfu, September 22th

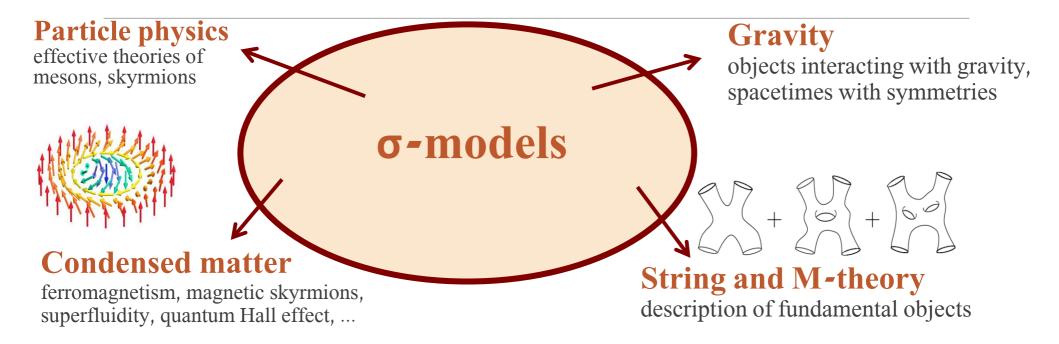
based on: 2402.10269, 2306.11093, 2103.03267

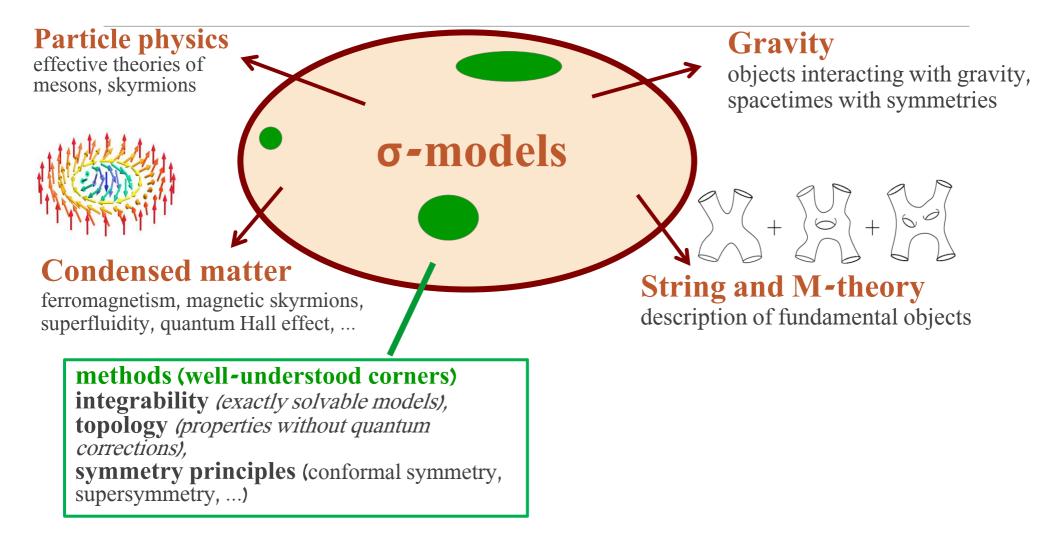


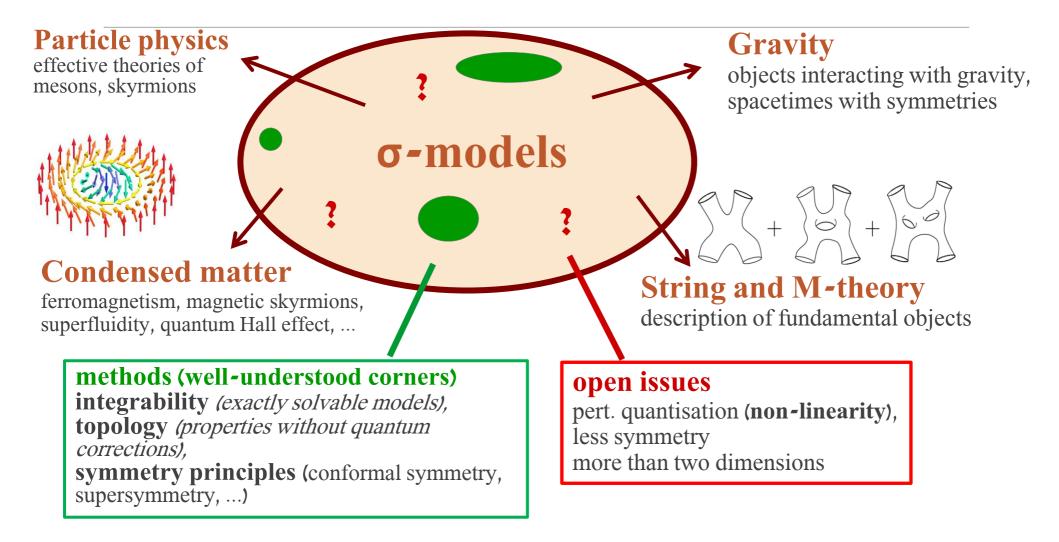


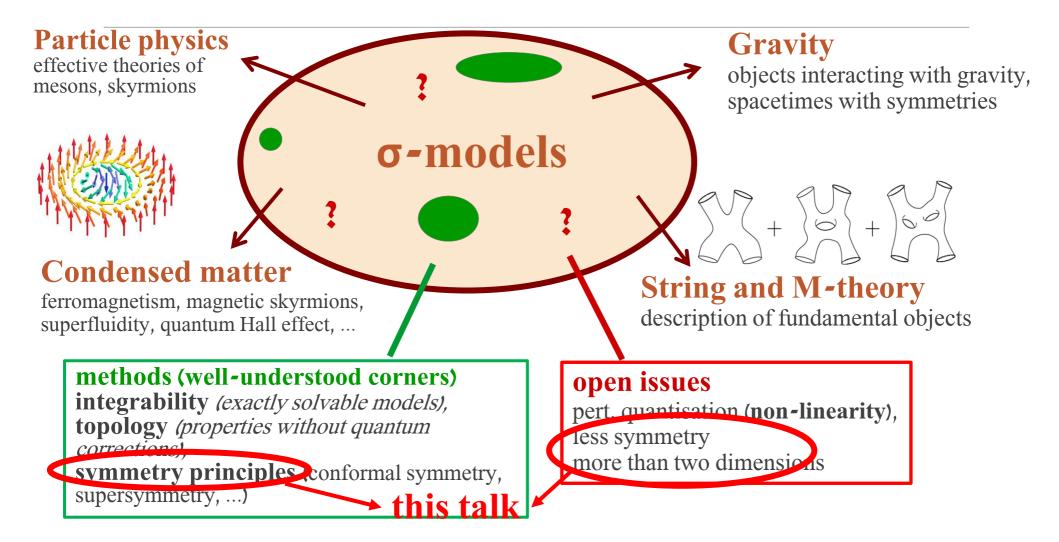




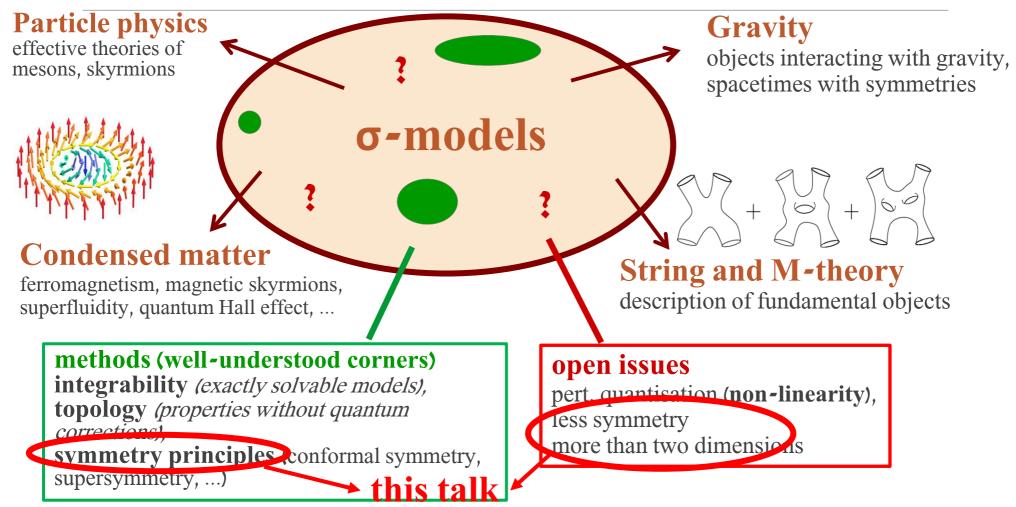








(Non-linear) σ -models? big class of theories for model building & fundamental physics



(new symmetry principle (exceptional covariance) for special class of σ -models (sigma models with diff-invariance))

Programme

- 1. Sigma models
- 2. (Exceptional) generalised geometry
- 3. exceptional covariance as a symmetry property

(Non-linear) σ -models

 $L \sim g_{mn}(x) \partial_{\alpha} x^m \partial^{\alpha} x^n \left(+ C_{m_1 \dots m_p} \right) \partial_{\alpha_1} x^{m_1} \dots \partial_{\alpha_p} x^{m_p} \epsilon^{\alpha_1 \dots \alpha_p} \right)$

• fields $x: \Sigma \to M$

 σ^{α} : coordinates of Σ , $p = \dim \Sigma$ - 1

- x^m : coordinates on field (target) space M,
- 'coupling constants': g is a metric tensor on M, C a (p+1)-form potential

(Non-linear) σ -models

 $L \sim g_{mn}(x) \partial_{\alpha} x^m \partial^{\alpha} x^n \left(+ C_{m_1 \dots m_p} \right) \partial_{\alpha_1} x^{m_1} \dots \partial_{\alpha_p} x^{m_p} \epsilon^{\alpha_1 \dots \alpha_p} \right)$

• fields $x: \Sigma \to M$

 σ^{α} : coordinates of Σ , $p = \dim \Sigma$ - 1

 x^m : coordinates on field (target) space M,

• 1	coupling con	stants': g is a	metric tensor	on M, C a	(<i>p+1)</i> -form potential
-----	--------------	-----------------	---------------	-----------	-------------------------------

p	physical model	Σ	M	C?
1	point particle coupling to GR and EM	world-line	space-time	A_{μ}
2	2d materials (continuum limit of spin chains,)	material	O(3),O(N),	-
	(first quantised) string	world-sheet	space-time	yes
	Geroch model (GR with 2 Killing vectors)	eff. space-time	SL(2,R)	-
3	relativistic membrane (e.g. in M-theory)	world-volume	space-time	yes
4	effective theory for pions	space-time	SU(N)	-
	original Skyrme model	space-time	<u>SU(N) x SU(N)</u> SU(N)	Skyrme term

geometric paradigm:

physical properties of σ -models \leftrightarrow geometry of M

geometric paradigm: physical properties of σ-models ↔ geometry of M

classical solutions \leftrightarrow minimal volumes in M, symmetries of σ -model \leftrightarrow symmetries of M, for simple models β -functions \leftrightarrow Ricci tensor to $g_{mn'}$...

geometric paradigm: physical properties of σ-models ↔ geometry of M

classical solutions \leftrightarrow minimal volumes in M, symmetries of σ -model \leftrightarrow symmetries of M, for simple models β -functions \leftrightarrow Ricci tensor to $g_{mn'}$...

here: σ-models with diff. invariance on Σ
 (,brane σ-models', non-dyn gravity on Σ)

geometric paradigm: physical properties of σ-models ↔ geometry of M

classical solutions \leftrightarrow minimal volumes in M, symmetries of σ -model \leftrightarrow symmetries of M, for simple models β -functions \leftrightarrow Ricci tensor to $g_{mn'}$...

here: σ-models with diff. invariance on Σ (,brane σ-models', non-dyn gravity on Σ)

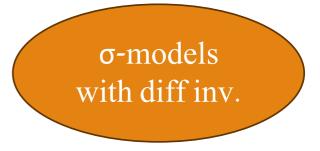
(In 2d, classically, every σ -model is of ,brane'-type after gauge fixing metric on Σ)

geometric paradigm: physical properties of σ-models ↔ geometry of M

classical solutions \leftrightarrow minimal volumes in M, symmetries of σ -model \leftrightarrow symmetries of M, for simple models β -functions \leftrightarrow Ricci tensor to $g_{mn'}$...

here: σ-models with diff. invariance on Σ (,brane σ-models', non-dyn gravity on Σ)

(In 2d, classically, every σ -model is of ,brane'-type after gauge fixing metric on Σ)

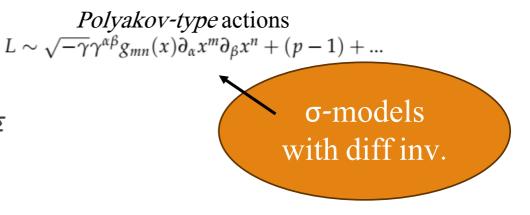


geometric paradigm: physical properties of σ-models ↔ geometry of M

classical solutions \leftrightarrow minimal volumes in *M*, symmetries of σ -model \leftrightarrow symmetries of *M*, for simple models β -functions \leftrightarrow Ricci tensor to $g_{mn'}$...

here: σ-models with diff. invariance on Σ (,brane σ-models', non-dyn gravity on Σ)

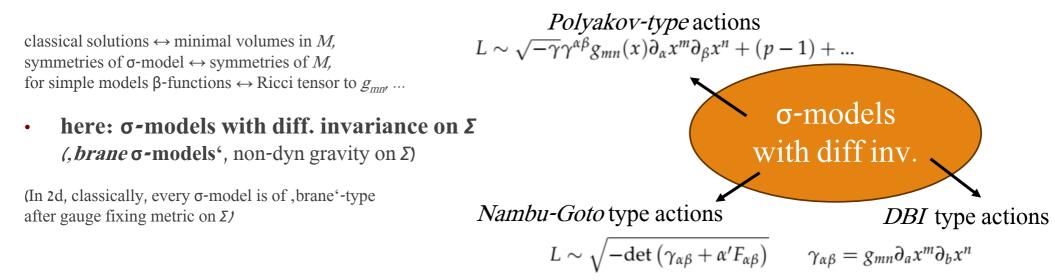
(In 2d, classically, every σ -model is of ,brane'-type after gauge fixing metric on Σ)



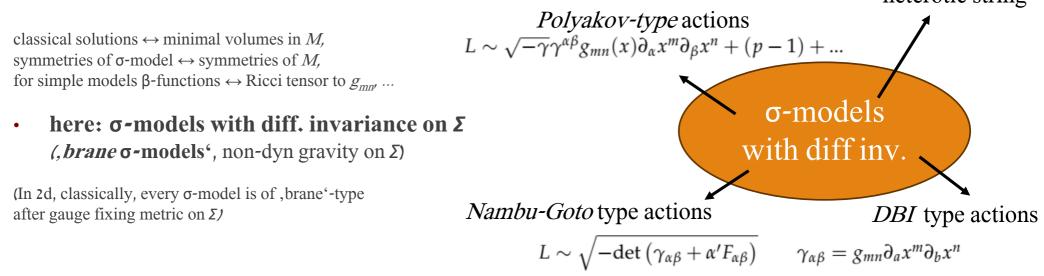
geometric paradigm: physical properties of σ-models ↔ geometry of M

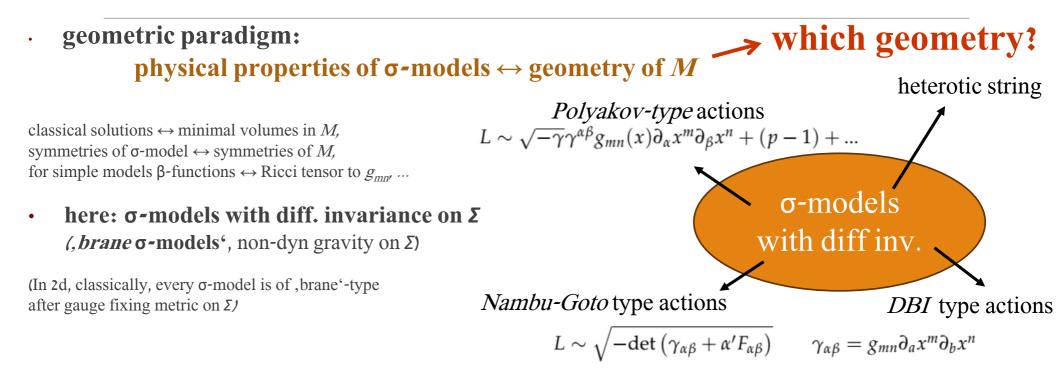
Classical solutions \leftrightarrow minimal volumes in M, symmetries of σ -model \leftrightarrow symmetries of M, for simple models β -functions \leftrightarrow Ricci tensor to $g_{mn'}$... • here: σ -models with diff. invariance on Σ $(,brane \sigma$ -models', non-dyn gravity on Σ) (In 2d, classically, every σ -model is of ,brane'-type after gauge fixing metric on Σ) (In 2d, classically, every σ -model is of ,brane'-type Δt $L \sim \sqrt{-\det(\gamma_{\alpha\beta} + \alpha'F_{\alpha\beta})}$ $\gamma_{\alpha\beta} = g_{mn}\partial_a x^m \partial_b x^n$

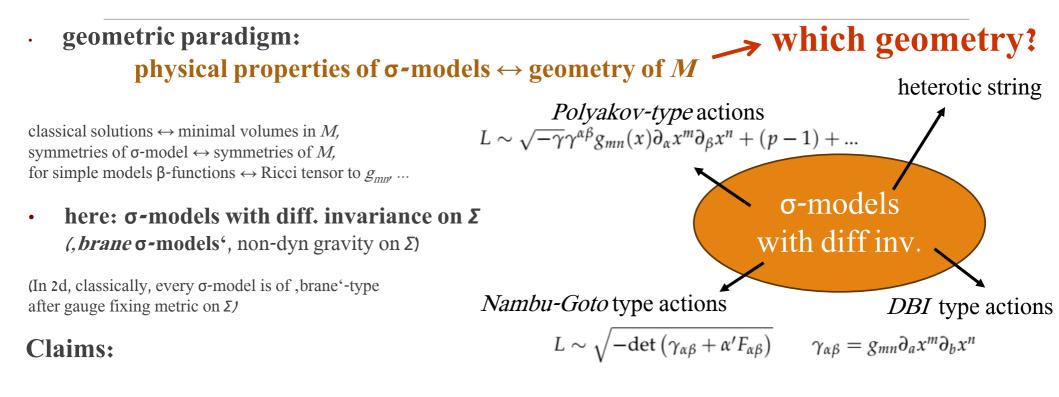
geometric paradigm: physical properties of σ-models ↔ geometry of M

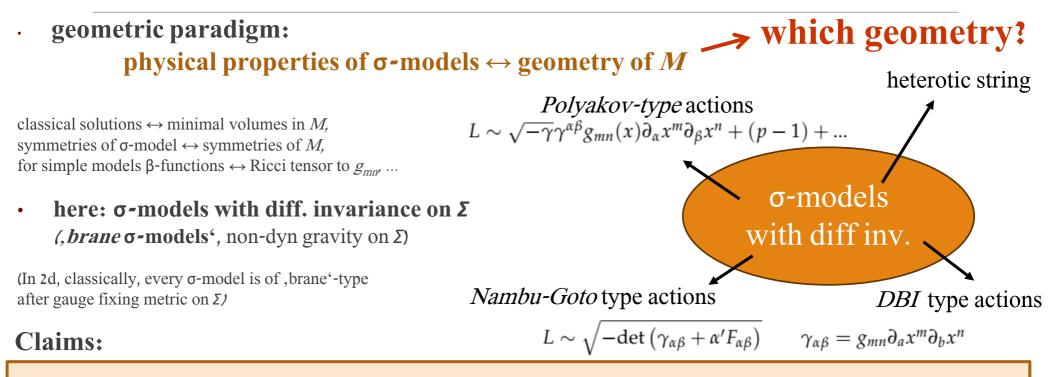


geometric paradigm: physical properties of σ -models \leftrightarrow geometry of Mheterotic string

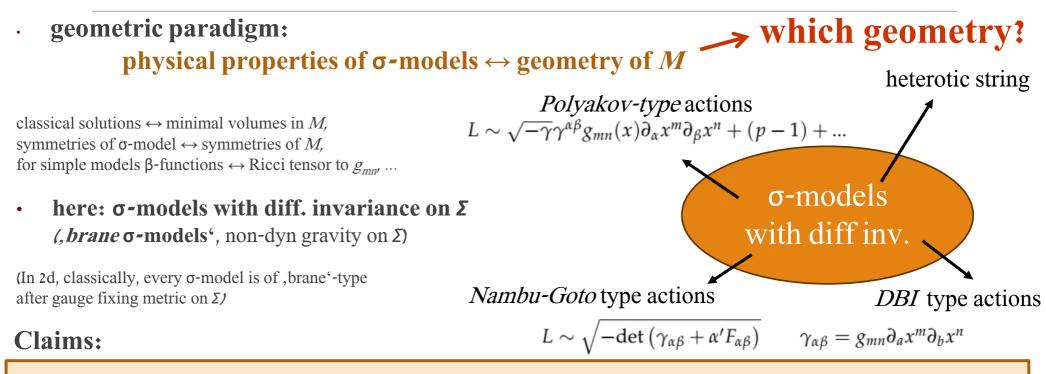








1. Generalised geometry unifying language of brane σ-models [Duff et al 90-, Siegel et al 92-, Tseytlin 92, Hull 06-, Alekseev/Strobl 04, Hatsuda et al 12-, Sakatani/Uehara 16-, Arvanitakis/Blair 17-, DO 19-J



- 1. Generalised geometry unifying language of brane σ-models [Duff et al 90-, Siegel et al 92-, Tseytlin 92, Hull 06-, Alekseev/Strobl 04, Hatsuda et al 12-, Sakatani/Uehara 16-, Arvanitakis/Blair 17-, DO 19-]
- Covariance under exceptional generalised geometry restricts to ½-BPS branes (string, M-branes, D-branes, non-perturbative/exotic branes, ...) in supergravity [DO 21,23,24, building on Arvanitakis/Blair 17-22]
 - only considering bosonic part (i.e. no supersymmetry necessary)

• ex. 1: 2dim σ -models and O(d,d) generalised geometry $S \sim \int (g_{mn} dx^m \wedge \star dx^n + B_{mn} dx^m \wedge dx^n)$

• ex. 1: 2dim σ -models and O(d,d) generalised geometry $S \sim \int (g_{mn} dx^m \wedge \star dx^n + B_{mn} dx^m \wedge dx^n)$

• Currents
$$t_M(\sigma) = (p_m(\sigma), \partial x^m(\sigma))$$

ex. 1: 2dim σ-models and O(d,d) generalised geometry S ~ ∫ (g_{mn}dx^m ∧ *dxⁿ + B_{mn}dx^m ∧ dxⁿ) d canonical momenta
Currents t_M(σ) = (p_m(σ), ∂x^m(σ))

- ex. 1: 2dim σ-models and O(d,d) generalised geometry S ~ ∫ (g_{mn}dx^m ∧ *dxⁿ + B_{mn}dx^m ∧ dxⁿ)
 d canonical momenta
 Currents
 t_M(σ) = (p_m(σ), ∂x^m(σ))
 - Poisson brackets $\{t_M(\sigma), t_N(\sigma')\} = \eta_{MN}\delta'(\sigma \sigma')$

• ex. 1: 2dim σ -models and O(d,d) generalised geometry $S \sim \int (g_{mn} dx^m \wedge \star dx^n + B_{mn} dx^m \wedge dx^n)$ • Currents $t_M(\sigma) = (p_m(\sigma), \partial x^m(\sigma))$ • Poisson brackets $\{t_M(\sigma), t_N(\sigma')\} = \eta_{MN} \delta'(\sigma - \sigma')$ O(d,d)-inv. metric: $\eta = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$

• ex. 1: 2dim σ -models and O(d,d) generalised geometry $S \sim \int (g_{mn} dx^m \wedge \star dx^n + B_{mn} dx^m \wedge dx^n)$ • Currents $t_M(\sigma) = (p_m(\sigma), \partial x^m(\sigma))$ • Poisson brackets $\{t_M(\sigma), t_N(\sigma')\} = \eta_{MN} \delta'(\sigma - \sigma')$ • Hamiltonian $H = \frac{1}{2} \mathcal{H}^{MN}(g, B) t_M(\sigma) t_N(\sigma)$ (Siegel 92, Tseytlin 92)

• ex. 1: 2dim σ -models and O(d,d) generalised geometry $S \sim \int (g_{mn} dx^m \wedge \star dx^n + B_{mn} dx^m \wedge dx^n)$ d canonical momenta d coordinate fields • Currents $t_M(\sigma) = (p_m(\sigma), \partial x^m(\sigma))$ • Poisson brackets $\{t_M(\sigma), t_N(\sigma')\} = \eta_{MN} \delta'(\sigma - \sigma')$ • Hamiltonian $H = \frac{1}{2} \mathcal{H}^{MN}(g, B) t_M(\sigma) t_N(\sigma)$ generalised metric: $\mathcal{H} = \begin{pmatrix} g^{-1} & -g^{-1}B \\ Bg^{-1} & g - Bg^{-1}B \end{pmatrix}$ (Siegel 92, Tseytlin 92]

• ex. 1: 2dim σ -models and O(d,d) generalised geometry $S \sim \int (g_{mn} dx^m \wedge \star dx^n + B_{mn} dx^m \wedge dx^n)$ d canonical momenta d coordinate fields • Currents $t_M(\sigma) = (p_m(\sigma), \partial x^m(\sigma))$ • Poisson brackets $\{t_M(\sigma), t_N(\sigma')\} = \eta_{MN} \delta'(\sigma - \sigma')$ • Hamiltonian $H = \frac{1}{2} H^{MN}(g, B) t_M(\sigma) t_N(\sigma)$ generalised metric: $\mathcal{H} = \begin{pmatrix} g^{-1} & -g^{-1}B \\ Bg^{-1} & g - Bg^{-1}B \end{pmatrix}$ • Diff. (Virasoro) constraint $0 = \eta^{MN} t_M(\sigma) t_N(\sigma)$ *[Siegel 92, Tseytlin 92]*

ex. 1: 2dim σ -models and O(d,d) generalised geometry $S \sim \int (g_{mn} dx^m \wedge \star dx^n + B_{mn} dx^m \wedge dx^n)$ *d* canonical momenta *d* coordinate fields *Currents* $t_M(\sigma) = (p_m(\sigma), \partial x^m(\sigma))$ O(d,d)-inv. metric: $\eta = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ O(d,d)-inv. metric: $\eta = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ Poisson brackets $\{t_M(\sigma), t_N(\sigma')\} = \eta_{MN} \delta'(\sigma - \sigma')$ Hamiltonian • Diff. (Virasoro) constraint $0 = \eta^{MN} t_M(\sigma) t_N(\sigma)$ [Siegel 92, Tseytlin 92] $S \sim \int \left(g_{mn} \mathbf{d} x^m \wedge \star \mathbf{d} x^n + C_{mnp} \mathbf{d} x^m \wedge \mathbf{d} x^n \wedge \mathbf{d} x^p + \frac{1}{2} \star 1 \right)$ • ex. 2: membrane σ -model (p=2) in d dim. [Hatsuda/Kamimura 12, DO 21]

ex. 1: 2dim σ -models and O(d,d) generalised geometry $S \sim \int (g_{mn} dx^m \wedge dx^n + B_{mn} dx^m \wedge dx^n)$ d canonical momenta • Currents $t_M(\sigma) = (p_m(\sigma), \partial x^m(\sigma))$ O(d,d)-inv. metric: $\eta = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ Poisson brackets $\{t_M(\sigma), t_N(\sigma')\} = \eta_{MN}\delta'(\sigma - \sigma')$ Hamiltonian • Diff. (Virasoro) constraint $0 = \eta^{MN} t_M(\sigma) t_N(\sigma)$ (Siegel 92. Tsevtlin 92) $S \sim \int \left(g_{mn} \mathbf{d} x^m \wedge \star \mathbf{d} x^n + C_{mnp} \mathbf{d} x^m \wedge \mathbf{d} x^n \wedge \mathbf{d} x^p + \frac{1}{2} \star 1 \right)$ • ex. 2: membrane σ -model (p=2) in d dim. Currents $t_M(\sigma) = (p_m(\sigma), dx^m(\sigma) \wedge dx^n(\sigma), 0, ...)$ [Hatsuda/Kamimura 12, DO 21]

ex. 1: 2dim σ -models and O(d,d) generalised geometry $S \sim \int (g_{mn} dx^m \wedge dx^n + B_{mn} dx^m \wedge dx^n)$ d canonical momenta • Currents $t_M(\sigma) = (p_m(\sigma), \partial x^m(\sigma))$ O(d,d)-inv. metric: $\eta = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ Poisson brackets $\{t_M(\sigma), t_N(\sigma')\} = \eta_{MN}\delta'(\sigma - \sigma')$ Hamiltonian $H = \frac{1}{2} \mathcal{H}^{MN}(g, B) t_M(\sigma) t_N(\sigma)$ generalised metric: $\mathcal{H} = \begin{pmatrix} g^{-1} & -g^{-1}B \\ Bg^{-1} & g - Bg^{-1}B \end{pmatrix}$ • Diff. (Virasoro) constraint $0 = \eta^{MN} t_M(\sigma) t_N(\sigma)$ (Siegel 92. Tsevtlin 92) $S \sim \int \left(g_{mn} \mathbf{d} x^m \wedge \star \mathbf{d} x^n + C_{mnp} \mathbf{d} x^m \wedge \mathbf{d} x^n \wedge \mathbf{d} x^p + \frac{1}{2} \star 1 \right)$ ex. 2: membrane σ -model (p=2) in d dim. • Currents $t_M(\sigma) = (p_m(\sigma), dx^m(\sigma) \wedge dx^n(\sigma), 0, ...)$ Poisson brackets $\{t_M(\sigma), t_N(\sigma')\} = \eta_{p,MN} dx^p \wedge d\delta(\sigma - \sigma')$ [Hatsuda/Kamimura 12, DO 21]

ex. 1: 2dim σ -models and O(d,d) generalised geometry $S \sim \int (g_{mn} dx^m \wedge \star dx^n + B_{mn} dx^m \wedge dx^n)$ *d* canonical momenta *d* coordinate fields *Currents* $t_M(\sigma) = (p_m(\sigma), \partial x^m(\sigma))$ O(d,d)-inv. metric: $\eta = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ O(d,d)-inv. metric: $\eta = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ Poisson brackets $\{t_M(\sigma), t_N(\sigma')\} = \eta_{MN}\delta'(\sigma - \sigma')$ Hamiltonian $H = \frac{1}{2} \mathcal{H}^{MN}(g, B) t_M(\sigma) t_N(\sigma)$ generalised metric: $\mathcal{H} = \begin{pmatrix} g^{-1} & -g^{-1}B \\ Bg^{-1} & g - Bg^{-1}B \end{pmatrix}$ • Diff. (Virasoro) constraint $0 = \eta^{MN} t_M(\sigma) t_N(\sigma)$ (Siegel 92. Tsevtlin 92) $S \sim \int \left(g_{mn} \mathbf{d} x^m \wedge \star \mathbf{d} x^n + C_{mnp} \mathbf{d} x^m \wedge \mathbf{d} x^n \wedge \mathbf{d} x^p + \frac{1}{2} \star 1 \right)$ ex. 2: membrane σ -model (p=2) in d dim. • Currents $t_M(\sigma) = (p_m(\sigma), dx^m(\sigma) \wedge dx^n(\sigma), 0, ...)$ - invariant of $E_{d(d)}$ Poisson brackets $\{t_M(\sigma), t_N(\sigma')\} = \eta_{p,MN} dx^p \wedge d\delta(\sigma - \sigma')$ [Hatsuda/Kamimura 12, DO 21]

ex. 1: 2dim σ -models and O(d,d) generalised geometry $S \sim \int (g_{mn} dx^m \wedge \star dx^n + B_{mn} dx^m \wedge dx^n)$ *d* canonical momenta *d* coordinate fields *Currents* $t_M(\sigma) = (p_m(\sigma), \partial x^m(\sigma))$ O(d,d)-inv. metric: $\eta = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ O(d,d)-inv. metric: $\eta = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ Poisson brackets $\{t_M(\sigma), t_N(\sigma')\} = \eta_{MN}\delta'(\sigma - \sigma')$ Hamiltonian $H = \frac{1}{2} \mathcal{H}^{MN}(g, B) t_M(\sigma) t_N(\sigma)$ generalised metric: $\mathcal{H} = \begin{pmatrix} g^{-1} & -g^{-1}B \\ Bg^{-1} & g - Bg^{-1}B \end{pmatrix}$ • Diff. (Virasoro) constraint $0 = \eta^{MN} t_M(\sigma) t_N(\sigma)$ (Siegel 92. Tsevtlin 92) $S \sim \int \left(g_{mn} \mathbf{d} x^m \wedge \star \mathbf{d} x^n + C_{mnp} \mathbf{d} x^m \wedge \mathbf{d} x^n \wedge \mathbf{d} x^p + \frac{1}{2} \star 1 \right)$ ex. 2: membrane σ -model (p=2) in d dim. • Currents $t_M(\sigma) = (p_m(\sigma), dx^m(\sigma) \wedge dx^n(\sigma), 0, ...)$ - invariant of $E_{d(d)}$ Poisson brackets $\{t_M(\sigma), t_N(\sigma')\} = \eta_{p,MN} dx^p \wedge d\delta(\sigma - \sigma')$ • Hamiltonian $H = \frac{1}{2} \mathcal{H}^{MN}(g, C) t_M(\sigma) \wedge \star t_N(\sigma)$

[Hatsuda/Kamimura 12, DO 21]

ex. 1: 2dim σ -models and O(d,d) generalised geometry $S \sim \int (g_{mn} dx^m \wedge \star dx^n + B_{mn} dx^m \wedge dx^n)$ *d* canonical momenta *d* coordinate fields *Currents* $t_M(\sigma) = (p_m(\sigma), \partial x^m(\sigma))$ O(d,d)-inv. metric: $\eta = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ O(d,d)-inv. metric: $\eta = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ Poisson brackets $\{t_M(\sigma), t_N(\sigma')\} = \eta_{MN}\delta'(\sigma - \sigma')$ Hamiltonian $H = \frac{1}{2} \mathcal{H}^{MN}(g, B) t_M(\sigma) t_N(\sigma)$ generalised metric: $\mathcal{H} = \begin{pmatrix} g^{-1} & -g^{-1}B \\ Bg^{-1} & g - Bg^{-1}B \end{pmatrix}$ • Diff. (Virasoro) constraint $0 = \eta^{MN} t_M(\sigma) t_N(\sigma)$ (Siegel 92. Tsevtlin 92) $S \sim \int \left(g_{mn} \mathbf{d} x^m \wedge \star \mathbf{d} x^n + C_{mnp} \mathbf{d} x^m \wedge \mathbf{d} x^n \wedge \mathbf{d} x^p + \frac{1}{2} \star 1 \right)$ ex. 2: membrane σ -model (p=2) in d dim. • Currents $t_M(\sigma) = (p_m(\sigma), dx^m(\sigma) \wedge dx^n(\sigma), 0, ...)$ invariant of E_{d(d)} Poisson brackets $\{t_M(\sigma), t_N(\sigma')\} = \eta_{p,MD} dx^p \wedge d\delta(\sigma - \sigma')$ _____ generalised metric of E_{d(d)} • Hamiltonian $H = \frac{1}{2} \mathcal{H}^{MN}(g, C) t_M(\sigma) \wedge \star t_N(\sigma)$

[Hatsuda/Kamimura 12, DO 21]

ex. 1: 2dim σ -models and O(d,d) generalised geometry $S \sim \int (g_{mn} dx^m \wedge dx^n + B_{mn} dx^m \wedge dx^n)$ d canonical momenta • Currents $t_M(\sigma) = (p_m(\sigma), \partial x^m(\sigma))$ O(d,d)-inv. metric: $\eta = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ Poisson brackets $\{t_M(\sigma), t_N(\sigma')\} = \eta_{MN}\delta'(\sigma - \sigma')$ Hamiltonian $H = \frac{1}{2} \mathcal{H}^{MN}(g, B) t_M(\sigma) t_N(\sigma)$ generalised metric: $\mathcal{H} = \begin{pmatrix} g^{-1} & -g^{-1}B \\ Bg^{-1} & g - Bg^{-1}B \end{pmatrix}$ • Diff. (Virasoro) constraint $0 = \eta^{MN} t_M(\sigma) t_N(\sigma)$ (Siegel 92. Tsevtlin 92) $S \sim \int \left(g_{mn} \mathbf{d} x^m \wedge \star \mathbf{d} x^n + C_{mnp} \mathbf{d} x^m \wedge \mathbf{d} x^n \wedge \mathbf{d} x^p + \frac{1}{2} \star 1 \right)$ ex. 2: membrane σ -model (p=2) in d dim. • Currents $t_M(\sigma) = (p_m(\sigma), dx^m(\sigma) \wedge dx^n(\sigma), 0, ...)$ invariant of E_{d(d)} Poisson brackets $\{t_M(\sigma), t_N(\sigma')\} = \eta_{v,MN} dx^p \wedge d\delta(\sigma - \sigma')$ generalised metric of $E_{d(d)}$ • Hamiltonian $H = \frac{1}{2} \mathcal{H}^{MN}(g, C) t_M(\sigma) \wedge \star t_N(\sigma)$ Spatial diff. constraints $0 = \eta^{p,MN} t_M(\sigma) \wedge \star t_N(\sigma)$ [Hatsuda/Kamimura 12, DO 21]

	Riemannian geometry	Generalised Geometry
physical objects	metric g	metric g, $(p+1)$ -form gauge fields C, \ldots , dilaton
underlying bundle	tangent bundle TM	, tensor ' hierarchy of bundles • generalised tangent bundle , R_I -bundle': $TM \oplus \bigwedge^p T^*M \oplus$ • , R_2 -bundle': $\bigwedge^{p-1}T^*M \oplus$
geometry	metric $g \in \frac{\operatorname{GL}(d)}{\operatorname{O}(d)}$	generalised metric: $\mathcal{H} \in \frac{G}{H_d}$ H_d : maximal compact subgroup of G
structure group	GL(d)	duality group $G = O(d,d)$, $E_{d(d)}$,, action on bundles invariants of G describe algebraic structure of tensor hierarchy
connection	Levi-Civita	generalised Levi-Civita (not unique)
curvature	Riemann tensor	generalised Riemann tensor (not unique)

	Riemannian geometry	Generalised Geometry
physical objects	metric g	metric g, $(p+1)$ -form gauge fields C, \ldots , dilaton
underlying bundle	tangent bundle TM	, tensor' hierarchy of bundles e generalised tangent bundle , R_1 -bundle': $TM \oplus \bigwedge^p T^*M \oplus$, R_2 -bundle': $\bigwedge^{p-1}T^*M \oplus$
geometry	metric $g \in \frac{\operatorname{GL}(d)}{\operatorname{O}(d)}$	generalised metric: $\mathcal{H} \in \frac{G}{H_d}$ H_d : maximal compact subgroup of G
structure group	GL(d)	duality group $G = O(d,d)$, $E_{d(d)}$,, action on bundles invariants of G describe algebraic structure of tensor hierarchy
connection	Levi-Civita	generalised Levi-Civita (not unique) See Larisa's
curvature	Riemann tensor	generalised Riemann tensor (not unique)

	Riemannian geometry	Generalised Geometry
physical objects	metric g	metric g, $(p+1)$ -form gauge fields C, \ldots , dilaton
underlying bundle	tangent bundle TM	, tensor ' hierarchy of bundles e generalised tangent bundle , R_1 -bundle': $TM \oplus \bigwedge^p T^*M \oplus \dots$, R_2 -bundle': $\bigwedge^{p-1}T^*M \oplus \dots$
geometry	$ {\color{black}{\textbf{metric}}} g \in \frac{\operatorname{GL}(d)}{\operatorname{O}(d)} $	generalised metric: $\mathcal{H} \in \frac{G}{H_d}$ H_d : maximal compact subgroup of G
structure group	GL(d)	duality group $G = O(d,d)$, $E_{d(d)}$,, action on bundles invariants of G describe algebraic structure of tensor hierarchy
connection	Levi-Civita	generalised Levi-Civita (not unique) See Larisa's
curvature	Riemann tensor	& Falk's talks generalised Riemann tensor (not unique)

• two aims:

	Riemannian geometry	Generalised Geometry
physical objects	metric g	metric g, $(p+1)$ -form gauge fields C, \ldots , dilaton
underlying bundle	tangent bundle <i>TM</i>	, tensor' hierarchy of bundles e generalised tangent bundle , R_1 -bundle': $TM \oplus \bigwedge^p T^*M \oplus$, R_2 -bundle': $\bigwedge^{p-1}T^*M \oplus$
geometry	metric $g \in \frac{\operatorname{GL}(d)}{\operatorname{O}(d)}$	generalised metric: $\mathcal{H} \in \frac{G}{H_d}$ H_d : maximal compact subgroup of G
structure group	GL(d)	duality group $G = O(d,d)$, $E_{d(d)}$,, action on bundles invariants of G describe algebraic structure of tensor hierarchy
connection	Levi-Civita	generalised Levi-Civita (not unique) See Larisa's
curvature	Riemann tensor	generalised Riemann tensor (not unique)

• two aims:

• unified treatment of metric and *p*-form gauge fields

e.g. ,gauge transformations' for metric and *p*-form gauge field

	Riemannian geometry	Generalised Geometry
physical objects	metric g	metric g, $(p+1)$ -form gauge fields C, \ldots , dilaton
underlying bundle	tangent bundle TM	, tensor ' hierarchy of bundles • generalised tangent bundle , R_I -bundle': $TM \oplus \bigwedge^p T^*M \oplus$ • , R_2 -bundle': $\bigwedge^{p-1}T^*M \oplus$
geometry	metric $g \in \frac{\operatorname{GL}(d)}{\operatorname{O}(d)}$	generalised metric: $\mathcal{H} \in \frac{G}{H_d}$ H_d : maximal compact subgroup of G
structure group	GL(d)	duality group $G = O(d,d)$, $E_{d(d)}$,, action on bundles invariants of G describe algebraic structure of tensor hierarchy
connection	Levi-Civita	generalised Levi-Civita (not unique) 🔪 See Larisa's
curvature	Riemann tensor	generalised Riemann tensor (not unique)

• two aims:

unified treatment of metric and *p*-form gauge fields •

, gauge transformations' for metric and *p*-form gauge field $\phi = v + \xi \in \Gamma(TM \oplus \bigwedge^p T^*M)$ e.g.

	Riemannian geometry	Generalised Geometry
physical objects	metric g	metric g, $(p+1)$ -form gauge fields C, \ldots , dilaton
underlying bundle	tangent bundle TM	, tensor ' hierarchy of bundles • generalised tangent bundle , R_I -bundle': $TM \oplus \bigwedge^p T^*M \oplus \dots$ • , R_2 -bundle': $\bigwedge^{p-1}T^*M \oplus \dots$
geometry	metric $g \in \frac{\operatorname{GL}(d)}{\operatorname{O}(d)}$	generalised metric: $\mathcal{H} \in \frac{G}{H_d}$ H_d : maximal compact subgroup of G
structure group	GL(d)	duality group $G = O(d,d)$, $E_{d(d)}$,, action on bundles invariants of G describe algebraic structure of tensor hierarchy
connection	Levi-Civita	generalised Levi-Civita (not unique) See Larisa's
curvature	Riemann tensor	& Falk's talks generalised Riemann tensor (not unique)

- two aims:
 - unified treatment of metric and *p*-form gauge fields
 - e.g. ,gauge transformations' for metric and *p*-form gauge field

vector (diff.) p-form (p+1-form gauge transformation) $\phi = v + \xi \in \Gamma(TM \oplus \bigwedge {}^{p}T^{\star}M)$ generalised vector (diffeomorphism)

	Riemannian geometry	Generalised Geometry
physical objects	metric g	metric g, $(p+1)$ -form gauge fields C, \ldots , dilaton
underlying bundle	tangent bundle <i>TM</i>	, tensor' hierarchy of bundles e generalised tangent bundle , R_1 -bundle': $TM \oplus \bigwedge^p T^*M \oplus \dots$, R_2 -bundle': $\bigwedge^{p-1}T^*M \oplus \dots$
geometry	metric $g \in \frac{\operatorname{GL}(d)}{\operatorname{O}(d)}$	generalised metric: $\mathcal{H} \in \frac{G}{H_d}$ H_d : maximal compact subgroup of G
structure group	GL(d)	duality group $G = O(d,d)$, $E_{d(d)}$,, action on bundles invariants of G describe algebraic structure of tensor hierarchy
connection	Levi-Civita	generalised Levi-Civita (not unique) 🔪 See Larisa's
curvature	Riemann tensor	generalised Riemann tensor (not unique)
true aires		

- two aims:
 - unified treatment of metric and *p*-form gauge fields •
 - ,gauge transformations' for metric and *p*-form gauge field e.g. generalised Lie derivative (algebra of gauge transformations)

vector (diff.) p-form (p+1-form gauge transformation) $\phi = v + \xi \in \Gamma(TM \oplus \bigwedge^p T^*M)$ generalised vector (diffeomorphism)

	Riemannian geometry	Generalised Geometry
physical objects	metric g	metric g, $(p+1)$ -form gauge fields C, \ldots , dilaton
underlying bundle	tangent bundle TM	, tensor ' hierarchy of bundles generalised tangent bundle , R_1 -bundle': $TM \oplus \bigwedge^p T^*M \oplus \dots$, R_2 -bundle': $\bigwedge^{p-1}T^*M \oplus \dots$
geometry	metric $g \in \frac{\operatorname{GL}(d)}{\operatorname{O}(d)}$	generalised metric: $\mathcal{H} \in \frac{G}{H_d}$ H_d : maximal compact subgroup of G
structure group	GL(d)	duality group $G = O(d,d)$, $E_{d(d)}$,, action on bundles invariants of G describe algebraic structure of tensor hierarchy
connection	Levi-Civita	generalised Levi-Civita (not unique) See Larisa's
curvature	Riemann tensor	generalised Riemann tensor (not unique)

- two aims:
 - unified treatment of metric and *p*-form gauge fields

e.g. ,gauge transformations' for metric and *p*-form gauge field

generalised Lie derivative (algebra of gauge transformations)

$$\mathcal{L}_{\phi_1}\phi_2^N = 2\phi_{[1}^M\partial_M\phi_{2]}^N + Y^{MN}{}_{KL}\partial_M\phi_1^K\phi_2^L$$

vector (diff.) p-form (p+1-form gauge transformation)

 $\phi = v + \xi \in \Gamma(TM \oplus \bigwedge^p T^*M)$ generalised vector (diffeomorphism)

	Riemannian geometry	Generalised Geometry
physical objects	metric g	metric g, $(p+1)$ -form gauge fields C, \ldots , dilaton
underlying bundle	tangent bundle TM	, tensor ' hierarchy of bundles e generalised tangent bundle , R_I -bundle': $TM \oplus \bigwedge^p T^*M \oplus \dots$, R_2 -bundle': $\bigwedge^{p-1}T^*M \oplus \dots$
geometry	metric $g \in \frac{\operatorname{GL}(d)}{\operatorname{O}(d)}$	generalised metric: $\mathcal{H} \in \frac{G}{H_d}$ H_d : maximal compact subgroup of G
structure group	GL(d)	duality group $G = O(d,d)$, $E_{d(d)}$,, action on bundles invariants of G describe algebraic structure of tensor hierarchy
connection	Levi-Civita	generalised Levi-Civita (not unique) 🔪 See Larisa's
curvature	Riemann tensor	generalised Riemann tensor (not unique)
• two aims: • unified treatment of metric and <i>p</i> -form gauge fields e.g. ,gauge transformations' for metric and <i>p</i> -form gauge field generalised Lie derivative (algebra of gauge transformations) $\mathcal{L}_{\phi_1}\phi_2^N = 2\phi_{[1}^M\partial_M\phi_{2]}^N + Y^{MN}{_{KI}}\partial_M\phi_1^K\phi_2^L$ G-invariant		

	Riemannian geometry	Generalised Geometry
physical objects	metric g	metric g, $(p+1)$ -form gauge fields C, \ldots , dilaton
underlying bundle	tangent bundle TM	, tensor ' hierarchy of bundles generalised tangent bundle , R_I -bundle': $TM \oplus \bigwedge^p T^*M \oplus$, R_2 -bundle': $\bigwedge^{p-1}T^*M \oplus$
geometry	metric $g \in \frac{\operatorname{GL}(d)}{\operatorname{O}(d)}$	generalised metric: $\mathcal{H} \in \frac{G}{H_d}$ H_d : maximal compact subgroup of G
structure group	GL(d)	duality group $G = O(d,d)$, $E_{d(d)}$,, action on bundles invariants of G describe algebraic structure of tensor hierarchy
connection	Levi-Civita	generalised Levi-Civita (not unique) See Larisa's
curvature	Riemann tensor	generalised Riemann tensor (not unique)
• two aims: • unified treatment of metric and <i>p</i> -form gauge fields e.g. ,gauge transformations' for metric and <i>p</i> -form gauge field generalised Lie derivative (algebra of gauge transformations) $\mathcal{L}_{\phi_1}\phi_2^N = 2\phi_{[1}^M\partial_M\phi_{2]}^N + Y^{MN}{}_{KD}\partial_M\phi_1^K\phi_2^L$ (r-invariant		
• covariance	e under duality groups	G-invariant

e.g. when interpreted as string/M-theory duality groups: hidden symmetry made explicit

	Riemannian geometry	Generalised Geometry
physical objects	metric g	metric g, $(p+1)$ -form gauge fields C, \ldots , dilaton
underlying bundle	tangent bundle TM	, tensor ' hierarchy of bundles e generalised tangent bundle , R_I -bundle': $TM \oplus \bigwedge^p T^*M \oplus \dots$, R_2 -bundle': $\bigwedge^{p-1}T^*M \oplus \dots$
geometry	metric $g \in \frac{\operatorname{GL}(d)}{\operatorname{O}(d)}$	generalised metric: $\mathcal{H} \in \frac{G}{H_d}$ H_d : maximal compact subgroup of G
structure group	GL(d)	duality group $G = O(d,d)$, $E_{d(d)}$,, action on bundles invariants of G describe algebraic structure of tensor hierarchy
connection	Levi-Civita	generalised Levi-Civita (not unique) See Larisa's
curvature	Riemann tensor	generalised Riemann tensor (not unique)
 two aims: unified treatment of metric and <i>p</i>-form gauge fields e.g. ,gauge transformations' for metric and <i>p</i>-form gauge field generalised Lie derivative (algebra of gauge transformations) <i>L</i>_{φ1}φ₂^N = 2φ₁^M∂_Mφ₂^N + Y^{MN}_{KU}∂_Mφ₁^Kφ₂^L G-invariant e.g. when interpreted as string/M-theory duality groups: hidden symmetry made explicit typically: applied as technique in supergravity, here: for σ-model 		

EXCEPTIONAL SYMMETRY AS A SYMMETRY PRINCIPLE FOR SIGMA MODELS

	Riemannian geometry	Generalised Geometry
physical objects	metric g	metric g, $(p+1)$ -form gauge fields C, \ldots , dilaton
underlying bundle	tangent bundle <i>TM</i>	, tensor ' hierarchy of bundles e generalised tangent bundle , R_1 -bundle': $TM \oplus \bigwedge^p T^*M \oplus$, R_2 -bundle': $\bigwedge^{p-1}T^*M \oplus$
geometry	metric $g \in \frac{\operatorname{GL}(d)}{\operatorname{O}(d)}$	generalised metric: $\mathcal{H} \in \frac{G}{H_d}$ H_d : maximal compact subgroup of G
structure group	GL(d)	duality group $G = O(d,d)$, $E_{d(d)}$,, action on bundles invariants of G describe algebraic structure of tensor hierarchy
connection	Levi-Civita	generalised Levi-Civita (not unique) 🔪 See Larisa's
curvature	Riemann tensor not relevan	nt for talk generalised Riemann tensor (not unique)
 two aims: unified treatment of metric and <i>p</i>-form gauge fields e.g. ,gauge transformations' for metric and <i>p</i>-form gauge field generalised Lie derivative (algebra of gauge transformations) <i>L</i>_{φ1}φ₂^N = 2φ₁^M∂_Mφ₂^N + Y^{MN}_{KL}∂_Mφ₁^Kφ₂^L G-invariant e.g. when interpreted as string/M-theory duality groups: hidden symmetry made explicit typically: applied as technique in supergravity, here: for σ-model 		

EXCEPTIONAL SYMMETRY AS A SYMMETRY PRINCIPLE FOR SIGMA MODELS

• d-dimensional internal manifold in splitting D = (D-d)+d, coordinates $Y^{\mathcal{M}} = (x^m, y^{\mu})$

• d-dimensional internal manifold in splitting D = (D-d)+d, coordinates $Y^{\mathcal{M}} = (x^m, y^{\mu})$

internal coordinates external coordinates (generalised geometry) (ord. geometry)

- d-dimensional internal manifold in splitting D = (D-d)+d, coordinates $Y^{\mathcal{M}} = (x^m, y^{\mu})$
- duality group $G: E_{d(d)}$, O(d,d), O(d,d+n), SL(d+1)

internal coordinates external coordinates (generalised geometry) (ord. geometry)

- d-dimensional internal manifold in splitting D = (D-d)+d, coordinates $Y^{\mathcal{M}} = (x^m, y^{\mu})$
- duality group $G: E_{d(d)}$, O(d,d), O(d,d+n), SL(d+1)

internal coordinates external coordinates (generalised geometry) (ord. geometry)

• tensor hierarchy (& associated bundles) – representations of $G: \mathfrak{g}, \mathcal{R}_1, \mathcal{R}_2, \mathcal{R}_3, ...$

- d-dimensional internal manifold in splitting D = (D-d)+d, coordinates $Y^{\mathcal{M}} = (x^m, y^{\mu})$
- duality group $G: E_{d(d)}$, O(d,d), O(d,d+n), SL(d+1)

internal coordinates external coordinates (generalised geometry) (ord. geometry)

- tensor hierarchy (& associated bundles) representations of $G: \mathfrak{g}, \mathcal{R}_1, \mathcal{R}_2, \mathcal{R}_3, ...$
 - algebraic structure:

dot product $\bullet: \mathcal{R}_p \times \mathcal{R}_q \to \mathcal{R}_{p+q}$ derivative $\partial: \mathcal{R}_p \to \mathcal{R}_{p-1}$ with $\partial^2 = 0$

- d-dimensional internal manifold in splitting D = (D-d)+d, coordinates $Y^{\mathcal{M}} = (x^m, y^{\mu})$
- duality group $G: E_{d(d)}$, O(d,d), O(d,d+n), SL(d+1)
- tensor hierarchy (& associated bundles) representations of $G: \mathfrak{g}, \mathcal{R}_1, \mathcal{R}_2, \mathcal{R}_3, \dots$
 - algebraic structure: •
 - •

dot product •: $\mathcal{R}_p \times \mathcal{R}_q \to \mathcal{R}_{p+q}$ derivative $\partial : \mathcal{R}_p \to \mathcal{R}_{p-1}$ with $\partial^2 = 0$ in indices $A \in \mathcal{R}_{p}$, A^{K_p} $(A \bullet B)^{M_{p+q}} = \eta^{M_{p+q}}{}_{K_nL_q}A^{K_p}B^{L_q}$ $(\partial A)^{M_{p-1}} = D_{M_p}{}^{M_{p-1},L_1}\partial_{L_1}A^{M_p}$

David Osten

external coordinates

(ord. geometry)

internal coordinates

(generalised geometry)

- d-dimensional internal manifold in splitting D = (D-d)+d, coordinates $Y^{\mathcal{M}} = (x^m, y^{\mu})$
- duality group $G: E_{d(d)}$, O(d,d), O(d,d+n), SL(d+1)

external coordinates internal coordinates (ord. geometry) *(generalised geometry)*

- tensor hierarchy (& associated bundles) representations of $G: \mathfrak{g}, \mathcal{R}_1, \mathcal{R}_2, \mathcal{R}_3, \dots$
 - algebraic structure: ٠
 - •

dot product •: $\mathcal{R}_p \times \mathcal{R}_q \to \mathcal{R}_{p+q}$ derivative $\partial : \mathcal{R}_p \to \mathcal{R}_{p-1}$ with $\partial^2 = 0$ in indices $A \in \mathcal{R}_p$, A^{K_p} $(A \bullet B)^{M_{p+q}} = \eta^{M_{p+q}} K_p L_q A^{K_p} B^{L_q}$ $(\partial A)^{M_{p-1}} = \mathcal{D}_{M_p} M_{p-1,L_1} \partial_{L_1} A^{M_p}$ *G*-invariants

- d-dimensional internal manifold in splitting D = (D-d)+d, coordinates $Y^{\mathcal{M}} = (x^m, y^{\mu})$
- duality group $G: E_{d(d)}$, O(d,d), O(d,d+n), SL(d+1)
- tensor hierarchy (& associated bundles) representations of $G: \mathfrak{g}, \mathcal{R}_1, \mathcal{R}_2, \mathcal{R}_3, \dots$
 - algebraic structure: ٠
 - •

dot product • : $\mathcal{R}_p \times \mathcal{R}_q \to \mathcal{R}_{p+q}$ derivative $\partial : \mathcal{R}_p \to \mathcal{R}_{p-1}$ with $\partial^2 = 0$ in indices $A \in \mathcal{R}_{p}$, $A^{K_{p}}$ $(A \bullet B)^{M_{p+q}} = \eta^{M_{p+q}} K_{p}L_{q} A^{K_{p}}B^{L_{q}}$ $(\partial A)^{M_{p-1}} = \mathcal{D}_{M_{p}} M_{p-1}, L_{1} \partial_{L_{1}}A^{M_{p}}$ *G*-invariants

consistency conditions: $\mathcal{R}_1 \oplus \mathcal{R}_2 \oplus \dots$ together with • and ∂ forms diff. graded Lie algebra [Palmkvist, Cederwall/Palmkvist, Lavau/Palmkvist, Bonezzi/Hohm]

external coordinates

internal coordinates

(generalised geometry) (ord. geometry)

- d-dimensional internal manifold in splitting D = (D-d)+d, coordinates $Y^{\mathcal{M}} = (x^m, y^{\mu})$
- duality group $G: E_{d(d)}, O(d,d), O(d,d+n), SL(d+1)$
- tensor hierarchy (& associated bundles) representations of $G: \mathfrak{g}, \mathcal{R}_1, \mathcal{R}_2, \mathcal{R}_3, \dots$
 - algebraic structure: •
 - •

dot product • : $\mathcal{R}_p \times \mathcal{R}_q \to \mathcal{R}_{p+q}$ derivative $\partial : \mathcal{R}_p \to \mathcal{R}_{p-1}$ with $\partial^2 = 0$ in indices $A \in \mathcal{R}_{p}$, $A^{K_{p}}$ $(A \bullet B)^{M_{p+q}} = \eta^{M_{p+q}} K_{p}L_{q} A^{K_{p}} B^{L_{q}}$ $(\partial A)^{M_{p-1}} = \mathcal{D}_{M_{p}} M_{p-1}, L_{1} \partial_{L_{1}} A^{M_{p}}$ *G*-invariants

consistency conditions: $\mathcal{R}_1 \oplus \mathcal{R}_2 \oplus \dots$ together with • and ∂ forms diff. graded Lie algebra [Palmkvist, Cederwall/Palmkvist, Lavau/Palmkvist, Bonezzi/Hohm]

• extended internal coordinates: $X^{M_1} = (x^m, \tilde{x}_{m_1...m_n}, ...)$

external coordinates

internal coordinates

(generalised geometry) (ord. geometry)

- d-dimensional internal manifold in splitting D = (D-d)+d, coordinates $Y^{\mathcal{M}} = (x^m, y^{\mu})$
- duality group $G: E_{d(d)}$, O(d,d), O(d,d+n), SL(d+1)
- tensor hierarchy (& associated bundles) representations of $G: \mathfrak{g}, \mathcal{R}_1, \mathcal{R}_2, \mathcal{R}_3, \dots$
 - algebraic structure:
 in indices A ∈ R_p, A^{K_p}
 dot product •: R_p × R_q → R_{p+q} derivative ∂: R_p → R_{p-1} with ∂² = 0
 (A • B)<sup>M_{p+q} = η<sup>M_{p+q} K_pL_q A^{K_p}B^{L_q} (∂A)<sup>M_{p-1} = D_{M_p} M_{p-1},L₁∂_{L₁}A^{M_p} G-invariants
 </sup></sup></sup>

• consistency conditions: $\mathcal{R}_1 \oplus \mathcal{R}_2 \oplus ...$ together with • and ∂ forms diff. graded Lie algebra *[Palmkvist, Cederwall/Palmkvist, Lavau/Palmkvist, Bonezzi/Hohm]*

- extended internal coordinates: $X^{M_1} = (x^m, \tilde{x}_{m_1...m_p}, ...)$
- section condition: $D_{M_2}{}^{K_1,L_1}\partial_{K_1} \cdot \partial_{L_1} \cdot = 0$, solutions: $\partial_{M_1} = (\partial_m, 0, ...)$

David Osten

external coordinates

internal coordinates

(generalised geometry) (ord. geometry)

- d-dimensional internal manifold in splitting D = (D-d)+d, coordinates $Y^{\mathcal{M}} = (x^m, y^{\mu})$
- duality group $G: E_{d(d)}$, O(d,d), O(d,d+n), SL(d+1)
- tensor hierarchy (& associated bundles) representations of $G: \mathfrak{g}, \mathcal{R}_1, \mathcal{R}_2, \mathcal{R}_3, \dots$
 - algebraic structure:
 in indices A ∈ R_p, A^{K_p}
 dot product •: R_p × R_q → R_{p+q} derivative ∂: R_p → R_{p-1} with ∂² = 0
 (A • B)<sup>M_{p+q} = η<sup>M_{p+q} K_pL_q A^{K_p}B^{L_q} (∂A)<sup>M_{p-1} = D_{M_p} M_{p-1},L₁∂_{L₁}A^{M_p} G-invariants
 </sup></sup></sup>

• consistency conditions: $\mathcal{R}_1 \oplus \mathcal{R}_2 \oplus ...$ together with • and ∂ forms diff. graded Lie algebra *[Palmkvist, Cederwall/Palmkvist, Lavau/Palmkvist, Bonezzi/Hohm]*

• extended internal coordinates: $X^{M_1} = (x^m, \tilde{x}_{m_1...m_p}, ...)$

• section condition: $D_{M_2}{}^{K_1,L_1}\partial_{K_1} \cdot \partial_{L_1} \cdot = 0$, solutions: $\partial_{M_1} = (\partial_m, 0, ...)$

• generalised Lie derivative $\mathcal{L}_V \phi$, $V \in \mathcal{R}_1$, $\phi \in \mathcal{R}_p$, algebra closes: $[\mathcal{L}_{V_1}, \mathcal{L}_{V_2}]\phi = \mathcal{L}_{\mathcal{L}_{V_{[1}}V_{2]}}\phi$

David Osten

internal coordinates external coordinates (generalised geometry) (ord. geometry)

- d-dimensional internal manifold in splitting D = (D-d)+d, coordinates $Y^{\mathcal{M}} = (x^m, y^{\mu})$
- duality group $G: E_{d(d)}$, O(d,d), O(d,d+n), SL(d+1)
- tensor hierarchy (& associated bundles) representations of $G: \mathfrak{g}, \mathcal{R}_1, \mathcal{R}_2, \mathcal{R}_3, \dots$
 - algebraic structure:
 in indices A ∈ R_p, A^{K_p}
 dot product •: R_p × R_q → R_{p+q} derivative ∂: R_p → R_{p-1} with ∂² = 0
 (A • B)<sup>M_{p+q} = η<sup>M_{p+q}_{K_pL_q}A<sup>K_pB^{L_q} (∂A)<sup>M_{p-1} = D_{M_p}<sup>M<sub>p-1,L₁</sup>∂_{L₁}A^{M_p} G-invariants
 </sup></sup></sup></sup></sup></sub>

• consistency conditions: $\mathcal{R}_1 \oplus \mathcal{R}_2 \oplus ...$ together with • and ∂ forms diff. graded Lie algebra [Palmkvist, Cederwall/Palmkvist, Lavau/Palmkvist, Bonezzi/Hohm]

- extended internal coordinates: $X^{M_1} = (x^m, \tilde{x}_{m_1...m_p}, ...)$
- section condition: $D_{M_2}{}^{K_1,L_1}\partial_{K_1} \cdot \partial_{L_1} \cdot = 0$, solutions: $\partial_{M_1} = (\partial_m, 0, ...)$
- generalised Lie derivative $\mathcal{L}_V \phi$, $V \in \mathcal{R}_1$, $\phi \in \mathcal{R}_p$, algebra closes: $[\mathcal{L}_{V_1}, \mathcal{L}_{V_2}]\phi = \mathcal{L}_{\mathcal{L}_{V_{[1}}V_{2]}}\phi$
- geometry: generalised metric $\mathcal{H}^{M_1N_1}(g, C, ...) \in \frac{G}{H_d}$ external background $A^{M_p}_{\mu_1..\mu_p} \in \mathcal{R}_p, g_{\mu\nu}$ (ext. metric)

David Osten

internal coordinates external coordinates (generalised geometry) (ord. geometry)

Realisation in *p*-dim. σ -models

David Osten

EXCEPTIONAL SYMMETRY AS A SYMMETRY PRINCIPLE FOR SIGMA MODELS

Realisation in *p*-dim. σ -models

• phase space variables (currents):

Realisation in *p*-dim. σ -models

• phase space variables (currents):

spatial (p - q + 1)-forms (for all q > 0):

 $t^{(q)}(\sigma) \in \mathcal{R}_q$

Realisation in *p*-dim. σ -models

• phase space variables (currents):

spatial (p - q + 1)-forms (for all q > 0):

$$t^{(q)}(\sigma) \in \mathcal{R}_q$$

• Poisson brackets (realisation of •–product)

$$\{t_{K_q}^{(q)}(\sigma), t_{L_r}^{(r)}(\sigma')\} = \eta^{M_{q+r}}_{K_q L_r} t_{M_{q+r}}^{(q+r)}(\sigma) \wedge d\delta(\sigma - \sigma')$$

Realisation in *p*-dim. σ -models

• phase space variables (currents):

spatial (p – q + 1)-forms (for all q > 0):
$$t^{(q)}(\sigma) \in T$$

• Poisson brackets (realisation of •-product)

$$\{t_{K_q}^{(q)}(\sigma), t_{L_r}^{(r)}(\sigma')\} = \eta^{M_{q+r}}_{K_q L_r} t_{M_{q+r}}^{(q+r)}(\sigma) \wedge d\delta(\sigma - \sigma')$$

• Hamiltonian and diff. constraints (extension to external space exists)

$$H = \frac{1}{2} \mathcal{H}^{M_1 N_1} t_{M_1}^{(1)} \wedge \star t_{N_1}^{(1)} \\ 0 = \eta_{M_2}{}^{K_1 L_1} t_{K_1}^{(1)} \wedge \star t_{L_1}^{(1)}$$

Realisation in *p*-dim. σ -models

• phase space variables (currents):

spatial (p – q + 1)-forms (for all q > 0):
$$t^{(q)}(\sigma) \in$$

• Poisson brackets (realisation of •-product)

$$\{t_{K_q}^{(q)}(\sigma), t_{L_r}^{(r)}(\sigma')\} = \eta^{M_{q+r}}_{K_q L_r} t_{M_{q+r}}^{(q+r)}(\sigma) \wedge d\delta(\sigma - \sigma')$$

• Hamiltonian and diff. constraints (extension to external space exists)

$$H = \frac{1}{2} \mathcal{H}^{M_1 N_1} t_{M_1}^{(1)} \wedge \star t_{N_1}^{(1)} \\ 0 = \eta_{M_2}{}^{K_1 L_1} t_{K_1}^{(1)} \wedge \star t_{L_1}^{(1)}$$

• example – membrane currents:

$$t_{M_1}^{(1)} = (p_m, dx^m \wedge dx^{m'}, 0, ...)$$

$$t_{M_2}^{(2)} = (dx^m, 0, ...)$$

$$t_{M_3}^{(3)} = (1, 0, ...), \qquad t_{M_q}^{(q)} = 0 \quad \text{for } q \ge 4$$

• All diff-invariant σ -models can be realised like that (Claim 1). It turns that it is <u>not a very strong statement</u>, concrete choices of $t^{(q)}(\sigma)$ can break *G*(duality) symmetry completely.

- All diff-invariant σ -models can be realised like that (Claim 1). It turns that it is <u>not a very strong statement</u>, concrete choices of $t^{(q)}(\sigma)$ can break *G*(duality) symmetry completely.
- Stronger statement: **G-covariance on phase space** For this, the *generalised Lie bracket* should be realised on phase space:

- All diff-invariant σ -models can be realised like that (Claim 1). It turns that it is <u>not a very strong statement</u>, concrete choices of $t^{(q)}(\sigma)$ can break *G*(duality) symmetry completely.
- Stronger statement: G-covariance on phase space For this, the *generalised Lie bracket* should be realised on phase space:

$$V = \int V^{M_1}(x) t_{M_1}^{(1)} \in \mathcal{R}_1, \quad \phi = \int \phi^{M_p}(x) t_{M_p}^{(p)} \in \mathcal{R}_p, \qquad \{\phi, V\} \stackrel{!}{=} \int (\mathcal{L}_V \phi)^{M_p} t_{M_p}^{(p)}$$

- All diff-invariant σ -models can be realised like that (Claim 1). It turns that it is <u>not a very strong statement</u>, concrete choices of $t^{(q)}(\sigma)$ can break *G*(duality) symmetry completely.
- Stronger statement: G-covariance on phase space For this, the *generalised Lie bracket* should be realised on phase space:

$$V = \int V^{M_1}(x) t^{(1)}_{M_1} \in \mathcal{R}_1, \quad \phi = \int \phi^{M_p}(x) t^{(p)}_{M_p} \in \mathcal{R}_p, \qquad \{\phi, V\} = 0$$

• This requires a **hierarchy of constraints**:

 $(\mathcal{L}_V \phi)^{M_p} t_M^{(p)}$

- All diff-invariant σ -models can be realised like that (Claim 1). It turns that it is <u>not a very strong statement</u>, concrete choices of $t^{(q)}(\sigma)$ can break *G*(duality) symmetry completely.
- Stronger statement: G-covariance on phase space For this, the *generalised Lie bracket* should be realised on phase space:

$$V = \int V^{M_1}(x) t_{M_1}^{(1)} \in \mathcal{R}_1, \quad \phi = \int \phi^{M_p}(x) t_{M_p}^{(p)} \in \mathcal{R}_p, \qquad \{\phi, V\} \stackrel{!}{=} \int (\mathcal{L}_V \phi)^{M_p} t_{M_p}^{(p)}$$

• This requires a **hierarchy of constraints**:

$$t_{K_{p+1}}^{(p+1)} \wedge \mathrm{d} X^{L_1} \partial_{L_1} = D_{K_{p+1}}{}^{M_p,L_1} t_{M_p}^{(p)} \partial_{L_1}$$

- All diff-invariant σ -models can be realised like that (Claim 1). It turns that it is <u>not a very strong statement</u>, concrete choices of $t^{(q)}(\sigma)$ can break *G*(duality) symmetry completely.
- Stronger statement: G-covariance on phase space For this, the *generalised Lie bracket* should be realised on phase space:

$$V = \int V^{M_1}(x) t_{M_1}^{(1)} \in \mathcal{R}_1, \quad \phi = \int \phi^{M_p}(x) t_{M_p}^{(p)} \in \mathcal{R}_p, \qquad \{\phi, V\} \stackrel{!}{=} \int (\mathcal{L}_V \phi)^{M_p} t_{M_p}^{(p)}$$

• This requires a hierarchy of constraints:

$$t_{K_{p+1}}^{(p+1)} \wedge dX^{L_1} \partial_{L_1} = D_{K_{p+1}}{}^{M_p,L_1} t_{M_p}^{(p)} \partial_{L_1}$$

• **Lessons/Results** for $G = E_{d(d)}$: [DO, 21,23,24]

- All diff-invariant σ -models can be realised like that (Claim 1). It turns that it is <u>not a very strong statement</u>, concrete choices of $t^{(q)}(\sigma)$ can break *G*(duality) symmetry completely.
- Stronger statement: G-covariance on phase space For this, the *generalised Lie bracket* should be realised on phase space:

$$V = \int V^{M_1}(x) t_{M_1}^{(1)} \in \mathcal{R}_1, \quad \phi = \int \phi^{M_p}(x) t_{M_p}^{(p)} \in \mathcal{R}_p, \qquad \{\phi, V\} \stackrel{!}{=} \int (\mathcal{L}_V \phi)^{M_p} t_{M_p}^{(p)}$$

• This requires a hierarchy of constraints:

$$t_{K_{p+1}}^{(p+1)} \wedge \mathrm{d} X^{L_1} \partial_{L_1} = D_{K_{p+1}}{}^{M_p,L_1} t_{M_p}^{(p)} \partial_{L_1}$$

- **Lessons/Results** for *G* = *E*_{*d*(*d*)}: *[DO, 21,23,24]*
 - Constraints are very restrictive:

only ½-BPS branes (string, membrane, D-branes, ...) are allowed.

- All diff-invariant σ -models can be realised like that (Claim 1). It turns that it is <u>not a very strong statement</u>, concrete choices of $t^{(q)}(\sigma)$ can break *G*(duality) symmetry completely.
- Stronger statement: G-covariance on phase space For this, the *generalised Lie bracket* should be realised on phase space:

$$V = \int V^{M_1}(x) t_{M_1}^{(1)} \in \mathcal{R}_1, \quad \phi = \int \phi^{M_p}(x) t_{M_p}^{(p)} \in \mathcal{R}_p, \qquad \{\phi, V\} \stackrel{!}{=} \int (\mathcal{L}_V \phi)^{M_p} t_{M_p}^{(p)}$$

• This requires a **hierarchy of constraints**:

$$t_{K_{p+1}}^{(p+1)} \wedge \mathrm{d} X^{L_1} \partial_{L_1} = D_{K_{p+1}}{}^{M_p,L_1} t_{M_p}^{(p)} \partial_{L_1}$$

- **Lessons/Results** for *G* = *E*_{*d*(*d*)}: *[DO*, *21*,*23*,*24]*
 - Constraints are very restrictive:

only ¹/₂-BPS branes (string, membrane, D-branes, ...) are allowed.

- remarkable, as only bosonic part of σ -models
- Still: solutions break $E_{d(d)} \rightarrow GL(d)$

- All diff-invariant σ -models can be realised like that (Claim 1). It turns that it is <u>not a very strong statement</u>, concrete choices of $t^{(q)}(\sigma)$ can break *G*(duality) symmetry completely.
- Stronger statement: G-covariance on phase space For this, the *generalised Lie bracket* should be realised on phase space:

$$V = \int V^{M_1}(x) t^{(1)}_{M_1} \in \mathcal{R}_1, \quad \phi = \int \phi^{M_p}(x) t^{(p)}_{M_p} \in \mathcal{R}_p, \qquad \{\phi, V\} \stackrel{!}{=} \int (\mathcal{L}_V \phi)^{M_p} t^{(p)}_{M_p}$$

• This requires a hierarchy of constraints:

$$t_{K_{p+1}}^{(p+1)} \wedge dX^{L_1} \partial_{L_1} = D_{K_{p+1}}{}^{M_p,L_1} t_{M_p}^{(p)} \partial_{L_1}$$

• **Lessons/Results** for $G = E_{d(d)}$: [DO, 21,23,24]

• Constraints are very restrictive:

only ¹/₂-BPS branes (string, membrane, D-branes, ...) are allowed.

- remarkable, as only bosonic part of σ -models
- Still: solutions break $E_{d(d)} \rightarrow GL(d)$

David Osten

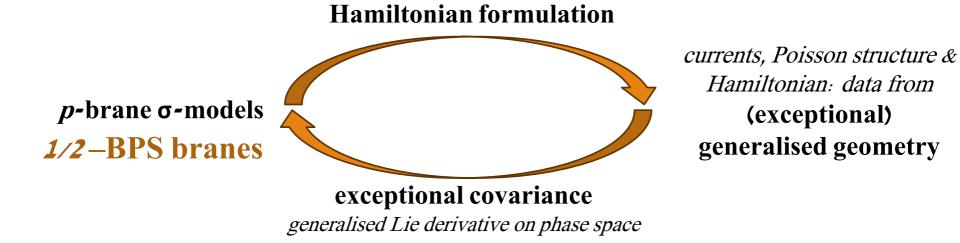
EXCEPTIONAL SYMMETRY AS A SYMMETRY PRINCIPLE FOR SIGMA MODELS

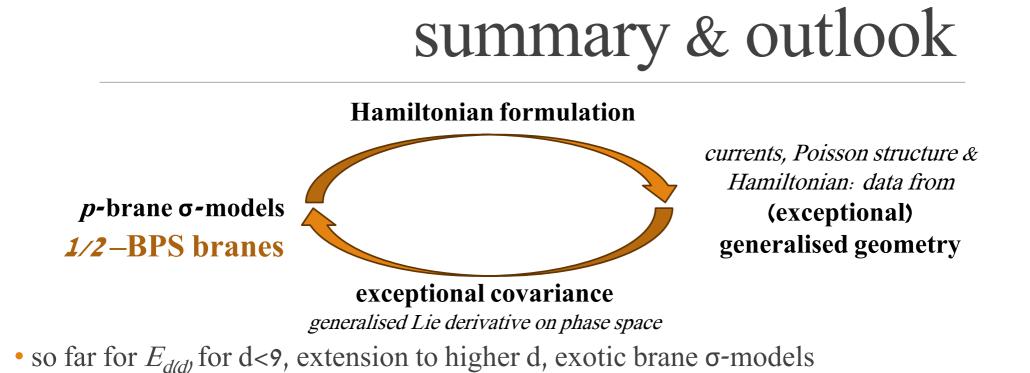
p-brane σ-models

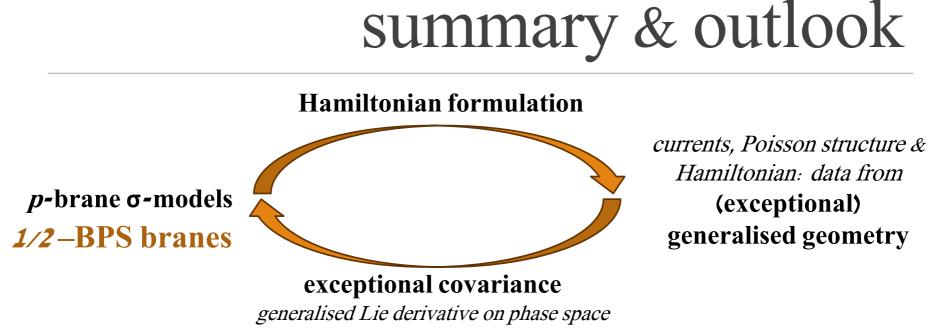
Hamiltonian formulation

p-brane σ -models

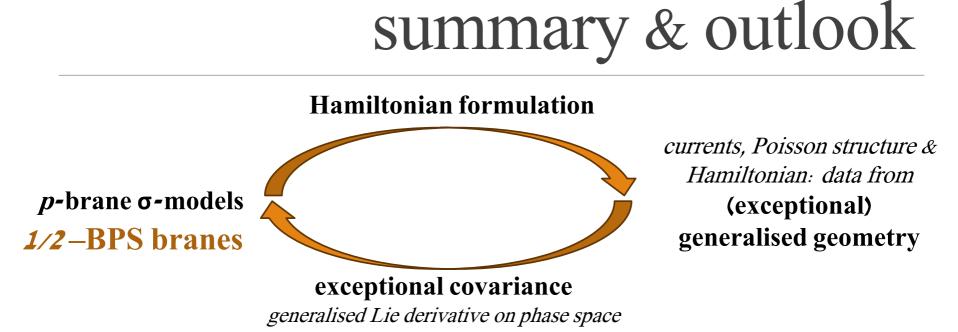
currents, Poisson structure & Hamiltonian: data from (exceptional) generalised geometry



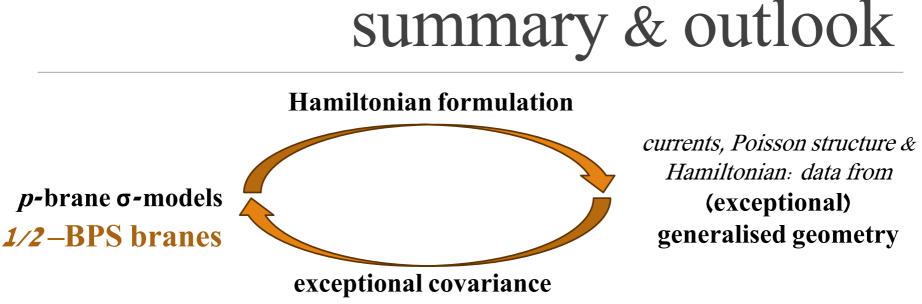




- so far for $E_{d(d)}$ for d<9, extension to higher d, exotic brane σ -models
- gauge symmetries: exceptional Cartan geometry, cf. [Hassler, Hulik, DO 24]

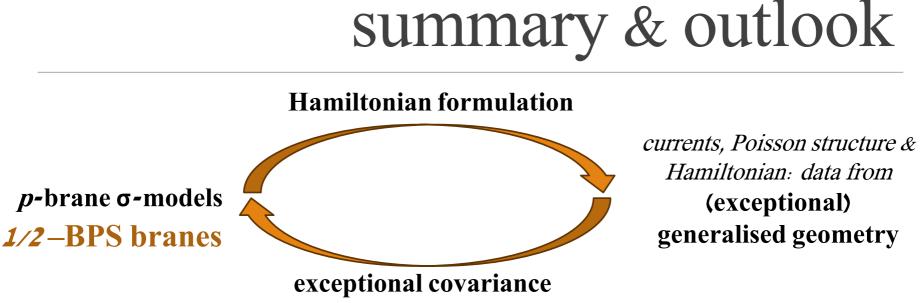


- so far for $E_{d(d)}$ for d<9, extension to higher d, exotic brane σ -models
- gauge symmetries: exceptional Cartan geometry, cf. [Hassler, Hulik, DO 24]
- canonical quantisation? (very spectulative)



generalised Lie derivative on phase space

- so far for $E_{d(d)}$ for d<9, extension to higher d, exotic brane σ -models
- gauge symmetries: exceptional Cartan geometry, cf. [Hassler, Hulik, DO 24]
- canonical quantisation? (very spectulative)
- classical dynamics: integrability, duality, solutions to membrane dynamics = generalised geodesics in generalised geometry [Strickland-Constable 21] ----> generalisation



generalised Lie derivative on phase space

- so far for $E_{d(d)}$ for d<9, extension to higher d, exotic brane σ -models
- gauge symmetries: exceptional Cartan geometry, cf. [Hassler, Hulik, DO 24]
- canonical quantisation? (very spectulative)

• A-theory *[Hatsuda, Hulik, Linch, Siegel, Wang, Wang 23]* : non-conventional brane theories, without requiring exceptional covariance (brane charge constraints)

David Osten

EXCEPTIONAL SYMMETRY AS A SYMMETRY PRINCIPLE FOR SIGMA MODELS

Thank you for your attention!