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(new symmetry principle (exceptional covariance) for special class of σ-models (sigma models with diff-invariance))
this talk
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● fields
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: coordinates on field (target) space M,

● 'coupling constants': g is a metric tensor on M, C a (p+1)-form potential
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● fields

: coordinates of , 

: coordinates on field (target) space M,

● 'coupling constants': g is a metric tensor on M, C a (p+1)-form potential

p physical model Σ M C?

1 point particle coupling to GR and EM world-line space-time Aμ

2 2d materials (continuum limit of spin chains, ...) material O(3),O(N),... -

(first quantised) string world-sheet space-time yes

Geroch model (GR with 2 Killing vectors) eff. space-time SL(2,R) -

3 relativistic membrane (e.g. in M-theory) world-volume space-time yes

4 effective theory for pions space-time SU(N) -

original Skyrme model space-time
SU(N) x SU(N) 

SU(N)
Skyrme term

(Non-linear) σ-models
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Geometry and non-linear σ-models
•
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Claims: 
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Tseytlin 92, Hull 06-, Alekseev/Strobl 04, Hatsuda et al 12-, Sakatani/Uehara 16-, Arvanitakis/Blair 17- ,DO 19-]

2. Covariance under exceptional generalised geometry restricts to ½-BPS branes
(string, M-branes, D-branes, non-perturbative/exotic branes, …) in supergravity
[DO 21,23,24, building on Arvanitakis/Blair 17-22]
- only considering bosonic part (i.e. no supersymmetry necessary)
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Riemannian geometry Generalised Geometry

physical objects metric g metric g , (p+1)-form gauge fields C, … , dilaton

underlying
bundle

tangent bundle TM

‚tensor‘ hierarchy of bundles
• generalised tangent bundle ‚R1-bundle‘:
• ‚R2-bundle‘: 
• …

geometry metric generalised metric:

structure group GL(d)
duality group G = O(d,d), Ed(d), …,  action on bundles

invariants of G describe algebraic structure of tensor hierarchy

connection Levi-Civita generalised Levi-Civita (not unique)

curvature Riemann tensor generalised Riemann tensor (not unique)

•

•

•
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• extended internal coordinates:

• section condition: ,  solutions:

• generalised Lie derivative , algebra closes:  

• geometry: generalised metric
external background
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Realisation in p-dim. σ-models
• phase space variables (currents): 

spatial (p – q + 1)-forms (for all q > 0):

• Poisson brackets (realisation of •–product)

• Hamiltonian and diff. constraints (extension to external space exists)

• example – membrane currents:
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• so far for Ed(d) for d<9, extension to higher d, exotic brane σ-models

• gauge symmetries: exceptional Cartan geometry, cf. [Hassler, Hulik, DO 24] 

• canonical quantisation? (very spectulative)

• classical dynamics: integrability, duality, solutions to membrane dynamics = 
generalised geodesics in generalised geometry [Strickland-Constable 21]             generalisation

• A-theory [Hatsuda, Hulik, Linch, Siegel, Wang, Wang 23] :non-conventional brane theories,
without requiring exceptional covariance (brane charge constraints)
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