Workshop on the Standard Model and Beyond, Corfu, 27/08/2024

David Marzocca

1

Impact of EW PDFs on muon collider phenomenology

Based on:

- **Francesco Garosi**, D.M., **Sokratis Trifinopoulos** *JHEP 09 (2023) 107* [**[2303.16964](https://arxiv.org/abs/2303.16964)**]
- D.M. and **Alfredo Stanzione** [**[2408.13191](https://arxiv.org/abs/2408.13191)**]
- **F. Garosi**, **R. Capdevilla**, D.M. and **B. Stechauner** *[in progress]*

LePDF

Source + Downloads available at <https://github.com/DavidMarzocca/LePDF>

Electroweak interactions @ multi-TeV

Future colliders will be built to **explore physics at the multi-TeV scale**.

This energy regime is **exciting**, not only for the **possibility of uncovering New Physics**, but also because it contains **many Standard Model effects never observed before**.

Electroweak interactions @ multi-TeV

Future colliders will be built to **explore physics at the multi-TeV scale**.

This energy regime is **exciting**, not only for the **possibility of uncovering New Physics**, but also because it contains **many Standard Model effects never observed before**.

New "exotic" SM effects will be extremely important to be studied and understood in detail, both theoretically and experimentally:

The effects of EW symmetry breaking diminish at large energies: **EW symmetry restoration**.

Sudakov double-logarithms, EW radiation, EW collinear splittings and PDFs, WW scattering unitarization, etc..

Electroweak interactions @ multi-TeV

Future colliders will be built to **explore physics at the multi-TeV scale**.

This energy regime is **exciting**, not only for the **possibility of uncovering New Physics**, but also because it contains **many Standard Model effects never observed before**.

New "exotic" SM effects will be extremely important to be studied and understood in detail, both theoretically and experimentally: Sudakov double-logarithms, EW radiation, EW collinear splittings and PDFs, WW scattering unitarization, etc..

The effects of EW symmetry breaking diminish at large energies: **EW symmetry restoration**.

In this talk I will focus on 2 effects related to EW Parton Distribution Functions and their application to Muon Collider processes.

Muon Colliders are the ideal environment to study this physics with high precision!

PDFs of a muon

For processes well above threshold, the **contribution from collinear virtual bosons** emitted from the muons can become **dominant**.

"The muon collider is a weak boson collider"

PDFs of a muon

For processes well above threshold, the **contribution from collinear virtual bosons** emitted from the muons can become **dominant**.

The amplitudes for collinear splitting and hard scattering can be factorised if the p_T of the emitted radiation is small compared to the hard scattering energy.

"The muon collider is a weak boson collider"

 $\mathbb{C}(\mu\overline{\mu} \Rightarrow C + X) = \int_{0}^{x} dx_1 \int_{0}^{x} dx_2 \sum_{i,j} f_i(x_1,\mu) f_j(x_2,\mu) \hat{U}(i, j \Rightarrow C)(\hat{s})$

This can be described in terms of **generalised Parton Distribution Functions**, like for proton colliders:

Collinear Factorization:

Unlike for protons, since the muon is elementary this can be done **from first principles**.

PDFs of a muon

Unlike for protons, since the muon is elementary this can be done **from first principles**.

The **boundary condition** is set by $f_\mu(x, m_\mu) = \delta(1-x) + O(\alpha)$, $f_{i\neq \mu}(x, m_\mu) = 0 + O(\alpha)$

NLO corrections in Frixione [1909.03886]

PDFs of a muon

Unlike for protons, since the muon is elementary this can be done **from first principles**.

The **boundary condition** is set by $f_{\mu}(x, m_{\mu}) = \delta(1-x) + O(\alpha)$, $f_{i\neq \mu}(x, m_{\mu}) = 0 + O(\alpha)$

NLO corrections in Frixione [1909.03886]

PDFs of a muon

The **DGLAP equations** describe the evolution of the PDFs

Chen, Han, Tweedie [1611.00788]

M. Ciafaloni, P. Ciafaloni, D. Comelli hep-ph/0111109, hep-ph/0505047]

Unlike for protons, since the muon is elementary this can be done **from first principles**.

The **boundary condition** is set by $f_\mu(x, m_\mu) = \delta(1-x) + O(\alpha)$, $f_{i\neq \mu}(x, m_\mu) = 0 + O(\alpha)$

NLO corrections in Frixione [1909.03886]

PDFs of a muon

Above the EW scale

All SM interactions and fields must be considered and several new effects must be taken into account:

- **PDFs become polarised**, since EW interactions are chiral.
- At high energies **EW Sudakov double logarithms** are generated.
- **Neutral bosons interfere with each other:** *Z/γ* **and** *h/ZL* **PDFs mix**.
- multi-TeV scale.
- EW symmetry is broken. Another set of splitting functions, proportional to v^2 instead of p_T^2 , arise: **ultra-collinear splitting functions**.

• **Mass effects** of partons with EW masses (*W, Z, h, t*) become relevant and some remain so even at

Bauer, Webber [1808.08831]

Chen, Han, Tweedie [1611.00788]

P. Ciafaloni, Comelli [hep-ph/0007096, hep-ph/0505047] Chen, Han, Tweedie [1611.00788]

P. Ciafaloni, Comelli [hep-ph/0007096, hep-ph/0001142, hepph/0505047], Bauer, Webber [1703.08562, 1808.08831], Chen, Han, Tweedie [1611.00788], Han, Ma, Xie [2103.09844], F. Garosi, D.M., S. Trifinopoulos [2303.16964]

We work in the **mass eigenstate basis** and **solve the DGLAP numerically** in **x-space**, discretising the [10-6, -1] interval

LePDF

All EW & SM interactions are implemented, including all features listed in the previous slide.

Effective Vector Boson Approximation

At energies **above the EW scale**, **collinear emission of EW gauge bosons** can be described at LO with the **Effective Vector Boson Approximation**

⇡

acluding W-mass effects: Including W-mass effects: (*x, Q*2) = ^Z *^Q*²

 $f_{_{\rm I\!X\!Y}^-}^{(\alpha)}$ W_{+}^{-} *±* $(x, Q^2) = \frac{\alpha_2}{\alpha_2} P$

Permi (124) Weizsacker, Williams (134) Longitudinal **response and longitudinal of EWI** and alleged and choson of the contract for the muon PDF. Taking the DGLAP equations for the transverse and longitudinal *W* Fermi ('24) Weizsacker, Williams ('34) Landau, Lifschitz ('34) **boson, Exx Andre Dosons** Kane, Repko, Rolnik; Dawson; Chanowitz, Order results the leading order results the leading order results of the leading of the leading order results of the leading of the leading of the leading o *dP* !*W^T* iz et al. ↵2 Kane, Repko, Rolnik; Dawson; Chanowitz, Gaillard '84, See also Borel et al. [1202.1904], Costantini et al. [2005.10289] Ruiz et al. [2111.02442], etc…

$$
f_{W_{\pm}}^{(\alpha)}(x, Q^2) = \frac{\alpha_2}{8\pi} P_{V_{\pm}f_L}^f(x) \left(\log \frac{Q^2 + (1-x)m_W^2}{m_\mu^2 + (1-x)m_W^2} - \frac{Q^2}{Q^2 + (1-x)m_W^2} \right)
$$

$$
f_{W_L}^{(\alpha)}(x, Q^2) = \frac{\alpha_2}{4\pi} \frac{1-x}{x} \frac{Q^2}{Q^2 + (1-x)m_W^2}
$$

(similar expressions also for Z_T , Z_L , Z/γ)

*dp*²

Effective Vector Boson Approximation

At energies **above the EW scale**, **collinear emission of EW gauge bosons** can be described at LO with the **Effective Vector Boson Approximation** and See also Borel et al. [1202.1904 **comparison**

> acluding W-mass effects: Including W-mass effects:

⇡

Permi (124) Weizsacker, Williams (134) Longitudinal **response and longitudinal of EWI** and alleged and choson of the contract for the muon PDF. Taking the DGLAP equations for the transverse and longitudinal *W* Fermi ('24) Weizsacker, Williams ('34) Landau, Lifschitz ('34) **boson, Exx Andre Dosons** Kane, Repko, Rolnik; Dawson; Chanowitz, Order results the leading order results the leading order results of the leading of the leading order results of the leading of the leading of the leading o *dP* !*W^T* iz et al. ↵2 Kane, Repko, Rolnik; Dawson; Chanowitz, Gaillard '84, See also Borel et al. [1202.1904], Costantini et al. [2005.10289] Ruiz et al. [2111.02442], etc…

(*x, Q*2) = ^Z *^Q*²

f(↵) *W L* This one is \overline{a} **10W**
11. Ma $\overline{\eta}$ \overline{a} D *lemented* in attelae **MadGraph5**
1.024421 **a** MC $\overline{\text{NLO}}$ *dp*² $\overline{\mathsf{IS}}$ $\overline{2}$ 4⇡ $\overline{}$ $\overline{\phant$ *x* $\frac{1}{2}$ *xxxxx*
toni, Mattelaer 2111.0244 ap
」 \overline{R} $\frac{1}{\sqrt{2}}$ $\overline{\text{M}}$ $\overline{\text{C@N}}$ $f_{W^-}^{(\alpha)}(x,Q^2) \approx \frac{\omega_2}{8\pi} P_{V+~f_L}^f(x) \log \frac{Q^-}{m^2}$ This one is now implemented in **MadGraph5_aMC@NLO** $\lim_{x\to a} \Omega \gg m_{W}$ W_{+}^{-} *±* $(x, Q^2) \approx \frac{\alpha_2}{8} P$ *m*² t
'± f_L $\sqrt{2}$ $\frac{1}{2}$ Q^{2} *log* Q^{2} $\frac{1}{6}n$ *T* **This one**
IRuiz, Cos ., V r **İS N**
tantin \overline{w} i Mal $\frac{1}{2}$ *i*r **nplemented in MadGraph5_a**
oni, Mattelaer 2111.02442] \overline{L} *awc@wro m*² *^µ* + (1 *^x*)*m*² *^Q*² + (1 *^x*)*m*² \approx α_2 8π P_V^f $V_{\pm}f_L(x)$ $\log \frac{Q^2}{2}$ $\overline{\nu_{W}^2}$ *W* **random Paris Conde IS
Indiz**, Costanti \overline{D} **v imp**
Malton ✓*m*² nte attela $\overline{\mathcal{L}}$ \sim MadGraph5_aMC@NLO
11.004401 *^µ* + (1 *^x*)*m*² *^Q*² + (1 *^x*)*m*² \int \int $8⁸$ $\frac{p}{2}$ *f* $P_{V_{\pm}f_{L}}^{J}$ (*x*) $\log \frac{Q^2}{2}$ m_V^2 *W* **x**
In this one the theory of the theory is the theory of the theory of the theory is the theory of the theory is the three than the theory is the three than the \overline{C} 10W If
1i, Malt ✓*m*² **W** Matt $\sim t$ II) **MadGraph5_aMC@NLO**
2111.024421 For $Q \gg m_W$: This one is now implemented in MadGraph5_aMC@NLO [Ruiz, Costantini, Maltoni, Mattelaer 2111.02442]

> *^Q*² + (1 *^x*)*m*² *W* and analogously for the *Z* and *Z/* PDFs \overline{a} *<u>* $\frac{1}{2}$ *in of O(1) also at</u>* **b** at ⊺ *F<i><i>Pd<i>d<i>d<i>d<i><i>d<i><i>d<i>d<i>d<i>d<i><i>d<i>d<i>d<i>d<i>d<i>d<i>d<i>d<i>d<i>d<i>d<i>d<i>dd<i>d Han, NOTE: mass effects remain of O(1) also at TeV scale! Chen, Han, Tweedie [1611.00788] ^V±f^L* (*x*) **10TF, means of esta versain of 0/4) also at TaV sealel NOTE: Mass enects remain of 0(1) also at lev sc** *T* 0 *^T* + (1 *^x*)*m*² *^W*)² (*p*² ↵2 **A**
 V I C, indss enects remain of U(1) also at TeV 3 **NOTE: mass effects remain of O(1) also at TeV scale!** Chen, Han, Tweedie [1611.00788]

 $\boldsymbol{\mathrm{X}}$

 \mathbf{X}

 $f^{(\alpha)}_{Z/\gamma_{\pm}}(x,Q^2) = -\frac{\sqrt{\alpha_\gamma\alpha_2}}{2\pi c_W}\left(P^f_{V_{\pm}f_L}(x)Q^Z_{\mu_L}+P^f_{V_{\pm}f_R}(x)Q^Z_{\mu_R}\right)\log\frac{Q^2+(1-x)m_Z^2}{m_\nu^2+(1-x)m_Z^2} \quad ,$ $Q = 3 TeV$ LePDF EVA_{LO} The **EVA Z/γ PDF is off by ~102** , Will focus on this in a few slides. μ $\overline{1}$ 0.500

 \mathbf{X}

More details in [2303.16964]

Pheno of EW PDF effects (1) Mixed Z/γ PDF

[D.M. and A. Stanzione 2408.13191]

Photon - Z mixing PDF

Factorisation takes place at the amplitude level:

$$
i\mathcal{M}(AX\rightarrow CY)=\sum_{B}i\mathcal{M}^{\mathrm{split}}(A\rightarrow CB^{*})\frac{i}{Q^{2}}i\mathcal{M}^{\mathrm{hard}}(BX\rightarrow Y)
$$

) $(1 + \mathcal{O}(\delta_{m,\perp}))$

zer 1911.12366, …]

 $\begin{split} \delta_\perp &= |{\bf k}_\perp|/E \ll 1 \ \delta_m &= m/E \ll 1 \end{split}$

If two different states B and B' can enter in the same splitting and hard **processes**, they **can interfere:**

 $\sim \sum_{i,j=\gamma,2} M_i^{split} M_i^{head} M_j^{split*} M_j^{left*}$

10

Factorisation takes place at the amplitude level:

$$
i{\cal M}(AX\to CY)=\sum_Bi{\cal M}^{\rm split}(A\to CB^*)\frac{i}{Q^2}i{\cal M}^{\rm hard}(BX\to Y)\\ \text{[Cuomo, Vecchi, Wulz]}
$$

In the SM this can happen between: *Z_T* **and** *γ Z_L* and *H*

If two different states B and B' can enter in the same splitting and hard **processes**, they **can interfere:**

 $\left[\sim \sum_{i,j=\gamma,2} M_i^{split} M_i^{head} M_j^{split*} M_j^{lead*} \sim \sum_{i,j=\gamma,2} dg_{ij}^{split} d\beta_{ji}^{head*}\right]$

Factorisation takes place at the amplitude level:

$$
i{\cal M}(AX\to CY)=\sum_Bi{\cal M}^{\rm split}(A\to CB^*)\frac{i}{Q^2}i{\cal M}^{\rm hard}(BX\to Y)\\ \text{[Cuomo, Vecchi, Wulz]}
$$

In the SM this can happen between: *Z_T* **and** *y Z_L* and *H*

If two different states B and B' can enter in the same splitting and hard **processes**, they **can interfere:**

 $\int_{i,j=\gamma,2}^{\infty} M_i^{split} M_i^{head} M_j^{split*} M_j^{lept} \sim \sum_{i,j=\gamma,2} dg_{ij}^{split} dg_{ji}^{hard}$

To describe the interference in the splitting one introduces the **mixed Z/γ PDF**. (Similarly also for Z_L and H)

The *different virtuality* due to the different masses is an effect of $O(\delta_m^2)$.

Factorisation takes place at the amplitude level:

$$
i{\cal M}(AX\to CY)=\sum_Bi{\cal M}^{\rm split}(A\to CB^*)\frac{i}{Q^2}i{\cal M}^{\rm hard}(BX\to Y)\\ \text{[Cuomo, Vecchi, Wulz]}
$$

In the SM this can happen between: *Z_T* **and** *y Z_L* and *H*

P. Ciafaloni, Comelli [hep-ph/0007096, hep-ph/0505047] Chen, Han, Tweedie [1611.00788]

Comparison with EVA

Solving iteratively the DGLAP equations at O(α) one can derive the **LO EVA for the Z/γ PDF**:

 $f^{(\alpha)}_{Z/\gamma_+}(x,Q^2)=-$

$$
\begin{split} \int_{m_{\mu}^2}^{Q^2} dp_T^2 \frac{\alpha_{\gamma 2}}{2\pi c_W} \frac{1}{(p_T^2 + (1-x)m_Z^2)} \Big(P_{V_{\pm}f_L}^f(x) Q_{\mu_L}^Z + P_{V_{\pm}f_R}^f(x) Q_{\mu_R}^Z \Big) = \\ \frac{\alpha_{\gamma 2}}{2\pi c_W} \Big(P_{V_{\pm}f_L}^f(x) Q_{\mu_L}^Z + P_{V_{\pm}f_R}^f(x) Q_{\mu_R}^Z \Big) \log \frac{Q^2 + (1-x)m_Z^2}{m_\mu^2 + (1-x)m_Z^2} \,, \\ Q_{\mu_L}^Z = -\frac{1}{2} + s_W^2 \qquad \qquad Q_{\mu_R}^Z = s_W^2 \qquad \qquad P_{V_{\pm f_L}(x) = P_{V_{\pm f_R}(x) }^f(x) }^{P_{V_{\pm f_L}(x) = P_{V_{\pm f_R}(x) }^f(x)}} \end{split}
$$

Comparison with EVA

Solving iteratively the DGLAP equations at O(α) one can derive the **LO EVA for the Z/γ PDF**:

 $f^{(\alpha)}_{Z/\gamma_{+}}(x,Q^2)=-$

For $x \ll 1$ this becomes proportional to the vector-like muon coupling to the Z boson:

ACCIDENTAL SUPPRESSION ! 0.2 $Q^Z_{\mu R}$ 0.1 - possible because **at LO, LH and RH** $Q^Z_{\mu L+R}$ **μ PDFs are equal**. 0.0 $\mathcal{Q}_{\mu_X}^Z$ -0.1 In the **full result** a O(1) polarisation arises, which lifts the cancellation. -0.2 $Q^Z_{\mu L}$ Also, at $O(\alpha^2)$ other contributions become dominant, due to Sudakov logs. 200 1000 2000 100 500 μ [GeV]

$$
\begin{split} \int_{m_{\mu}^2}^{Q^2} dp_T^2 \frac{\alpha_{\gamma 2}}{2\pi c_W} \frac{1}{(p_T^2 + (1-x)m_Z^2)} \Big(P_{V\pm f_L}^f(x) Q_{\mu_L}^Z + P_{V\pm f_R}^f(x) Q_{\mu_R}^Z \Big) = \\ \frac{\alpha_{\gamma 2}}{2\pi c_W} \Big(P_{V\pm f_L}^f(x) Q_{\mu_L}^Z + P_{V\pm f_R}^f(x) Q_{\mu_R}^Z \Big) \log \frac{Q^2 + (1-x)m_Z^2}{m_\mu^2 + (1-x)m_Z^2} \,, \\ Q_{\mu_L}^Z = -\tfrac{1}{2} + s_W^2 \qquad Q_{\mu_R}^Z = s_W^2 \qquad \qquad P_{V_{\pm f_L}(x) = P_{V_{\pm f_R}(x) }^f(x) = P_{V_{\pm f_R}(x) = P_{V_{\pm f_R}(x) }^f(x)}^f \end{split}
$$

We can go **one order higher** by using the O(α) EVA expressions in the RHS of the DGLAP equation:

 $df^{(\alpha^2)}_{Z/\gamma_+}(x,$

Extending EVA to O(α2)

 $t = \log(Q^2/m_{\mu}^2)$

$$
\begin{aligned} \frac{Q^2)}{2\pi}=&\,\frac{\alpha_{\gamma 2}(t)}{2\pi}2c_W P_{V_+V_{\pm}}^V\otimes f_{W_{\pm}^-}^{(\alpha)}+\frac{\alpha_{\gamma 2}(t)}{2\pi}\frac{c_{2W}(t)}{c_{W}(t)}P_{V_+h}^{h}\otimes f_{W_{L}^-}^{(\alpha)}+\\ &+\frac{\alpha_{\gamma 2}(t)}{2\pi}\frac{2}{c_W(t)}\sum_{f}Q_{f}\left[Q_{f_{L}}^Z P_{V_+f_{L}}^{f}\otimes f_{f_{L}}^{(\alpha)}+Q_{f_{R}}^Z P_{V_-f_{L}}^{f}\otimes f_{f_{R}}^{(\alpha)}\right] \end{aligned}
$$

Extending EVA to O(α2)

We can go **one order higher** by using the O(α) EVA expressions in the RHS of the DGLAP equation:

 $t = \log(Q^2/m_{\mu}^2)$

Let us focus on the first term, where

$$
\begin{split} \frac{Q^2)}{2\pi}=&\frac{\alpha_{\gamma 2}(t)}{2\pi}2c_WP_{V_+V_{\pm}}^V\otimes f_{W_{\pm}}^{(\alpha)}\Bigg\rvert+\frac{\alpha_{\gamma 2}(t)}{2\pi}\frac{c_{2W}(t)}{c_{W}(t)}P_{V_+h}^{h}\otimes f_{W_{L}}^{(\alpha)}+\\ &+\frac{\alpha_{\gamma 2}(t)}{2\pi}\frac{2}{c_W(t)}\sum_{f}Q_{f}\Big[Q_{f_{L}}^{Z}P_{V_+f_{L}}^{f}\otimes f_{f_{L}}^{(\alpha)}+Q_{f_{R}}^{Z}P_{V_-f_{L}}^{f}\otimes f_{f_{R}}^{(\alpha)}\Big] \end{split}
$$

$$
\text{where} \quad f_{W_{\pm}}^{(\alpha)}(x, Q^2) \approx \frac{\alpha_2}{8\pi} P_{V_{\pm}f_L}^f(x) \log \frac{Q^2}{m_Z^2}
$$

We can go **one order higher** by using the O(α) EVA expressions in the RHS of the DGLAP equation:

Extending EVA to O(α2)

 $t = \log(Q^2/m_\mu^2)$

Let us focus on the first term, where

$$
f_{W_{\pm}}^{\left(\alpha\right)}\left(x,Q^2\right)\approx\frac{\alpha_2}{8\pi}P_{V_{\pm}f_L}^f(x)\log\frac{Q^2}{m_Z^2}
$$

Corresponds to a **double-emission**

A **Sudakov double-log** appears: The full $O(a^2)$ expression gives a much $\alpha^{2}(t-t_{Z})^{3} = \alpha^{2} \log^{3}(Q^{2}/m_{Z}^{2})$

$$
\begin{split} \frac{Q^2)}{2\pi}=&\frac{\alpha_{\gamma 2}(t)}{2\pi}2c_WP_{V_+V_{\pm}}^V\otimes f_{W_{\pm}}^{(\alpha)}\Bigg)+\frac{\alpha_{\gamma 2}(t)}{2\pi}\frac{c_{2W}(t)}{c_W(t)}P_{V_+h}^{h}\otimes f_{W_{L}^-}^{(\alpha)}+\\ &+\frac{\alpha_{\gamma 2}(t)}{2\pi}\frac{2}{c_W(t)}\sum_{f}Q_{f}\Big[Q_{f_{L}}^{Z}P_{V_+f_{L}}^{f}\otimes f_{f_{L}}^{(\alpha)}+Q_{f_{R}}^{Z}P_{V_-f_{L}}^{f}\otimes f_{f_{R}}^{(\alpha)}\Big] \end{split}
$$

The result for that term is:

$$
f_{Z/\gamma_{+}}^{(\alpha^{2})P_{VV}}(x,Q) = \frac{\alpha_{2}\alpha_{\gamma 2}}{96\pi^{2}x}(t-t_{Z})^{2} 2c_{W}(x-1)^{2} \cdot \left[(t-t_{Z})^{2} g_{\gamma_{+}}^{(\alpha^{2})P_{VV}}(x,Q) \right] = \frac{\alpha_{2}\alpha_{\gamma 2}}{96\pi^{2}x}(t-t_{Z})^{2} 8 \cdot \left[(t-t_{Z}) + K(x) \right],
$$

 $J(x)$ and $K(x)$ are $O(1)$ functions of x.

more accurate approximation to the numerical result.

Compton Scattering @ MuC

We also include the background from v_μ W $\rightarrow \mu$ γ , its contribution is however marginal.

To what precision could we measure it?

Compton Scattering @ MuC

The **mixed** *Zγ* **PDF** can **contribute from few % up to ~ 70%,** depending on the phase space region.

We also include the background from v_μ W $\rightarrow \mu$ γ , its contribution is however marginal.

To what precision could we measure it?

Statistical uncertainties of few % in the most sensitive bins: we neglect systematics.

The effect due to the Z/γ PDF can potentially be observed with more than 5σ precision at a future 10TeV MuC.

Compton Scattering @ MuC

We estimate the precision with which we can measure this effect, over the null hypothesis that it is zero, with a simple χ^2 test:

 $\mathcal{L} = 10 \text{ ab}^{-1}$

Impact in Higgs physics

Consider **associated W H production at a MuC**

The **mixed Z/γ PDF gives a contribution. How big?**

 $|y_W| < 2$, $|y_H| < 2$, $m > 0.5 \text{ TeV}$

We compute the triple-differential cross section by convoluting the partonic ones with the PDFs. Then we obtain the **total cross section with cuts**:

Impact in Higgs physics

Consider **associated W H production at a MuC**

We compute the triple-differential cross section by convoluting the partonic ones with the PDFs. Then we obtain the **total cross section with cuts**:

 $|y_W| < 2$, $|y_H| < 2$, $m > 0.5$ TeV

$$
6.81 + 15.58 \delta_W - 1.96 \delta_Z + 135.7 \delta_W^2 - 255.8 \delta_W \delta_Z + 126.9 \delta_W^2 + 15.25 \delta_W - 1.99 \delta_Z + 135.6 \delta_W^2 - 255.9 \delta_W \delta_Z + 126.9 \delta_W^2
$$

It **modifies the SM cross section by 3%**, to be compared with an expected precision in this channel of about 1% (value used in the plot).

 $\sigma_{\rm no-}^{10\,{\rm TeV}}\,[\rm fb]=135.70\,\kappa_W^2+126.93\,\kappa_Z^2-255.82\,\kappa_W\kappa_Z$ $\delta \sigma_{Z/\gamma}^{10\,{\rm TeV}}\,[{\rm fb}] = -0.15 \,\kappa_W^2 - 0.030 \,\kappa_W \kappa_Z \,,$

The **mixed Z/y PDF gives a contribution. How big?**

Single- ALP production @ MuC

 $\mathcal{L}_{\phi VV} = \frac{C_W}{\Lambda} \phi W^a_{\mu\nu} \widetilde{W}^{\mu\nu,a} + \frac{C_B}{\Lambda} \phi B_{\mu\nu} \widetilde{B}^{\mu\nu}$

This ALP can be produced at muon colliders by (transverse) vector boson fusion. What is the **impact** of the **mixed** *Zγ* **PDF**?

Pheno of EW PDF effects (2) Muon neutrino PDF

[work in progress: F. Garosi, R. Capdevilla, D.M. and B. Stechauner]

Muon Neutrino PDF

Emission of **collinear** *W-* **from the muon** generates a **muon neutrino content inside of the muon**.

 $\mathbf X$

Particularly **large at x** ≳ **0.3** due to the IR divergence of the $\mu \rightarrow W \nu_{\mu}$ splitting

Muon Neutrino PDF from LePDF

Muon Neutrino PDF

Emission of **collinear** *W-* **from the muon** generates a **muon neutrino content inside of the muon**.

Muon Neutrino PDF

Emission of **collinear** *W-* **from the muon** generates a **muon neutrino content inside of the muon**.

Also in terms of parton luminosities, it is clear that **the contribution from the neutrino PDF will be important in the high-energy tail of EW processes**.

$$
\mathcal{L}_{ij}(\hat{s},s_0) = \int_0^1 \frac{dz}{z} f_{i;\mu}\left(z,\frac{\hat{s}}{4}\right) f_{j;\overline{\mu}}\left(\frac{\hat{s}}{z s_0},\frac{\hat{s}}{4}\right)
$$

Observing fνμ in e- νe production

We define the **signal/background**

$$
R_{\text{bg}}^{e\nu}=\frac{\sigma(\mu^-\bar{\nu}_{\mu}\rightarrow e\bar{\nu}_{e})}{\sigma_{\text{bg}}^{e\nu}}
$$

neutrino PDF is very large and dominates for **forward electrons** and increases with

pt.

Contribution in single-Higgs production

We consider 2 effects: 1) muons (and anti-muons) have their own PDF after emitting collinear radiation 2) New contributions arise from v_μ (and \overline{v}_μ) in the initial state

Single-H production at MuC is typically computed from initial *µ− µ+* without ISR.

For example:

Contribution in single-Higgs production

We obtain:

Charged current (CC) and Neutral current (NC) processes are proportional respectively to the Higgs couplings to W and Z bosons.

We can modify those with the usual **kappa parameters**, and obtain:

Contribution in single-Higgs production

We obtain:

Charged current (CC) and Neutral current (NC) processes are proportional respectively to the Higgs couplings to W and Z bosons.

We can modify those with the usual **kappa parameters**, and obtain:

 $\sigma^{\rm N\,TeV}_{\mu\bar\mu\to H}=\sigma^{\rm N}_{\kappa}$

$$
{\kappa{W}^{2}}^{\rm N\,TeV} \kappa_{W}^{2} + \sigma_{\kappa_{Z}^{2}}^{\rm N\,TeV} \kappa_{Z}^{2}
$$

Both the **muon PDF** and the **muon-neutrino PDF** give **large effects, up to 27%** at a 10TeV MuC.

Conclusions

The Multi-TeV scale will be an exciting frontier to explore, both with and without BSM physics! EW symmetry becomes effectively restored and a plethora of new effects are expected to appear.

We focus on **SM PDFs for lepton colliders**. In a previous work we derived numerical LL SM-PDFs for lepton colliders: **LePDF**. <https://github.com/DavidMarzocca/LePDF>

The **interference-***Z/γ* **PDF** appears when EW interactions are considered. **EVA @ LO deviates by ~102** due to accidental cancellation. **We provide a more accurate approximation** by a NLO computation. This PDF can be precisely measured in **high-energy Compton scattering** and can affect Higgs and BSM physics.

The **muon neutrino PDF** inside a muon can impact physics studies. It **dominates CC lepton-neutrino production** and **affects single-Higgs production by up to ~30%**!

Backup

LePDF - implementation

Starting from Q_{EW} = m_W , heavy states are added at the corresponding mass threshold.

The uncertainties due to x and t discretisation are estimated to be of \sim 1% and \sim 0.1%, respectively.

All EW & SM interactions are implemented, including all features listed in the previous slide.

- We work in the **mass eigenstate basis** and **solve the DGLAP numerically** in **x-space**, discretising the [10-6, -1] interval
- After identifying PDFs which are identical because of flavour symmetry, we remain with **42 independent PDFs**:

-
-
-

LePDF

Momentum fractions

Table 4. Fraction of the momentum carried by each parton at $Q = 3, 10, 30$ TeV.

Momentum conservation $u, d: 1.6 \times 10^{-7}$

$$
\sum_{i} \int dx \times f_i(x, \mathcal{Q}^2) = 4,0037
$$

Fermion number conservation $Q = 3 TeV$ $\int dx \left(\oint_{\ell_1} + \oint_{V_{\ell}} + \oint_{\ell_{\ell}} - \oint_{\overline{\ell}_{\ell}} - \oint_{\overline{V_{\ell}}} - \oint_{\overline{V_{\ell}}} - \oint_{\overline{\ell}_{\ell}} \right)$ e: 6×10^{-7} µ: 1.0018 τ: 6 × 10-7

 $\int dx \left(\int u_L^i + \int d_L^i + \int u_R^i + \int d_R^i - \int u_L^i - \int d_L^i - \int d_R^i \right)$

c,s: 1.6×10^{-7} t,b: 4×10^{-5}

PDFs of a muon

Here we show scale uncertainties by varying the factorisation scale by a factor of 2.

- Photon and muon PDF mainly given by QED: scale as *α* log *Q2 / mµ 2* ~ 8% scale uncertainty at LL (at 500GeV)
- EW bosons and neutrino PDFs scale as *α* log *Q2 / mW2* ~ 38% scale uncertainty at LL (at 500GeV)

Theory improvements are required to reduce these uncertainties down to the percent level.

Polarisation

Since EW interactions are chiral, PDFs become polarised. Bauer, Webber [1808.08831]

E.g. in case of W -PDF, coupled to μ_L , the PDF for RH W's goes to zero for $x \rightarrow 1$ faster than LH W's, since $P_{V+f}(z) = (1-z)/z$ while $P_{V+f}(z) = 1/z$.

Vectors polarisation: V+ / V- Fermions polarisation: ψL / ψ^R

O(1) polarisation effects! (except for photon PDF)

EW Sudakov double logs from ISR

The **EW Sudakov double logs** arises as a non-cancellation of the IR soft divergences $(z \rightarrow 1)$ between real emission and virtual corrections.

The Bloch-Nordsieck theorem is violated for non-abelian gauge theories

- \rightarrow IR divergencies are not cancelled in inclusive processes, since the initial state is EW non-singlet
- \rightarrow We are often interested in exclusive processes, since we measure the SU(2) charge (W vs Z, t vs b, etc...)

Here I am interested in **resumming the EW double logs** related to the **initial-state radiation**.

At the leading-log level we can neglect soft radiation Manohar, Waalewijn [1802.08687]

In case of collinear W emission they can be implemented (and resummed) at the Leading Log level by putting an explicit IR cutoff $z_{max} = 1 - Q_{EW} / Q$

P. Ciafaloni, Comelli [hep-ph/9809321], Fadin et al. [hep-ph/9910338], M. Ciafaloni, P. Ciafaloni, Comelli [hep-ph/0001142, hep-ph/0103315] see also Denner, Pozzorini [hep-ph/0010201], Pozzorini [hep-ph/0201077], Manohar [1409.1918], Pagani, Zaro [2110.03714], …

M. Ciafaloni, P. Ciafaloni, Comelli [hep-ph/0111109]; Bauer, Ferland, Webber [1703.08562]; Manohar, Waalewijn [1802.08687]

EW Sudakov double logs from ISR

In case of collinear W emission they can be implemented (and resummed) at he **Double Log** level equations by putting an **explicit IR cutoff** $z_{max} = 1 - Q_{EW} / Q$ $(Q_{EW} = m_W)$

$$
\frac{\alpha_{ABC}(Q)}{2\pi} \int_x^1 \frac{dz}{z} P_{BA}^C(z) f_A\left(\frac{x}{z}, Q^2\right) \quad \to \quad \frac{\alpha_{ABC}(Q)}{2\pi} \int_x^{\frac{ABC}{2\max}(Q)} \frac{dz}{z} P_{BA}^C(z) f_A\left(\frac{x}{z}, Q^2\right)
$$

This modifies also the **virtual corrections** as:

M. Ciafaloni, P. Ciafaloni, Comelli [hep-ph/0111109] Bauer, Ferland, Webber [1703.08562] see Manohar, Waalewijn [1802.08687] for a different approach

$$
P_A^v(Q) \supset -\sum_{B,C} \frac{\alpha_{ABC}(Q)}{2\pi} \int_0^{z_{\text{max}}(Q)} dz z P_{BA}^C(z)
$$

This happens if $P_{BA}^C,~U_{BA}^C \propto \frac{1}{1}$ and $A \neq B$ otherwise we set z_{max} =1 and use the +-distribution.

The non-cancellation of the *zmax* dependence between emission and virtual corrections generates the double logs.

This happens if
$$
P_{BA}^C
$$
, $U_{BA}^C \propto \frac{1}{1-z}$ and $A \neq$

The peak at around pT ∼ 1350 GeV is due to the fact that, for those values of pT the kinematical configuration with $x_1 = 1$ (x_1 being the Bjorken variable for the incoming muon) enters the range of rapidities included in the integration.

For $x_1 \approx 1$ the μ -PDF gets the large enhancement due to it being the valence parton, remnant of the Dirac delta that describes the zeroth order PDF of the muon.

Compton Scattering @ MuC

WH production @ MuC

While at present the effect is washed out by the scale uncertainties, these are expected to be reduced in the future, since one of the main goals of muon colliders is to perform measurements of EW processes at high energy with O(1%) precision.

Consider **associated W H production at a MuC**

