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Introduction

The dimension of the tangent space is not necessarily equal to the
dimension of a curved manifold. Weinberg, 1984

Gravitational theories can be described as gauge theories.
Utiyama, 1956; Kibble, 1961; MacDowell & Mansouri, 1977; Chamseddine &

West, 1977; Ivanov & Niederle, 1980; Kibble & Stelle, 1985

Particle physics theories are also gauge theories.
Unification of gravity with internal interactions could be possible by
larger gauge groups.

We aim to unify conformal gravity as a gauge theory with internal
interactions under one unification gauge group.
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Gauge theory of SO(2,3)

Instead of the Poincaré group - Anti-de Sitter group: SO(2,3)
Same amount of generators BUT they can be written on equal
footing (semisimple group):

[M̂AB, M̂CD] = ηACM̂DB − ηBCM̂DA − ηADM̂CB + ηBDM̂CA

ηAB is the 5-dim Minkowski metric with two timelike coefficients (1st
and 5th) and A, . . . ,D = 1 . . . 5
Perform a splitting of the indices A = (a, 5)
Define M̂ab = Mab and M̂a5 = 1

mPa, [m] = L−1

Gauge connection: Aµ = 1
2 ω̂

AB
µ M̂AB = 1

2ω
ab

µ Mab + e a
µ Pa

where ω̂ ab
µ = ω ab

µ and ω̂ a5
µ = me a

µ

The same for the field strength tensor R̂ AB
µν :

R̂ ab
µν = R ab

µν + 2m2e [a
µ e b]

µ , R̂ a5
µν = mT a

µν
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Consider the following SO(2, 3) invariant quadratic action:

S = aAdS

∫
d4x

(
myE ϵABCDE

1
4 R̂µν

ABR̂ρσ
CDϵµνρσ + λ

(
yE yE + m−2

) )
yE an internal space vector field
vector taken to be gauge fixed towards the 5-th direction:

y = y0 =
(
0, 0, 0, 0,m−1

)
.

the non-vanishing value y5(x) is responsible for the symmetry
breaking of SO(2, 3) to the SO(1, 3)

S = aAdS
4

∫
d4xϵµνρσR̂ ab

µν R̂ cd
ρσ ϵabcd

= aAdS
4

∫
d4xϵµνρσϵabcd

(
LRR + m2LeeR + m4Leeee

)
LRR : Gauss-Bonnet - no contribution to the e.o.m.
LeeR : Palatini action (torsionless + Einstein Field Equations)
Leeee : Plays the role of cosmological constant
Solution of Einstein Field Equations is the Anti-de Sitter space
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Conformal 4d gravity as a gauge theory

Group parametrizing the symmetry: SO(2, 4)

15 generators: 6 LT Mab, 4 translations, Pa, 4 conformal boosts Ka
and the dilatation D

Following the same procedure one calculates transf of the gauge fields
and tensors after defining the gauge connection
Action is taken of SO(2, 4) invariant quadratic form
Initial symmetry breaks under certain constraints resulting to the
Weyl action Kaku,Townsend,Van Nieu/zen ’77,

Fradkin, Tseytlin ’85

Initial symmetry breaks spontaneously by introducing a scalar in the
adjoint rep fixed in the dilatation direction, or by two scalars in vector
reps.

R., Stefas, Zoupanos ’24
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SSB by using a scalar in the adjoint representation
Gauge connection:

Aµ = 1
2ωµ

abMab + eµ
aPa + bµ

aKa + ãµD,

Field strength tensor:

Fµν = 1
2Rµν

abMab + R̃µν
aPa + Rµν

aKa + RµνD,

where
Rµν

ab = ∂µων
ab − ∂νωµ

ab − ωµ
acωνc

b + ων
acωµc

b − 8e[µ
[abν]

b]

= R(0)ab
µν − 8e[µ

abν]
b],

R̃µν
a = ∂µeν

a − ∂νeµ
a + ωµ

abeνb − ων
abeµb − 2ã[µeν]

a

= T (0)a
µν − 2ã[µeν]

a,

Rµν
a = ∂µbν

a − ∂νbµ
a + ωµ

abbνb − ων
abbµb + 2ã[µbν]

a

= T (0)a
µν (b) + 2ã[µbν]

a,

Rµν = ∂µãν − ∂ν ãµ + 4e[µ
abν]a,
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We start with the parity conserving action, which is quadratic in terms of
the field strength tensor and introduce a scalar in the rep 15

SSO(2,4) = aCG

∫
d4x

[
tr ϵµνρσmϕFµνFρσ +

(
ϕ2 − m−21l4

)]
,

The scalar expanded on the generators is:

ϕ = ϕabMab + ϕ̃aPa + ϕaKa + ϕ̃D,

We pick the specific gauge in which ϕ is diagonal of the form
diag(1, 1,−1,−1). Specifically we choose ϕ to be only in the direction of
the dilatation generator D:

ϕ = ϕ0 = ϕ̃D ϕ2=m−21l4−−−−−−−→ ϕ = −2m−1D.

The resulting broken action is (after employing anticommutator relations
and the traces over the generators):

SSO(1,3) = aCG
4

∫
d4xϵµνρσϵabcdRµν

abRρσ
cd
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The ãµ is not present in the action, so we can set it equal to zero.

Rµν is also absent so we can also set it equal to zero

Rµν = ∂µãν − ∂ν ãµ + 4e[µ
abν]a = 0 ãµ=0−−−→

eµ
abνa − eν

abµa = 0

We examine two possible solutions of the above equation:
bµ

a = aeµ
a, Chamseddine ’03

bµ
a = −1

4

(
Rµ

a + 1
6Reµ

a
)

Kaku, Townsend, van Nieuwenhuizen, 78
Freedman, Van Proyen ”Supergravity” ’12

The first choice leads to the Einstein-Hilbert action, while the second leads
to Weyl action.
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Einstein-Hilbert action

When bµ
a = aeµ

a, the broken action becomes:

SSO(1,3) = aCG
4

∫
d4xϵµνρσϵabcdRµν

abRρσ
cd =⇒

SSO(1,3) = aCG
4

∫
d4xϵµνρσϵabcd

[
R(0)ab

µν R(0)cd
ρσ − 16m2aR(0)ab

µν eρ
ceσ

d+

+ 64m4a2eµ
aeν

beρ
ceσ

d
]

This action consists of three terms:
LRR : Gauss-Bonnet - no contribution to the e.o.m.
LeeR : Palatini action (torsionless + Einstein Field Equations)
Leeee : Plays the role of cosmological constant
Solution of Einstein Field Equations is the Anti-de Sitter space, when
a < 0.
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Weyl action

When bµ
a = −1

4(Rµ
a + 1

6Reµ
a) , the broken action becomes

S = aCG
4

∫
d4xϵµνρσϵabcd

[
R(0)ab

µν − 1
2

(
ẽµ

[aRν
b] − ẽν

[aRµ
b]

)
+

+ 1
3Rẽµ

[aẽν
b]

]
[
R(0)cd

ρσ − 1
2

(
ẽρ

[cRσ
d] − ẽσ

[cRρ
d]

)
+

+ 1
3Rẽρ

[c ẽσ
d]

]
,

where ẽµ
a = meµ

a is the rescaled vierbein. The above action is equal
to

S = aCG
4

∫
d4xϵµνρσϵabcdCµν

abCρσ
cd ,

where Cµν
ab is the Weyl conformal tensor.
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Unification of gravity theories with Internal Interactions

So far in the gauge theoretic approach of gravity, general relativity is
described by gauging the symmetry of the tangent manifold in four
dimensions.
Usually the dimension of the tangent space is considered to be equal
to the dimension of the curved manifold. However, the tangent group
of a manifold of dimension d is not necessarily SOd .

Weinberg ’84

It has been suggested that by gauging an enlarged symmetry of the
tangent space in four dimensions one could unify gravity with internal
interactions.

Chamseddine, Mukhanov ’10

We aim to unify gravities as a gauge theory with internal interactions
under one unification gauge group.
Attempts of unification for the case of Einstein gravity: Chamseddine
and Mukhanov, 2010; Percacci, 1991; Konitopoulos, R., Zoupanos,
2023.
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Unification group

Weyl gravity is based on gauging the SO(2, 4) , while Fuzzy gravity
on SO(2, 4) × U(1).
Internal Interactions by SO(10) (GUT).
Spontaneous symmetry breakings are used in all cases.

Usually to have a Chiral theory we need a SO(4n + 2) group. The smallest
unification group in which both Majorana and Weyl condition can be
imposed is SO(2, 16) from which:

SO(2, 16) SSB−−→ SO(2, 4) × SO(12)

and

SO(12) SSB−−→ SO(10) × [U(1)].
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Breakings and branching rules

We start from SO(2, 16) ∼ SO(18)
For CG we gauge SO(2, 4) ∼ SU(2, 2) ∼ SO(6) ∼ SU(4)
For FG we gauge SO(2, 4) × U(1) ∼ SO(6) × U(1) ∼ U(4)
For internal interactions we require SO(10) GUT.

CSO(2,16)(SO(2, 4)) = SO(10) and
CSO(2,16)(SO(2, 4) × U(1)) = SO(10) × U(1).
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Breakings and branching rules (Continued)

SO(18) ⊃ SU(4) × SO(12)

18 = (6, 1) + (1, 12) vector
153 = (15, 1) + (6, 12) + (1, 66) adjoint
256 = (4, 3̄2) + (4̄, 32) spinor
170 = (1, 1) + (6, 12) + (20′, 1) + (1, 77) 2nd rank symmetric

VEV in the ⟨1, 1⟩ component of a scalar in 170 leads to SU(4) × SO(12) .
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Breakings and branching rules (Continued)

We break the SO(12) down to SO(10) × U(1) or to SO(10) with the 66
rep or the 77 rep.

SO(12) ⊃ SO(10) × U(1)
66 = (1)(0) + (10)(2) + (10)(−2) + (45)(0)
77 = (1)(4) + (1)(0) + (1)(−4) + (10)(2) + (10)(−2) + (54)(0)

by giving VEV to the ⟨(1)(0)⟩ of the 66 rep we obtain SO(10) × U(1).

by giving VEV to the ⟨(1)(4)⟩ of the 77 rep we obtain SO(10).
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Breakings and branching rules (Continued)
We break SU(4) in 2 steps:

First step: Breaking SU(4) → Sp4:

SU(4) ⊃ Sp4
4 = 4
6 = 1 + 5

giving VEV to a scalar in 6 rep in the ⟨1⟩ component, the SU(4)
breaks down to the Sp4.
Second step: Breaking Sp4 → SU(2) × SU(2)

Sp4 ⊃ SU(2) × SU(2)
5 = (1, 1) + (2, 2)
4 = (2, 1) + (1, 2).

giving VEV in ⟨1, 1⟩ of a scalar in the 5 rep we obtain eventually the
Lorentz group SU(2) × SU(2) ∼ SO(1, 3).
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Fermions
Weyl condition: ΓD+1ψ± = ±ψ±, D = even.

Note that since ΓD+1 = γ5 ⊗ γd+1 , the eigenvalues of γ5 and γd+1 are
interrelated. However the choice of the eigenvalue of ΓD+1 does not
impose the eigenvalue on γ5 !

Majorana condition: ψ = C ψ̄T

Weyl-Majorana spinors can exist when D = 4n + 2 .
Type of spinors of SO(p, q) depends on signature (p − q)mod8 .
For p + q = even :

0 : real rep
4 : quaternionic rep
2 or 6 : complex rep

Chapline & Slansky, 1982; Polchinski, 1998; D’Auria et al., 2001;
Figueroa-O’Farrill, n.d.
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Fermions (Continued)
In the case of SO(2, 16) the signature is 6 , and imposing the Weyl and
Majorana conditions is permitted.

Dirac spinors are defined as direct sum of Weyl spinors and the Weyl
condition chooses one of them, say σ18 = 256 .
Spinor rep branching rules are:

SO(18) ⊃ SU(4) × SO(12)
256 = (4, 3̄2) + (4̄, 32)

Imposing Majorana condition the fermions are in the (4̄, 32) . Then
SO(12) ⊃ SO(10) × [U(1)]

32 = (1̄6)(1) + (16)(−1)
On the other hand

SU(4) → Sp4 → SU(2) × SU(2)
4 = 4 = (2, 1) + (1, 2).

18 / 20



Fermions (Continued)
After all the breakings:

SU(2) × SU(2) × SO(10) × [U(1)]
{[(2, 1) + (1, 2)}{(16)(−1) + (1̄6)(1)}

= 16L(−1) + 1̄6L(1) + 16R(−1) + 1̄6R(1)

and since 1̄6R(1) = 16L(−1) and 1̄6L(1) = 16R(−1),

= 2 × 16L(−1) + 2 × 16R(−1).

Finally, keeping only the left-handed part we obtain:

2 × 16L(−1)

Imposing also the Majorana condition in lower dims we obtain

16L(−1) of SO(10) × [U(1)]
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Thank you for your attention!
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