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Introduction

@ The dimension of the tangent space is not necessarily equal to the
dimension of a curved manifold. Weinberg, 1984

@ Gravitational theories can be described as gauge theories.
Utiyama, 1956; Kibble, 1961; MacDowell & Mansouri, 1977; Chamseddine &
West, 1977; Ivanov & Niederle, 1980; Kibble & Stelle, 1985

o Particle physics theories are also gauge theories.

@ Unification of gravity with internal interactions could be possible by
larger gauge groups.

We aim to unify conformal gravity as a gauge theory with internal
interactions under one unification gauge group.
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Gauge theory of SO(2,3)

@ Instead of the Poincaré group - Anti-de Sitter group: SO(2,3)

@ Same amount of generators BUT they can be written on equal

footing (semisimple group):
[Mag, Mcp) = nacMpg — n8c Mpa — napMcg + ngpMca

@ 7ap is the 5-dim Minkowski metric with two timelike coefficients (1st
and 5th) and A,...,.D=1...5

@ Perform a splitting of the indices A = (a,5)

o Define My, = Map and M5 = 2P, [m] = L1

e Gauge connection: A, = %Q;MABI\A/IAB = %wu"bMab + e, P,

@ where &0 =w 2 and &2 = me ?

M M M "
@ The same for the field strength tensor f\’WAB :

R, =R,"+2melef), R, ®=mT,’



e Consider the following SO(2, 3) invariant quadratic action:

N

S = aads / d4X(myEGABCDEZRALVABI:\?paCDEHVpJ + A (yEyE + m_z) )

yE an internal space vector field
vector taken to be gauge fixed towards the 5-th direction:

y=y0= (0,0,0,0, m*l) .

e the non-vanishing value y°(x) is responsible for the symmetry
breaking of SO(2,3) to the SO(1,3)

dAdS 4 vpop abp cod
S= T/d xelvP R/U/ Rpa €abcd

dAdS
= T / d4X€MVpJ€3de (ERR + mzﬁeeR + m4£eeee)

Lrr: Gauss-Bonnet - no contribution to the e.o.m.
Leer: Palatini action (torsionless + Einstein Field Equations)
Leeee: Plays the role of cosmological constant
@ Solution of Einstein Field Equations is the Anti-de Sitter space
I, 40



Conformal 4d gravity as a gauge theory

@ Group parametrizing the symmetry: SO(2,4)

@ 15 generators: 6 LT M,p, 4 translations, P,, 4 conformal boosts K,
and the dilatation D

@ Following the same procedure one calculates transf of the gauge fields
and tensors after defining the gauge connection

@ Action is taken of SO(2,4) invariant quadratic form

@ Initial symmetry breaks under certain constraints resulting to the
Wey/ action Kaku, Townsend,Van Nieu/zen '77,

Fradkin, Tseytlin '85

@ Initial symmetry breaks spontaneously by introducing a scalar in the
adjoint rep fixed in the dilatation direction, or by two scalars in vector
reps.

R., Stefas, Zoupanos '24
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SSB by using a scalar in the adjoint representation

Gauge connection:

1
A, = 2wuabMab + e,°P,+ b,?K, + 3,D,

Field strength tensor:

Fu = %Ruvab/\/’ab + Ruv®Pa + Ru?Ky + Ry D,
where

R = 0,0, — 8,0, — w,wye® + w, w,cb — 8e[M[abu]b]
= RD™ — 8ey,7b,)",

R =0,6°— e, +w, e,y —w, e — PEN-Y
= TO? - 23,e%,

Ruv® = 8uby® — 9y b,® + wu by — wy* by + 231,b,)°
= T(92(b) + 23),b,)%,

Ry = 0,3, — 0,3, + 4e1,”by)a,
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We start with the parity conserving action, which is quadratic in terms of
the field strength tensor and introduce a scalar in the rep 15

Sso(2,4) = acc / d*x {tr P moF . Foo + ((152 — m*2]l4)} ,
The scalar expanded on the generators is:
¢ = 6" Map + ?Pa + K, + 6D,

We pick the specific gauge in which ¢ is diagonal of the form
diag(1,1,—1,—1). Specifically we choose ¢ to be only in the direction of
the dilatation generator D:

o= ¢° = <5D —>¢2:m72]14 é=—2m"1D.

The resulting broken action is (after employing anticommutator relations
and the traces over the generators):

ace 4 b d
5SO(1,3) = 4 /d Xﬁl“jpo-fabcdRuua Rpac

7/ 20



The 3, is not present in the action, so we can set it equal to zero.

R, is also absent so we can also set it equal to zero
~ ~ a 3,=0
Ry = 0ndy — 0,3, + 4e,°by), =0 ——
e, bya—e, by, =0

We examine two possible solutions of the above equation:
) bua = aeua, Chamseddine '03
o b‘ua = —% (R#a + %Reﬂa) Kaku, Townsend, van Nieuwenhuizen, 78
Freedman, Van Proyen "Supergravity” '12

The first choice leads to the Einstein-Hilbert action, while the second leads
to Weyl action.
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Einstein-Hilbert action

@ When b,? = ae,?, the broken action becomes:

acc 5
580(173) = T / d4X€M paeadeRpl/abRpo'Cd —
ace
550(173) = e / d4X€qua€ade {R;(L?/)abR,(;g)Cd . 16m23R£?/)abepCeUd—|—
+ 64m4a2euaeybepceod}

This action consists of three terms:

Lrr: Gauss-Bonnet - no contribution to the e.o.m.

Leer: Palatini action (torsionless + Einstein Field Equations)
Leeee: Plays the role of cosmological constant

Solution of Einstein Field Equations is the Anti-de Sitter space, when
a<0.
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Weyl action
o When b,? = —%(Rua + %Re#") , the broken action becomes
S = %/dllxe’“’p"eabcd [ng?j)ab B % (éu[aRyb] B éy[aRub]) N
— %Réﬂlaéybl}
(R — % (3R, 4 — &,1°R, ) +
+ %Répkéadl},

where €, = me,? is the rescaled vierbein. The above action is equal
to

ace
S= 4 /d4X€'m/p0€abcd C,uz/ab CpaCda

where Cw,ab is the Weyl conformal tensor.
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Unification of gravity theories with Internal Interactions

@ So far in the gauge theoretic approach of gravity, general relativity is
described by gauging the symmetry of the tangent manifold in four
dimensions.

@ Usually the dimension of the tangent space is considered to be equal
to the dimension of the curved manifold. However, the tangent group
of a manifold of dimension d is not necessarily SO,.

Weinberg '84

@ It has been suggested that by gauging an enlarged symmetry of the
tangent space in four dimensions one could unify gravity with internal
interactions.

Chamseddine, Mukhanov '10

@ We aim to unify gravities as a gauge theory with internal interactions
under one unification gauge group.

@ Attempts of unification for the case of Einstein gravity: Chamseddine
and Mukhanov, 2010; Percacci, 1991; Konitopoulos, R., Zoupanos,
2023.
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Unification group

e Weyl gravity is based on gauging the SO(2,4) , while Fuzzy gravity
on 50(2,4) x U(1).

@ Internal Interactions by SO(10) (GUT).

@ Spontaneous symmetry breakings are used in all cases.

Usually to have a Chiral theory we need a SO(4n + 2) group. The smallest
unification group in which both Majorana and Weyl condition can be
imposed is SO(2,16) from which:

S0(2,16) 225, SO(2,4) x SO(12)
and

50(12) 228, s0(10) x [U(1)].
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Breakings and branching rules

We start from SO(2,16) ~ SO(18)
e For CG we gauge SO(2,4) ~ SU(2,2) ~ SO(6) ~ SU(4)
e For FG we gauge SO(2,4) x U(1) ~ SO(6) x U(1) ~ U(4)
@ For internal interactions we require SO(10) GUT.

Cso(2.16)(SO(2,4)) = SO(10) and
Cs0(2.16)(SO(2,4) x U(1)) = SO(10) x U(1).
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Breakings and branching rules (Continued)

50(18) O SU(4) x SO(12)

18 = (6,1) +(1,12) vector
153 = (15,1) + (6, 12) + (1, 66) adjoint
256 = (4,32) + (4,32) spinor
170 = (1,1) + (6,12) + (20", 1) + (1, 77) 2nd rank symmetric

VEV in the (1,1) component of a scalar in 170 leads to SU(4) x SO(12) .

..., 142



Breakings and branching rules (Continued)

We break the SO(12) down to SO(10) x U(1) or to SO(10) with the 66
rep or the 77 rep.

S0(12) > SO(10) x U(1)
66 = (1)(0) + (10)(2) + (10)(—2) + (45)(0)
77 = (1)(4) + (1)(0) + (1)(—4) + (10)(2) + (10)(—2) + (54)(0)

by giving VEV to the ((1)(0)) of the 66 rep we obtain SO(10) x U(1).
by giving VEV to the ((1)(4)) of the 77 rep we obtain SO(10).

e



Breakings and branching rules (Continued)

We break SU(4) in 2 steps:
o First step: Breaking SU(4) — Sps:

SU(4) D Sp4
4=14
6=1+5

giving VEV to a scalar in 6 rep in the (1) component, the SU(4)
breaks down to the Spy.
@ Second step: Breaking Sps — SU(2) x SU(2)

Sps O SU(2) x SU(2)
5=(1,1)+(22)
4=(2,1)+(1,2).
giving VEV in (1,1) of a scalar in the 5 rep we obtain eventually the
Lorentz group SU(2) x SU(2) ~ SO(1,3).
.., 6/ 20



Fermions

Weyl condition: TPHleyy = 445, D = even.

Note that since P! = 45 @ 49*1 | the eigenvalues of 4°> and 79+ are
interrelated. However the choice of the eigenvalue of FP*! does not
impose the eigenvalue on ~° |

Majorana condition: ¢ = Ci)T

Weyl-Majorana spinors can exist when D =4n+2 .
Type of spinors of SO(p, q) depends on signature (p — g)mod8 .
For p4+ g = even :

@ 0: real rep

@ 4 : quaternionic rep

@ 2 or 6 : complex rep

Chapline & Slansky, 1982; Polchinski, 1998; D'Auria et al., 2001;
Figueroa-O’Farrill, n.d.
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Fermions (Continued)

In the case of SO(2,16) the signature is 6 , and imposing the Weyl and
Majorana conditions is permitted.

Dirac spinors are defined as direct sum of Weyl spinors and the Weyl
condition chooses one of them, say o153 = 256 .
Spinor rep branching rules are:

S0(18) D SU(4) x SO(12)
256 = (4,32) + (4,32)
Imposing Majorana condition the fermions are in the (4,32) . Then
S0(12) D SO(10) x [U(1)]
32 = (16)(1) + (16)(—1)
On the other hand
SU(4) — Spa — SU(2) x SU(2)
4=4=(2,1)+(1,2).
I, 13/ 20



Fermions (Continued)

After all the breakings:

SU(2) x SU(2) x SO(10) x [U(1)]
{[(2,1) + (1,2)}{(16)(~1) + (16)(1)}
= 164(—1) + 16, (1) + 16g(—1) + 16r(1)

and since 16z(1) = 16,(—1) and 16,(1) = 16p(—1),

=2x16,(—1)+ 2 x 16g(-1).
Finally, keeping only the left-handed part we obtain:

2x16,(—1)
Imposing also the Majorana condition in lower dims we obtain
16,(—1) of SO(10) x [U(1)]
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Thank you for your attention! I
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