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An operational approach is one that grounds some phenomena in
measurements of physical observable using tools such as detectors, rods,
and clocks
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An operational approach is one that grounds some phenomena in
measurements of physical observable using tools such as detectors, rods,
and clocks — “Bottom up” approach

This work aims to use such approach by studying quantum information
structure of space-time specifically encoded by a superposed Minkowski
spacetime.

Specifically, study of entanglement generation in superposed Minkowski
spacetime
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m Take two uncorrelated particle detectors and allow them to /ocally
interact with a free quantum field.

m After some time, these two detectors will become entangled, even if
they remain space-like separated.

m This can be attributed to the entanglement existing in the quantum
vacuum. Entanglement vanishes if the separation between the
detectors and energy gap of the detectors is very large.
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m Take two uncorrelated particle detectors and allow them to /ocally
interact with a free quantum field.

m After some time, these two detectors will become entangled, even if
they remain space-like separated.

m This can be attributed to the entanglement existing in the quantum
vacuum. Entanglement vanishes if the separation between the
detectors and energy gap of the detectors is very large.

m How does global structure of spacetime? affect entanglement
harvesting phenomena?

2E. Martin-Martinez, A. R. H. Smith, and D. R. Terno, Phys. Rev. D 93, 044001:(2016).
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m One uniqueness of QM is superposition principle

m Geometry 4+ Superposition

— Superposition of “semi-classical” space-time states - respective
amplitudes not related by global coordinate transformation.
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m Gravity is inherently a theory of Geometry

m One uniqueness of QM is superposition principle

m Geometry 4+ Superposition

— Superposition of “semi-classical” space-time states - respective
amplitudes not related by global coordinate transformation.

Disclaimer!! Not a full theory of QG! But assume that this is a valid
solution within an anticipated theory .
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B Setting the background geometry

B Some Calculational Details

B Results
m Transition probabilities
m Entanglement harvesting
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Setting the background geometry

MOEM/JO
JOL1 0 (t7xayvz) - (t,$,y,Z+L1)
Jé;? c(tx,y,2) = (t,x,y, 2+ L)

Anwesha Chakraborty (Uni Meb) [T S



Setting the background geometry

MOEM/JO
JOL1 0 (t7xayvz) - (t,$,y,Z+L1)
Jé;? c(tx,y,2) = (t,x,y, 2+ L)

+
¢

J. Foo, C. S. Arabaci, M. Zych, and R. B. Mann, Phys. Rev. D 107, 045014 (2023).
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Setting the background geometry

A

b(x) = \%v S dge)

N =37 (), &’(Il)] = §(x — 2’)+ image terms

v = %1 denoting untwisted and twisted field.
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Setting the background geometry

. 1 R
o(z)=—= ) 1"é(Jgx)

TR 2T
N =37 (), &’(Il)] = §(x — 2’)+ image terms
v = %1 denoting untwisted and twisted field.

Vacuum 3: Same as Minkowski vacuum |0) ¢

3J. Foo, C. S. Arabaci, M. Zych, and R. B. Mann, Phys. Rev. Lett. 129, 181301 (2022).
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Setting the background geometry

m Model systems that couples to quantum fields
m Operational approach to probe quantum fields
m Example: Atom-Field interaction

e B N

Transition
of detector coupled
to a field

Field quanta
(particles)

s B .

Unruh deWitt Detector
—_— 1 —1
Energy Gap E
— 0 _ 0
Excitation Deexcitation
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Some Calculational Details

Hilbert space: HaQHB® Ho @ Hg
(3
Initial state: |i) =10,0) ® |0)F & |+)
1
+)=—(|L1) £ |L
|+) \/§(| 1) & |L2))
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Some Calculational Details

Hilbert space: HaQHB® Ho @ Hg
(3
Initial state: |i) =10,0) ® |0)F & |+)
1
|£) = —=(L1) £1]L2))

V2

Interaction Hamiltonian:

HE"(rp) = M (7p) (04(mp) + 0-(7D) ) ® Y Dleb ()] ® |Li){Li|
b (Tp \[D(+D D>¢:Z1,2 p(TD

Spacetime

SU(2) ladder operator
Quantum Field

where o, (7p) = e'270 |1)(0], o_(7p) = e~ 127D |0)(1],

Qp=Energy gap of detector
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Unitary evolution:

U= Tlexp{ - i/ dt (U2 Hara) 1+ 1 (22) HB(TB“))}]
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Unitary evolution:

dTB

U= Tlexp{ - i/ dt (U2 Hara) 1+ 1 (22) HB(TB“))}]

Final state:

r) = SN =37 Unlaps)
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Unitary evolution:

dra drp

U= ’f'lexp{ —i/ dt (Z2) Ha(ra(®) @1 +10 (7] HB(TB“))}]

Final state:

hop) = DAY = 3 Unleh)
Joint density operator of the detectors:

pap = Tro[(£|ys) (s +)]

1-pPPA_pPEB LB, 0 0 X,
= 0 PiE’B —Ex Cx 0 ~ ‘X’ state
0 Cxr PPA_Eyr 0

T4 0 0 Ey

Ey = PEPAPEE 4 |CL? 4 | X2]? ~ 9(\Y)
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Some Calculational Details

1
PP = ;1 Pp' + Pp? £2P5 ")
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Some Calculational Details

1
PP = ;1 Pp' + Pp? £2P5 ")

PZI)ML _ /dtdt/nD(t)nD(tl) e~ 192p (7D (t)—TD (")) w ki <xD(t),:ED(tl))
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Some Calculational Details

1
PP = ;1 Pp' + Pp? £2P5 ")

PZI)ML _ /dtdt/nD(t)nD(tl) e~ 192p (7D (t)—TD (")) w ki <xD(t),:ED(tl))
2

where, 7np(t) = e 307

Pgle _ /dtdtlnD(t)UD(t,) e~ 12p(tp(t)=7p (")) 7/ L1L2 <£I?D(t/),$D(t))
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Some Calculational Details

1

E,D _

=Bt + Pr2 L 2P ite

PLi = / dtdtnp (Enp(t') 7 WO W (2 (1),p ()
where,  np(t) =e” 27
P / dt dtnp (o ()71 PO WL (2p(¢), 2p(0)
WE(a(t), 2(#)) = (0
NZ” 70} é

L (x) (i)[‘(zlf/) ‘0>

1) x) “( ](m )

9
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Some Calculational Details

1

E,D _

=Bt + Pr2 L 2P ite

P z/dtdt np()np (') e~ 2o =Tp () yL: <”3D(t),$D(t'))
where, 7np(t) =e 2.2

Pgle _ /dtdt/UD(t)UD(t,) e~ 12p(tp(t)=7p (")) 7/ L1L2 <£I?D(t/),$D(t))

WE(z(t),2(t) = <o &L (2) DL (') (o>
NZW (0| 61, @) o) [0)

WL (a(t), o(t')) = sz (0| 85, 2) ST, )

)
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272 2
oo —p?L% /40

L; M o (<] i
PDz:PD + — E =

W oL, [Im(eipLiQD erf (ll;i +0'QD)) —sin(QDpLi)]
p=1 g

o
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[Im (eipLiQD erf (ll;i + O'QD)) — sin(QDpLi)]

27 =1 pL; o

1 202
Pg’ = [e_a Vi —/7oQp erfc(aQD)]
o
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[Im (e‘PLiQD - (i’;Li + anD)) - sin(QDpLi)]

27 =1 pL; o

1 202
Pg’ = [e_a Vi —/7oQp erfc(oQD)]
o

1
ppttr=— 3 P+
Lin=Lom

o

o~ (Lyn—Lym)? /402
2/ N [P, A (Lin — Lam)

[1m (o Fan=tamfp o (WA 2 L2 g ))

—sin(Qp(Lin — Lgm))}
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Probability Pp
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Untwisted Field Twisted Field

Entanglement harvesting
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Results

B!
2

N = Z |Negative eigenvalues of pl4]|
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Results

B!
2

N = Z |Negative eigenvalues of pl4]|

Conditions to produce entanglement:

|X|>PPF | |C|>VE
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Results

B!
2

N = Z |Negative eigenvalues of pl4]|

Conditions to produce entanglement:
|X|>PPF,|C|>VE

E = PyPp+|CJ]? +|X|* — Second condition is never satisfied
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Results

Untwisted Field Twisted Field

a=+/(ta—25)%+ (ya —yp)? + (24 — 25)2, For simplicity we consider
a=2z4—2B.
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Results

m Arbitrary superposition of two spacetime states and measure of joint
density matrix in arbitrary control state

cos (t) - +sin (t)

m Consider trajectory of the detectors to be also in superposed state

m Consider field vacuum is also quantum controlled <+ Gravitational
and matter degrees of freedom are coupled.

m Future direction : Connection to Noncommutative geometry?
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