

FACULTY OF MATHEMATICS AND PHYSICS Charles University

Search for a new scalar or pseudoscalar heavy Higgs boson using production of four top quarks at the LHC

Chainika Chauhan On behalf of the ATLAS Collaboration Chainika.chauhan@cern.ch

CORFU WORKSHOP 2024 Workshop on the Standard Model and Beyond 27 Aug 2024

Search targets ...

- Search for Two-Higgs-Doublet-Model¹ (2HDM) type-II $t\bar{t}H/A \rightarrow t\bar{t}t\bar{t}$ signal in the alignment limit using data collected in pp colisions within the ATLAS detector.
 - This search is detailed in [ATLAS-CONF-2024-002].
 - Calculation of exclusion upper limits on the $t\bar{t}H/A \rightarrow t\bar{t}t\bar{t}$ production cross section.
 - Calculation of exclusion lower limits on $tan\beta$ as a function of mass of heavy scalar/pseudoscalar Higgs.

Reinterpretation of results in sgluon Model² for signal $S_8S_8 \rightarrow tttt$

1. Phys. Rept. 516 (2012) 1 2. JHEP 09 (2021) 143

[ATLAS-CONF-2024-002]

Inconsistencies between theoretical and experimental Standard Model (SM) $t\bar{t}t\bar{t}$ process:

• Prediction³ of $t\bar{t}t\bar{t}$ production from the SM: $13.37^{+1.04}_{-1.78}$ fb

• Measurement⁴ of $t\bar{t}t\bar{t}$ production within 1.8 standard deviations of SM prediction: $22.5^{+4.7}_{-4.3}(stat) + 4.6_{-3.4}(syst)$ fb (QCD NLO+EW)

3. arXiv:2212.03259 4. Eur. Phys. J. C 83 (2023) 496

Analysis Overview

 \mathbf{V} Signal: $t\bar{t}H/A \rightarrow t\bar{t}t\bar{t}$

☑ Higgs mass (m_{H/A}): 400-1000 GeV

Decay channel considered: One lepton and Two oppositesign lepton

\square Dominant background: $t\bar{t} + jets$

 $\mathbf{v}_{t\bar{t}} + jets$ estimated using two types of data-driven correction factors:

Heavy flavor (HF) normalization rescaling

Kinematic reweighting using neural network

M Trained Graph Neutral Network (GNN) to separate signals from background.

Profile likelihood fit in all signal-depleted and signal-rich regions.

Similar search published in multi-lepton channel [JHEP 07] <u>(2023) 203</u>] .

Analysis Regions

Events categorised based on the jets, b-tagged jets and lepton multiplicity.

 Different operating points (OPs) are calibrated
 having different efficiency, purity for tagging b-jets and rejection for non b-jets.

In the analysis, a combination of these OPs is used to define regions for improved sensitivity.

Name	$N_{b}^{60\%}$	$N_{b}^{70\%}$	$N_{b}^{85\%}$
2b	-	= 2	-
3bL	≤ 2	= 3	-
3bH	= 3	= 3	> 3
3bV	= 3	= 3	= 3
\geq 4b (2LOS)	-	≥ 4	-
4b (1L)	-	= 4	-
≥5b (1L)	-	≥ 5	-

Background Estimation

 \mathbf{M} Major background: $t\bar{t} + jets$

 $\mathbf{M} \text{inor background: } t\bar{t}H, t\bar{t}W, t\bar{t}Z, \text{ single top quark,} \\ V(=W,Z) + \text{jets (less than 1\% - } t\bar{t}t, t\bar{t}WW, t\bar{t}WZ, tZ)$

 $\overline{tt} + jets$ sub-categorised into $t\overline{t} + \ge 1b$, $t\overline{t} + \ge 1c$ and $t\overline{t} + light$.

 \mathbf{MC} prediction of nominal $t\bar{t} + jets$ is underestimated.

☑ Data-driven corrections applied in two steps.

Heavy flavor (HF) Scaling

Neural Network (NN) reweighting

1L [ATLAS-CONF-2024-002]

Modelling of tt + jets

HF Scaling

NN Reweighting

Meural Network (NN)-based kinematic reweighting [C.P.C 115] (1998)

MN output: a-posterior Bayesian probability.

$$o(\mathbf{x}) = P(data \,|\, \mathbf{x}) = \frac{\alpha_{data} P_{data}(\mathbf{x})}{\alpha_{data} P_{data}(\mathbf{x}) + \alpha_{MC}}$$

 \mathbf{M} Training with $t\bar{t} + jets$ (nominal and alternative) only.

 \mathbf{M} Input variables: Jets multiplicity (N_j), large-R jets (($N_{LR-jets}$), all jets & lepton (p_T) , missing E_T

 \mathbf{M} Reweighting factor: $w(x) = e^{o(x)}$

Multivariate Analysis

Indifference between signal and background, needs a Machine Learning algorithm.

A mass parameterized message passing Graph Neural Network (GNN) used for signal-background discrimination.

☑ Assigns objects (leptons, jets, MET) to graph nodes and their relationships via edges.

Training performed separately using events:

• Jets multiplicity $(N_j) >= 9(7)$ for 1L(2LOS) and b-tagged jets multiplicity $(N_b^{70\%}) >= 3$

The output of the GNN is used as the discriminant in the signal regions.

- The table shows grouped impact of all nuisance parameters.
- \checkmark $t\bar{t} + jets$ modelling uncertainties have highest impact for all mass points.
- Among experimental uncertainties, JES and JER dominates.
- Signal modelling uncertainties have minor impacts.

Uncertainty sou

Signal Modellin BSM $t\bar{t}t\bar{t}$ model Background M $t\bar{t}+\geq 1b$ modellin SM $t\bar{t}t\bar{t}$ modellin $t\bar{t}+j$ ets reweight $t\bar{t}+j$ modellin $t\bar{t}+j$ ets reweight $t\bar{t}+j$ $t\bar{t}+j$ ets reweight $t\bar{t}+j$ $t\bar{t$

Other uncertain Luminosity

- Total systemati
- Statistical unce
- **Total uncertain**

irce	$m_{H/A}$	4=400 GeV	$\Delta \sigma_{t\bar{t}H}$ $m_{H/A}$	/A→tītī [fb] =700 GeV	$m_{H/A}$	_=1000 (
ng						
lling		< 1	+0.1	< 0.1		< 0.1
lodelling						
ing	+11	-10	+3.7	-3.4	+1.9	-1.′
ing	+3	-3	+2.1	-2.1	+0.9	-0.9
ting	+3	-3	+1.0	-1.0	+0.5	-0.:
ng	+2	-2	+0.9	-0.8	+0.4	-0.4
ing	+1	-1	+0.2	-0.2		< 0.1
nd modelling		< 1	+0.4	-0.4	+0.2	-0.2
e and resolution	+4	-2	+1.3	-0.8	+0.5	-0.3
incertainties	+2	-3	+0.6	-0.7	+0.4	-0.4
ency and high- p_{T} extrapolation	+2	-1	+0.7	-0.4	+0.4	-0.4
ties		< 1	+0.3	-0.5	+0.1	-0.2
		< 1	+0.3	-0.1		< 0.1
ic uncertainty	+13	-12	+4.8	-4.6	+2.5	-2.4
ertainty	+6	-6	+3.3	-3.2	+2.3	-2.2
nty	+14	-13	+5.6	-5.4	+3.2	-3.0

[ATLAS-CONF-2024-002]

Statistical Analysis

control and signal regions for both decay channels.

function of GNN score.

2HDM type-II: Exclusion limits on the cross-section of $t\bar{t}H/A \rightarrow t\bar{t}\bar{t}\bar{t}$ process

1L/2LOS [ATLAS-CONF-2024-002]

Search in 1L/2LOS channel combined with previous search in multileptonic channel (2LSS/ML) [JHEP 07 (2023) 203].

Combination performed via a simultaneous profile likelihood fit including all signal and control regions of both the channels.

Mo significant evidence for the heavy Higgs production.

2HDM type-II: Exclusion limits on $tan\beta$

- $\mathbf{\overline{\mathbf{M}}}$ Interpretation for low $tan\beta$ region in the alignment limit $sin(\beta - \alpha) \rightarrow 1$, where h couplings are similar to the SM Higgs boson and $tan\beta$ is the ratio of the vacuum-expectation-values of the two Higgs doublets.
- \mathbf{M} 95% CLs lower limits for *tan* $\boldsymbol{\beta}$ as a function of mass of heavy Higgs for different scenarios in combined channel:
 - When both scalar and (\cdot) Pseudoscalar contribute to the final state
 - When either scalar or Pseudoscalar contribute to the final state

s-gluon model

 \mathbf{M} Reinterpretation of results obtained in the $t\bar{t}H/A \rightarrow t\bar{t}t\bar{t}$ 1LOS channel analysis in the context of s-gluon model [JHEP 09 (2021) 143].

Signal: $S_8S_8 \rightarrow t\bar{t}t\bar{t}$ with mass of s-gluon $(m_{S_8}) \in [0.4, 2.0]$ TeV

☑GNN training used: (masses are in TeV)

m_{S_8}	0.4	0.5	0.6	0.7	0.8	0.9	1.0	1.1	1.2	1.3	1.4	1.5
GNN	0.4	0.5	0.6	0.7	0.8	0.9	1.0	1.0	1.0	1.0	1.0	1.0

Studies combined with multilepton channel using same binning, MC background and systematics as in 2HDM.

195% CLs upper limits on the cross section of the production estimated. **4.4(0.7)** fb excluded at $m_{S_{g}}$ of 0.4(1.0) TeV

 \mathbf{M} S-gluon masses m_{S_8} are excluded below 1.5 TeV.

☑No significant evidence for the sgluon production.

Summary

- Data-driven corrections applied to most dominant background: $t\bar{t} + jets$
- A mass-parameterised GNN used, to optimise signal-background discrimination.
- No significant excess of events above the SM prediction is observed.
- Combination with SSML channel
 - TeV.
- Reinterpretation of results in the context of sgluon model.

Mass signals $m_{S_8} < 1.5$ TeV excluded.

A search for heavy scalar or pseudoscalar higgs in $t\bar{t}H/A \rightarrow t\bar{t}t\bar{t}$ 1LOS channel in the context of 2HDM performed.

Excluded $tan\beta$ values below 1.7(0.7) when H+A contribute and 1.2(0.5) when H or A contribute, at 0.4(1.0)

Analysis Regions : 2LOS

Background Estimation: 2LOS

[ATLAS-CONF-2024-002]

Background estimation: NN reweighting (2LOS)

Statistical Analysis: (2LOS)

Background estimation: $t\bar{t} + jets$ truth classification

Only applied for jets not from t-quark decay.

Particle jets are reconstructed from stable truth particle by anti-kt.

M = 0.4

 $\Box p_T > 15 \text{ GeV}$

 $\boxed{\square} |\eta| < 2.5$

Hadron-jet Matching:

jets	contains hadrons
b-jets	b-hadron(s)
c-jets	c-hadron(s)

ΔR	$p_T(GeV)$	decay from
<0.3	>5	not t-quark
<0.3	>5	not t-quark or W- boson

Background Estimation: NN Reweighting

[ATLAS-CONF-2024-002]

2LOS

List of global features in GNN training

Node	Edge
Object p_T , η ,	E, b- $\left \Delta \eta \right $, $\Delta \phi$, ΔR betwee
tagging score, C	bject pairs of objects
type encoding nu	Imber

Variable	Description
$\sum_{i \in [1,6]} \operatorname{pcb}_i$	Sum of the pcb scores of the six j
H_{T}	$p_{\rm T}$ sum of all reconstructed lepton
$N_{ m jets}$	Jet multiplicities
$H_{\mathrm{T}}^{\mathrm{ratio}}$	$p_{\rm T}$ sum of the four leading jets in
$dR_{ii}^{\text{avg.}}$	Average ΔR across all jet pairs
m_{T}^{W}	W-boson transverse mass calculat
$\Delta R_{bb}^{\min.}$	Minimum ΔR between any pair o
$\Delta R_{\ell b}^{\min.}$	Minimum ΔR between any pair o
$m_{bbb}^{avg.}$	Average invariant mass of all trip
$m_{jj}^{\text{avg.}}$	Average invariant mass of all jet-t
$\sum d_{12}$	Sum of the first k_t splitting scale
$\sum d_{23}$	Sum of the second k_t splitting sca
N _{LR-jets}	Number of large-R jets with a ma
Centrality	$\sum_i p_T^i / \sum_i E_i$ where the sums are
$m_{\ell\ell}$	Invariant mass of the two leptons

[ATLAS-CONF-2024-002]

G	obal
---	------

en H_T , m_{ll} for 2LOS and m_T for 1L,, N_{jets} , $NRCjets_{m>100}$, M_{bbb}^{avg} , ΔR_{bb}^{min} , ΔR_{bl}^{min} , $\frac{\sum_i p_{Ti}}{\sum_i E_i}$, Sum of pcb for the first 6 jets $\sum_{i < 6} pcb_i$, $\sum d_{12}$, $\sum d_{23}$, $\frac{\sum_{i=0}^3 p_{Ti}}{\sum_{i \ge 4} p_{Ti}}$

jets with the highest scores ons and jets

 $p_{\rm T}$ divided by the $p_{\rm T}$ sum of the remaining jets

ted using the lepton four-momenta and $E_{\rm T}^{\rm miss}$ (1L only) of jets *b*-tagged at the 70% OP of lepton and jet *b*-tagged at the 70% OP olets of jets *b*-tagged at the 70% OP triplets with an angular separation of $\Delta R < 3$ d_{12} over all large-*R* jets ale d_{12} over all large-*R* jets ass greater than 100 GeV performed over all reconstructed jets and leptons a (2LOS only)

2HDM: Exclusion limits on $tan\beta$ (1L/2LOS)

scalar (H) and pseudoscalar (A) contribute

[ATLAS-CONF-2024-002]

scalar (H) or pseudoscalar (A) contribute

