Large extra dimensions from higher-dimensional inflation

I. Antoniadis

LPTHE, CNRS/Sorbonne University, Paris and HEP Research Unit, Faculty of Science, Chulalongkorn University

> The Dark Side of the Universe - DSU2024 Corfu, Greece, 8-14 September 2024

Large hierarchies in particle physics and cosmology

Particle physics: why gravity appears so weak compared to other forces? $M_{\rm p}/M_{\rm w} \sim 10^{16}$

Cosmology: why the Universe is so large compared to our causal horizon? at least 10²⁶ larger

Possible connection: through large extra dimensions

their existence is required in string theory

Large size extra dimensions \Rightarrow low scale quantum gravity

 $M_p = M_*(2\pi R M_*)^{d/2}$: $RM_* >> 1 \Rightarrow M_* << M_p$

Horizon problem can be explained by a period of inflation

expansion rate faster than speed of light

Extra dimensions may obtain large size by higher-dim inflation

Anchordoqui-IA-Lust '22

Compact dimensions and inflation

If 4d inflation occurs for fixed size extra dimensions \Rightarrow

 $H \lesssim 1/R$ (Higuchi bound) $\Rightarrow R < 10^{-16}$ cm for $H \gtrsim$ TeV For larger sizes there are 2 possibilities:

 $\sqrt{ }$ \int $\overline{\mathcal{L}}$ - R gets a large value by a potential after the end of inflation - extra dimensions expand with time from $R_0 \sim M_*^{-1}$ to $\sim R_0 \left(\frac{M_p}{M_*}\right)$ M∗ $\int_{0}^{2/d}$ to explain the mass hierarchy

Question: can uniform $(4 + d)$ inflation relate the 2 hierarchies?

size of the observable universe to the observed weakness of gravity compared to the fundamental (gravity/string) scale M_*

Anchordoqui-IA '93

 \Rightarrow

4D decomposition of higher-dim metric

Start with $(4 + d)$ -dim gravity with d compact dimensions of size R:

$$
S_{4+d} = \int [d^4x] [d^dy] \left(\frac{1}{2} M_*^{2+d} \mathcal{R}^{(4+d)} - \Lambda_{4+d} \right)
$$

4D decomposition in the Einstein frame:

$$
ds_{4+d}^{2} = \left(\frac{r}{R}\right)^{d} ds_{4}^{2} + \left(\frac{R}{R_{0}}\right)^{2} ds_{d}^{2} \qquad r \equiv \langle R \rangle_{\text{final}} \qquad \Rightarrow
$$

internal volume normalised to $(2\pi R_{0})^{d}$

$$
S_{n} = \int [d^{4}x] \left(\frac{1}{2}M^{2}\mathcal{D}(4) - \frac{d(d+2)}{d^{2}}M^{2}\left(\frac{\partial R}{\partial t}\right)^{2} - \frac{(2\pi r)^{2}d}{d^{2}}M^{4} + d\right)
$$

$$
S_4=\int [d^4x]\left(\frac{1}{2}M_p^2\mathcal{R}^{(4)}-\frac{d(d+2)}{4}M_p^2\left(\frac{\partial R}{R}\right)^2-(2\pi r)^{2d}\frac{\Lambda_{4+d}}{(2\pi R)^d}\right)
$$

 $M_p^2 = M_*^{2+d}(2\pi r)^d$; scalar potential: $V = \frac{M_p^2}{M_*^{2+d}}$ Λ_{4+a} $\overline{(R/r)^d}$ ^{[\[14\]](#page-13-0)}

maximal symmetric solution: $(4 + d)$ -dim de Sitter

$$
ds_{4+d}^{2} = \hat{a}_{4+d}^{2}(\tau)(-d\tau^{2} + d\vec{x}^{2} + dy^{2})
$$

$$
\hat{a}_{4+d}(\tau) = \frac{1}{H\tau} \qquad H^{2} = \frac{2\Lambda_{4+d}}{(3+d)(2+d)M_{*}^{2+d}}
$$

$$
= \left(\frac{R_{0}}{R}\right)^{d} ds_{4}^{2} + \left(\frac{R}{R_{0}}\right)^{2} dy^{2} \qquad ds_{4}^{2} = a^{2}(\tau)(-d\tau^{2} + d\vec{x}^{2})
$$

$$
a(\tau_{0} = H^{-1}) = 1; \quad a(\tau_{\text{end}}) = (r/R_{0})^{1+\frac{d}{2}} \Rightarrow
$$

$$
a(\tau) = \left(\frac{R(\tau)}{R_{0}}\right)^{1+\frac{d}{2}} = \hat{a}^{1+\frac{d}{2}}(\tau) \qquad ; \quad \frac{R(\tau)}{R_{0}} = \hat{a}(\tau) = a^{\frac{2}{2+d}}(\tau)
$$

 \hat{N} e-folds in $(4+d)$ -dims $\Rightarrow N = \left(1 + \frac{d}{2}\right)\hat{N}$ e-folds in 4D

Large extra dimensions from higher-dim inflation

Solution to the Horizon problem: $N \gtrsim 30-60$ $\;\; (\mathcal{N}_{\text{min}} \sim \ln \frac{M_l}{\text{eV}})$

 $M_p^2 = (2\pi r)^d M_*^{2+d}$; $r = R_0 a^{\frac{2}{2+d}} = R_0 e^{\frac{2N}{2+d}}$ \Rightarrow

$$
M_* = M_p e^{-\frac{dN}{2+d}} \lesssim 10^{13} \,\text{GeV}
$$

Impose $M_* = M_p e^{-dN/(2+d)} \gtrsim 10$ TeV $\geq 10^8$ GeV for $d = 1$ (r $\leq 30 \,\mu\text{m}$) $\gtrsim 10^6$ GeV for $d = 2$ ($r^{-1} \gtrsim 10$ keV)

 \Rightarrow the horizon problem is solved for any d

$$
14 (\ln 10) \ge \frac{d}{d+2}N \quad \Rightarrow \quad N \lesssim 32 \left(1+\frac{2}{d}\right)
$$

4D decomposition of $(4 + d)$ dimensional de Sitter

Higher-dim proper time $\hat{t} = -H^{-1} \ln(H\tau)$

$$
\hat{a}(\hat{t}) = e^{H\hat{t}} \Rightarrow a(\hat{t}) = e^{(1+d/2)H\hat{t}} \quad ; \quad R(\hat{t}) = R_0 e^{H\hat{t}}
$$

However 4D proper time $t \neq \hat{t}$ since $a(\tau) = (H\tau)^{-(1+d/2)}$:

exponential expansion in higher-dims \Rightarrow power low inflation in 4D

$$
Ht = \frac{2}{d}(H\tau)^{-\frac{d}{2}} \Rightarrow a(t) = \left(\frac{d}{2}Ht\right)^{1+\frac{2}{d}}; \quad R(t) = R_0 \left(\frac{d}{2}Ht\right)^{\frac{2}{d}}
$$

$$
d = 1 \quad : \quad a(t) \sim (Ht)^3 \quad ; \quad R(t) \sim R_0(Ht)^2
$$

$$
d = 2
$$
 : $a(t) = (Ht)^2$; $R(t) = R_0 Ht$

Precision of CMB power spectrum measurement

Physical distances change from higher to 4 dims

equal time distance between two points in 3-space

 $d_{\rm phys}^{\tau}(x,x')=d_{\rm g}^{\tau}(x,x')$ a $(\tau)=d(x,x')$ â $(\tau)\left(\frac{R}{R_{\rm g}}\right)$ R_0 $\int^{d/2} = \hat{d}_{\rm phys}^{\tau}(x,x') \frac{M_p(\tau)}{M_*}$ $\left(\begin{array}{c} \lambda, \lambda \end{array} \right) u(t) = u(\lambda, \lambda) u(t) \left(\begin{array}{c} R_0 \end{array} \right)$ = $u_{\text{phys}}(\lambda, \lambda) M_*$ co-moving distance

precision of CMB data: angles ≤ 10 degrees, distances \leq Mpc (Gpc today) Mpc \rightarrow Mkm at $M_l \sim$ TeV with radiation dominated expansion \times TeV/*M_I* at a higher inflation scale *M_I* $\sim M_*$
 $\times M_*/M_P$ conversion to higher-dim distances \times TeV/ M_p

 \simeq micron scale \Rightarrow $d=1$ is singled out! with $M_{*} \sim 10^9$ GeV

 $d > 1$: needs a period of 4D inflation for generating scale invariant density perturbations

Density perturbations from 5D inflation

inflaton (during inflation) \simeq massless minimally coupled scalar in dS space \Rightarrow logarithmic growth at large distances (compared to the horizon $H^{-1})$ scale invariant (flat) power spectrum at low momenta

Equal time 2-point function in momentum space at late cosmic time

$$
\langle \Phi^{2}(\hat{k}, \tau) \rangle = \frac{\pi \tau}{4 \hat{\sigma}^{3}} \left[J_{\nu}^{2}(\hat{k}\tau) + Y_{\nu}^{2}(\hat{k}\tau) \right] ; \quad \nu = \frac{D-1}{2} = 2
$$

$$
\tau \to 0 : \simeq \frac{4}{\pi} \frac{H^{3}}{(\hat{k}^{2})^{2}} ; \qquad \hat{k}^{2} = k^{2} + n^{2} / R_{0}^{2}
$$

2-point function on the Standard Model brane (located at $y = 0$):

$$
\sum_{n} \langle \Phi^2(\hat{k}, \tau) \rangle_{\tau \to 0} \simeq \frac{2R_0H^3}{k^2} \left(\frac{1}{k} \coth(\pi k R_0) + \frac{\pi R_0}{\sinh^2(\pi k R_0)} \right)
$$

CMB power spectrum from 5D inflation

physical wavelength:

$$
\lambda = 2\pi \frac{a}{k} = \left(\frac{R}{R_0}\right)^{1/2} \hat{\lambda} \quad ; \quad \hat{\lambda} = 2\pi \frac{\hat{a}}{k} \text{ in 5D}
$$

 $\Rightarrow \pi kR_0 = 2\pi^2 R/\hat{\lambda} > 1$ for $\hat{\lambda} \lesssim$ micron $(\lambda \lesssim k\text{m})$

Amplitude of the power spectrum: $\mathcal{A}=\frac{k^3}{2\pi^2}\langle\Phi^2(k,\tau)\rangle_{y=0}$ [\[12\]](#page-11-0)

- $\pi k R_0 > 1$ ('small' wave lengths) \Rightarrow $\mathcal{A} \sim \frac{H^2}{\pi^2} R_0 H$ $n_{\mathbf{s}} \simeq 1$
- $\pi k R_0 < 1$ ('large' wave lengths) $\Rightarrow {\cal A} \simeq \frac{2 H^3}{\pi^3 k} \qquad \quad n_{\sf s} \simeq 0$

summation over n is crucial for scale invariance

it amounts a 'tower' of 4D inflatons

Large-angle CMB power spectrum

Detailed computation of primordial perturbations: IA-Cunat-Guillen '23

5D: inflaton + metric (5 gauge invariant modes) \Rightarrow

4D: 2 scalar modes (inflaton $+$ radion), 2 tensor modes, 2 vector modes [\[10\]](#page-9-0)

$$
\mathcal{P}_{\mathcal{R}} \simeq \frac{1}{3\varepsilon} \mathcal{A} \left[\left(\frac{k}{\hat{\mathbf{a}}H} \right)^{2\delta - 5\varepsilon} + \varepsilon \left(\frac{k}{\hat{\mathbf{a}}H} \right)^{-3\varepsilon} \times \begin{cases} \frac{5}{24} & R_0k > 1 \\ \frac{1}{3} & R_0k < < 1 \end{cases} \right]
$$
\n
$$
\mathcal{P}_{\mathcal{T}} \simeq \frac{4H^2}{\pi^2} \left(\frac{k}{\hat{\mathbf{a}}H} \right)^{-3\varepsilon} \times \begin{cases} R_0H & R_0k > 1 \\ \frac{2H}{\pi k} & R_0k < < 1 \end{cases} \quad r = 24\varepsilon
$$
\n
$$
\mathcal{P}_{\mathcal{V}} \simeq \frac{4R_0H^3}{\pi^2} \left(\frac{k}{\hat{\mathbf{a}}H} \right)^{-3\varepsilon} \times \begin{cases} 1 & R_0k > > 1 \\ \frac{\pi^3}{45}(R_0k)^3 & R_0k < < 1 \end{cases} \quad S^1/Z_2 \left(n \neq 0 \right)
$$
\n
$$
\mathcal{P}_{\mathcal{S}} \simeq \frac{9\varepsilon^2}{16} \mathcal{P}_{\mathcal{R}} \quad \text{entropy} \Rightarrow \beta_{\text{isocurvature}} = \frac{\mathcal{P}_{\mathcal{S}}}{\mathcal{P}_{\mathcal{R}} + \mathcal{P}_{\mathcal{S}}} \simeq \frac{9\varepsilon^2}{16} < 0.038 \text{ exp}
$$
\n
$$
\text{slow-roll parameters: } \varepsilon = -\frac{\dot{H}}{H^2} \quad ; \quad \delta = \varepsilon - \frac{\dot{\varepsilon}}{2H\varepsilon} \simeq \eta - \varepsilon
$$

5D inflation can be implemented in the framework of Dark Dimension Montero-Vafa-Valenzuela '22

5D inflaton should couple to the brane for SM particle production e.g. via a 'Yukawa' coupling suppressed by the bulk volume $\sim y/(RM_*)^{d/2}$ $\sqrt{2}$ $\Gamma_{\rm SM}^{\Phi} \sim y^2 \frac{m_{\Phi}}{(RM)}$ $(\mathsf{RM}_\ast)^d$ λ > $\sqrt{2}$ $Γ_{\rm grav}^{\varphi} \sim$ m^4_{Φ} M_*^3 λ

$$
\Rightarrow m_{\Phi} < M_{*} \left(\frac{M_{*}}{M_{\rho}}\right)^{2/(2+d)} \simeq 1 \,\text{TeV} \quad (d=1)
$$

Also: specific realisation of the Dynamical Dark Matter framework internal graviton decays for small violation of KK-momentum conservation Gonzalo-Montero-Obied-Vafa '22

Radion potential

5D cosmological constant at the minimum of the inflaton potential \Rightarrow runaway radion potential: $_{[21]}$ $_{[21]}$ $_{[21]}$

> $V_0 = 2\pi r^2 \frac{\Lambda_5^{\text{min}}}{R}$ $\frac{5}{R}$; $(\Lambda_5^{\text{min}})^{1/5} \lesssim 100 \,\mathrm{GeV}$ (Higuchi bound)

canonically normalised radion: $\phi=\sqrt{3/2}\ln(R/r)$ [\[4\]](#page-3-0)

 \Rightarrow exponential quintessence-like form $V_0 \sim e^{-\alpha \phi}$ with $\alpha \simeq 0.8$

just at the allowed upper bound: Barreiro-Copeland-Nunes '00 Alternatively, radion could be stabilised

During inflation: $R(t) \sim t^2 \, \Rightarrow$ radion $\phi \sim \ln t$ and $\dot{\phi} \sim 1/t$

it is therefore expected to oscillate around the minimum if it exists

Radion stabilisation at the end of 5D inflation Anchordoqui-IA '23

Potential contributions stabilising the radion:

$$
V = \left(\frac{r}{R}\right)^2 \hat{V} + V_C \quad ; \quad \hat{V} = 2\pi R \Lambda_5^{\min} + T_4 + 2\pi \frac{K}{R}
$$

 T_4 : 3-branes tension, K: kinetic gradients, V_C : Casimir energy ↑ Arkani-Hamed, Hall, Tucker-Smith, Weiner '99

Radion mass m_R : \sim eV (m_{KK}) to 10^{-30} eV (m_{KK}^2/M_p) depending on K

- $\bullet K \sim M_{*}$, all 3 terms of \hat{V} of the same order, V_C negligible [\[21\]](#page-20-0) tune $\Lambda_4 \sim 0_+ \Rightarrow m_R \lesssim m_{KK} \sim \text{eV}$
- K negligible, all 3 remaining terms of the same order $[22]$

$$
\Rightarrow \text{ minimum is driven by a +ve } V_C = \frac{2\pi r^2}{32\pi^7 R^6} (N_F - N_B)
$$

Arkani-Hamed, Dubovsky, Nicolis, Villadoro '07

no tuning of Λ_4 but Λ_5^{min} should be order (subeV)⁵ [\[20\]](#page-19-0)

$$
V_C = 2\pi R \left(\frac{r}{R}\right)^2 \text{Tr}(-)^F \rho(R, m) \quad m: 5D \text{ mass}
$$
\n
$$
\rho(R, m) = -\sum_{n=1}^{\infty} \frac{2m^5}{(2\pi)^{5/2}} \frac{K_{5/2}(2\pi Rmn)}{(2\pi Rmn)^{5/2}} \begin{cases} mR \to \infty & \text{exp suppressed} \\ mR \to 0 & 1/R^5 \end{cases}
$$

Example of Radion stabilisation potential

 $N_F = 12$ (3 bulk R-neutrinos) $N_B = 5$ (5D graviton)

Cosmic discrepancies and Hubble tension

Anchordoqui-I.A.-Lust '23, AAL-Noble-Soriano '24

 5σ tension between global and local measurements

- $H_0 = 67.4 \pm 0.5$ km/s/Mpc Planck data
- $H_0 = 73.04 \pm 1.04$ km/s/Mpc SH0ES supernova

This tension can be resolved if Λ changes sign around redshift $z \simeq 2$ Akarsu-Barrow-Escamilla-Vasquez '20, AV-Di Valentino-Kumar-Nunez-Vazquez '23

 $AdS \rightarrow dS$ transition is hard to implement due to a swampland conjecture:

non-SUSY AdS vacua are at infinite distance in moduli space

However it could happen due to quantum tunnelling effects

AdS \rightarrow dS transition due to false vacuum decay in 5D

5D scalar at a false vacuum with light mass $\,$ (lighter than $\, R_{\rm max}^{-1})$ $N_F - N_B = 6 \Rightarrow AdS$ vacuum

decay to a (almost degenerate $\delta \epsilon < \Lambda$) true vacuum with heavy mass

 $N_F - N_B = 7 \Rightarrow$ dS vacuum slow transition at $z \approx 2$

Conclusions

Large extra dimensions from higher dim inflation

- o connect the weakness of gravity to the size of the observable universe
- o scale invariant density fluctuations from 5D inflation
- **•** radion stabilization

smallness of some physical parameters might signal a large distance corner in the string landscape of vacua such parameters can be the scales of dark energy and SUSY breaking mesoscopic dark dimension proposal: interesting phenomenology neutrino masses, dark matter, cosmology, SUSY breaking

Stabilisation neglecting V_C

minimum with $\hat{V}' = \hat{V} = 0 \Rightarrow$

$$
r = \left(\frac{K}{\Lambda_5^{\min}}\right)^{1/2}; \quad T_4 = -4\pi (K\Lambda_5^{\min})^{1/2}; \quad V'' = \hat{V}'' \mid_{R=r} = 4\pi \frac{K}{r^3}
$$

all terms of $V_{\rm min}$ of order $\vert T_4 \vert$ with $\vert T_4 < 0$ and $m_\phi^2 = \frac{4}{9}$ 9 $|\mathcal{T}_4|$ M_p^2

maximum: $R_{\text{max}} = 3r$; $V_{\text{max}} = \frac{2}{27} |T_4|$

 $V_{\rm min} < V_{\rm max}$ satisfying the Higuchi bound $\Rightarrow m_\phi \leq 3/r$

experimental bounds on new forces implying $m_\phi \gtrsim 0.1 \text{ eV}$ \Rightarrow

$$
K^{1/3} \sim M_*
$$
; $(\Lambda_5^{\min})^{1/5} \sim 100 \text{ GeV};$ $|T_4|^{1/4} \sim 1 \text{ TeV}$

Stabilisation with $K = 0$

$$
R_{\max}=-\tfrac{T_4}{\pi\Lambda_5^{\min}}\quad\Rightarrow\quad T_4<0
$$

A minimum can be generated at lower R from V_C if $N_F - N_B > 0$ [\[15\]](#page-14-0)

 $N_B = 5$ (5D graviton) \Rightarrow need at least 2 5D-fermions with masses $\lesssim R_{\rm max}^{-1}$ for instance 3 R-handed neutrinos: $N_F = 12$

minimum at $V \simeq 0_+$ and $\langle R \rangle \sim 0$ micron implies as before

all 3 terms of $V_{\rm min}$ same order: $\left(\Lambda_5^{\rm min}\right)^{1/5}\sim |\, \mathcal{T}_4|^{1/4}\sim V_C^{1/4}\sim$ subeV Bulk masses $\mu_i \gtrsim \Delta m_{32} > \Delta m_{21}$ avoid strict bounds from *ν*-oscillations $(\mu_i = 0 \Rightarrow r \leq 0.2 \,\mu\text{m})$ Anchordoqui-IA-Cunat '23

 $T_4 = 0$: $R_{\text{max}}^{-1} \sim (\Lambda_5^{\text{min}})^{1/5}$ from $V_0 + V_C$ $|_{\text{bos}} \rightarrow \text{min}$ from V_C $|_{\text{fer}}$

 $N_B = 5$ \Rightarrow maximum at \sim 10 microns