Landscape, swampland and extra dimensions

I. Antoniadis

LPTHE, CNRS/Sorbonne University, Paris

and

HEP Research Unit, Faculty of Science, Chulalongkorn University

Workshop on Quantum Gravity, Strings and the Swampland Corfu, Greece, September 2024 Huge number of 4D string ground states with $N \le 1$ SUSY with all closed string moduli stabilised in terms of discrete fluxes all physical couplings of the EFT fixed in terms of the moduli Validity of the framework: weak string coupling and large volume Identify physically relevant vacua:

need an extra input of guiding principle

Swampland Program

Not all effective field theories can consistently coupled to gravity

- anomaly cancellation is not sufficient
- consistent ultraviolet completion can bring non-trivial constraints

those which do not, form the 'swampland'

criteria \Rightarrow conjectures

supported by arguments based on string theory and black-hole physics

Some well established examples:

- No exact global symmetries in Nature
- Weak Gravity Conjecture: gravity is the weakest force

 \Rightarrow minimal non-trivial charge: $q \ge m$ in Planck units $8\pi G = \kappa^2 = 1$

Arkani-Hamed, Motl, Nicolis, Vafa '06

Distance/duality conjecture

At large distance in field space $\phi \Rightarrow$ tower of exponentially light states $m \sim e^{-\alpha\phi}$ with $\alpha \sim O(1)$ parameter in Planck units

provides a weakly coupled dual description up to the species scale

$$M_* = M_P / \sqrt{N}$$
 Dvali '07

tower can be either

a Kaluza-Klein tower (decompactification of d extra dimensions)

 $m \sim 1/R$, $\phi = \ln R$; $M_* = M_P^{(4+d)} = (m^d M_P^2)^{1/(d+2)}$

 $N = (M_*R)^d$

2 a tower of string excitations

 $M_* = m \sim \text{the string scale} = g_s M_P$; $\phi = -\ln g_s$, $N = 1/g_s^2$

emergent string conjecture

Lee-Lerche-Weigand '19

smallness of physical scales : large distance corner of lanscape?

Dark dimension proposal for the dark energy

 $m = \lambda^{-1} \Lambda^a$ $(M_P = 1)$; $1/4 \le a \le 1/2$ Montero-Vafa-Valenzuela '22

- distance $\phi = -\ln \Lambda$ Lust-Palti-Vafa '19
- $a \leq 1/2$: unitarity bound $m_{{
 m spin}-2}^2 \geq 2H^2 \sim \Lambda$ Higuchi '87
- $a \ge 1/4$: estimate of 1-loop contribution $\Lambda \gtrsim m^4$

observations: $\Lambda \sim 10^{-120}$ and $m \gtrsim 0.01$ eV (Newton's law) $\Rightarrow a = 1/4$

astrophysical constraints $\Rightarrow d = 1$ extra dimension

 \Rightarrow species scale (5d Planck mass) $M_* \simeq \lambda^{-1/3} \, 10^8$ GeV

 $10^{-4} \lesssim \lambda \lesssim 10^{-1}$

Obviously such a low m cannot correspond to a string tower

Physics implications of the dark dimension

See Review article 2405.04427

Neutrino masses

- natural explanation of neutrino masses introducing ν_R in the bulk ν -oscillation data with 3 bulk neutrinos $\Rightarrow m \gtrsim 2.5$ eV $(R \lesssim 0.4 \,\mu\text{m})$ $\Rightarrow \lambda \lesssim 10^{-3}$ and $M_* \sim 10^9$ GeV
 - the bound can be relaxed in the presence of bulk ν_R -neutrino masses Lukas-Ramond-Romanino-Ross '00, Carena-Li-Machado²-Wagner '17
- support on Dirac neutrinos by the sharpened WGC non-SUSY AdS vacua (flux supported) are unstable
 Ooguri-Vafa '16 avoid 3d AdS vacuum of the Standard Model with Majorana neutrinos Arkani-Hamed, Dubovsky, Nicolis, Villadoro '07

lightest Dirac neutrino \lesssim few eV or light gravitino O(meV)Ibanez-Martin Lozano-Valenzuela '17; Anchordoqui-I.A.-Cunat '23 • 3 candidates of dark matter:

• 5D primordial black holes in the mass range $10^{15} - 10^{21}$ g with Schwarzschild radius in the range $10^{-4} - 10^{-2} \mu$ m Anchordoqui-I.A.-Lust '22

KK-gravitons of decreasing mass due to internal decays (dynamical DM)
 from ~ MeV at matter/radiation equality ($T \sim eV$) to ~ 50 keV today
 Gonzalo-Montero-Obied-Vafa '22

possible equivalence between the two Anchordoqui-I.A.-Lust '22

• ultralight radion as a fuzzy dark matter

Anchordogui-I.A.-Lust '23

Primordial Black Holes as Dark Matter

4d PBH

5d PBH

5D BHs live longer than 4D BHs of the same mass

Dark Dimension Radion stabilization and inflation

If 4d inflation occurs with fixed DD radius \Rightarrow

(Higuchi bound) $H_I \lesssim m \sim eV \Rightarrow M_I \lesssim 100 \text{ GeV}$

Inflation scale $M_I = \Lambda_I^{1/4} \simeq \sqrt{M_P H_I}$

Interesting possibility: the extra dimension expands with time

 $R_0 \sim 1/M_*$ to $R \sim \mu m$ requires ~ 40 efolds! Anchordoqui-I.A.-Lust '22

$$ds_{5}^{2} = a_{5}^{2}(-d\tau^{2} + d\vec{x}^{2} + R_{0}^{2} dy^{2}) \quad R_{0} : \text{ initial size prior to inflation}$$
$$= \frac{ds_{4}^{2}}{R} + R^{2} dy^{2} \quad ; \quad ds_{4}^{2} = a^{2}(-d\tau^{2} + d\vec{x}^{2}) \quad \Rightarrow a^{2} = R^{3}$$

After 5d inflation of N = 40-efolds $\Rightarrow 60$ e-folds in 4d with $a = e^{3N/2}$

Large extra dimensions from inflation in higher dimensions

Anchordoqui-IA '23

Large extra dimensions from higher-dim inflation Anchordoqui-IA '23

$$ds_{4+d}^{2} = \left(\frac{r}{R}\right)^{d} ds_{4}^{2} + R^{2} dy^{2} ; \qquad ds_{4}^{2} = a^{2}(\tau)(-d\tau^{2} + d\bar{x}^{2})$$
$$= \hat{a}_{4+d}^{2}(\tau)(-d\tau^{2} + d\bar{x}^{2} + R_{0}^{2} dy^{2}) \qquad r \equiv \langle R \rangle_{\text{end of inflation}}$$

• exponential expansion in higher-dims \Rightarrow power low inflation in 4D FRW coordinates: $e^{H\hat{t}} \sim (Ht)^{2/d} \Rightarrow R(t) \sim t^{2/d}$, $a(t) \sim t^{1+2/d}$

• \hat{N} e-folds in (4 + d)-dims $\Rightarrow N = (1 + d/2)\hat{N}$ e-folds in 4D

Impose $M_* = M_p e^{-dN/(2+d)} \gtrsim 10$ TeV $\gtrsim 10^8$ GeV for d = 1 ($r \lesssim 30 \mu$ m) $\gtrsim 10^6$ GeV for d = 2 ($r^{-1} \gtrsim 10$ keV)

 \Rightarrow the horizon problem is solved for any $d = N \gtrsim 30 - 60$ ($N \gtrsim \ln \frac{M_l}{eV}$)

Precision of CMB power spectrum measurement

Physical distances change from higher to 4 dims equal time distance between two points in 3-space

 $d_{\rm phys}^{\tau}(x,x') = d(x,x') a(\tau) = d(x,x') \hat{a}(\tau) \left(\frac{R}{R_0}\right)^{d/2} = \hat{d}_{\rm phys}^{\tau}(x,x') \frac{M_p(\tau)}{M_*}$ co-moving distance

precision of CMB data: angles $\lesssim 10$ degrees, distances $\lesssim Mpc$ (Gpc today) $Mpc \rightarrow Mkm$ at $M_I \sim TeV$ with radiation dominated expansion $\times TeV/M_I$ at a higher inflation scale $M_I \sim M_*$ $\times M_*/M_P$ conversion to higher-dim distances $\times TeV/M_P$

 \simeq micron scale \Rightarrow d = 1 is singled out!

d > 1: needs a period of 4D inflation for generating scale invariant density perturbations

Density perturbations from 5D inflation

inflaton (during inflation) \simeq massless minimally coupled scalar in dS space \Rightarrow logarithmic growth at large distances (compared to the horizon H^{-1}) equal time 2-point function in momentum space at late cosmic time

$$\langle \Phi^2(\hat{k},\tau) \rangle_{\tau \to 0} \simeq \frac{4}{\pi} \frac{H^3}{(\hat{k}^2)^2} \quad ; \quad \hat{k}^2 = k^2 + n^2/R^2$$

2-point function on the Standard Model brane (located at y = 0):

$$\sum_{n} \langle \Phi^{2}(\hat{k},\tau) \rangle_{\tau \to 0} \simeq \frac{2RH^{3}}{k^{2}} \left(\frac{1}{k} \coth(\pi kR) + \frac{\pi R}{\sinh^{2}(\pi kR)} \right); \quad k = 2\pi/\lambda$$

Amplitude of the power spectrum: $\mathcal{A} = rac{k^3}{2\pi^2} \langle \Phi^2(k, au)
angle_{y=0}$

• $\pi kR > 1$ ('small' wave lengths) $\Rightarrow \mathcal{A} \sim \frac{H^2}{\pi^2}$ $n_s \simeq 1$

• $\pi kR < 1$ ('large' wave lengths) $\Rightarrow \mathcal{A} \simeq \frac{2H^3}{\pi^3 k}$ $n_s \simeq 0$

Large-angle CMB power spectrum

Detailed computation of primordial perturbations: IA-Cunat-Guillen '23

5D: inflaton + metric (5 gauge invariant modes) \Rightarrow

4D: 2 scalar modes (inflaton + radion), 2 tensor modes, 2 vector modes

$$\begin{split} \mathcal{P}_{\mathcal{R}} &\simeq \frac{1}{3\varepsilon} \mathcal{A} \left[\left(\frac{k}{\hat{a}H} \right)^{2\delta-5\varepsilon} + \varepsilon \left(\frac{k}{\hat{a}H} \right)^{-3\varepsilon} \times \begin{cases} \frac{5}{24} & R_0 k >> 1 \\ \frac{1}{3} & R_0 k << 1 \end{cases} \right] \\ \mathcal{P}_{\mathcal{T}} &\simeq \frac{4H^2}{\pi^2} \left(\frac{k}{\hat{a}H} \right)^{-3\varepsilon} \times \begin{cases} R_0 H & R_0 k >> 1 \\ \frac{2H}{\pi k} & R_0 k << 1 \end{cases} r = 24\varepsilon \\ \mathcal{P}_{\mathcal{V}} &\simeq \frac{4R_0 H^3}{\pi^2} \left(\frac{k}{\hat{a}H} \right)^{-3\varepsilon} \times \begin{cases} 1 & R_0 k >> 1 \\ \frac{\pi^3}{45} (R_0 k)^3 & R_0 k << 1 \end{cases} s^{1}/Z_2 (n \neq 0) \\ \mathcal{P}_{\mathcal{S}} &\simeq \frac{9\varepsilon^2}{16} \mathcal{P}_{\mathcal{R}} \quad \text{entropy} \Rightarrow \beta_{\text{isocurvature}} = \frac{\mathcal{P}_{\mathcal{S}}}{\mathcal{P}_{\mathcal{R}} + \mathcal{P}_{\mathcal{S}}} \simeq \frac{9\varepsilon^2}{16} < 0.038 \exp s \end{split}$$

End of inflation

Inflaton: 5D field φ with a coupling to the brane to produce SM matter e.g. via a 'Yukawa' coupling suppressed by the bulk volume $y \sim 1/(RM_*)^{1/2}$ Its decay to KK gravitons should be suppressed to ensure $\Delta N_{\rm eff} < 0.2$

$$\left(\Gamma_{\rm SM}^{\varphi} \sim \frac{m}{M_*} m_{\varphi}\right) > \left(\Gamma_{\rm grav}^{\varphi} \sim \frac{m_{\varphi}^4}{M_*^3}\right) \Rightarrow m_{\varphi} < 1 \, {\rm TeV}$$

5D cosmological constant at the minimum of the inflaton potential \Rightarrow runaway radion potential:

 $V_0 \sim \frac{\Lambda_5^{\min}}{R}$; $(\Lambda_5^{\min})^{1/5} \lesssim 100 \,\text{GeV}$ (Higuchi bound) canonically normalised radion: $\phi = \sqrt{3/2} \ln(R/r)$ $r \equiv \langle R \rangle_{\text{end of inflation}}$ \Rightarrow exponential quintessence-like form $V_0 \sim e^{-\alpha\phi}$ with $\alpha \simeq 0.8$ just at the allowed upper bound: Barreiro-Copeland-Nunes '00

Radion stabilisation at the end of 5D inflation Anchordogui-IA '23

Potential contributions stabilising the radion:

$$V = \left(\frac{r}{R}\right)^2 \hat{V} + V_C \quad ; \quad \hat{V} = 2\pi R \Lambda_5^{\min} + T_4 + 2\pi \frac{K}{R}$$

 T_4 : 3-branes tension, K: kinetic gradients, V_C : Casimir energy \uparrow Arkani-Hamed, Hall, Tucker-Smith, Weiner '99

Radion mass m_R : ~ eV (m_{KK}) to 10^{-30} eV (m_{KK}^2/M_p) depending on K

- $K \sim M_*$, all 3 terms of \hat{V} of the same order, V_C negligible tune $\Lambda_4 \sim 0_+ \Rightarrow m_R \lesssim m_{KK} \sim \text{eV}$
- K negligible, all 3 remaining terms of the same order [19]

$$\Rightarrow$$
 minimum is driven by a +ve $V_C = \frac{2\pi r^2}{32\pi^7 R^6} (N_F - N_B)$

Arkani-Hamed, Dubovsky, Nicolis, Villadoro '07

no tuning of Λ_4 but Λ_5^{\min} should be order (subeV)⁵

$$V_{C} = 2\pi R \left(\frac{r}{R}\right)^{2} \operatorname{Tr}(-)^{F} \rho(R,m) \quad m: 5D \text{ mass}$$

$$\rho(R,m) = -\sum_{n=1}^{\infty} \frac{2m^{5}}{(2\pi)^{5/2}} \frac{K_{5/2}(2\pi Rmn)}{(2\pi Rmn)^{5/2}} \begin{cases} mR \to \infty & \text{exp suppressed} \\ mR \to 0 & 1/R^{5} \end{cases}$$

Example of Radion stabilisation potential

smallness of some physical parameters might signal

a large distance corner in the string landscape of vacua

such parameters can be the scales of dark energy and SUSY breaking

mesoscopic dark dimension proposal: interesting phenomenology

neutrino masses, dark matter, cosmology, SUSY breaking

Large extra dimensions from higher dim inflation

- connect the weakness of gravity to the size of the observable universe
- scale invariant density fluctuations from 5D inflation
- radion stabilization