Towards spectral evolution Andrzej Sitarz

Supported by the Polish National Science Centre grant 2020/37/B/ST1/0154

Jagiellonian University

Workshop on Noncommutative and Generalized Geometry in String Theory, Gauge Theory and Related Physical Models CORFU 2024

ALGEBRA, TOPOLOGY, ANALYSIS, GEOMETRY

ALGEBRAIC APPROACH

- algebras (generators and relations): nice, but?
- depends on the choice of the (polynomial) basis (!)

ALGEBRA, TOPOLOGY, ANALYSIS, GEOMETRY

ALGEBRAIC APPROACH

- algebras (generators and relations): nice, but?
- depends on the choice of the (polynomial) basis (!)

TOPOLOGICAL APPROACH

- C* algebras (normed, complete algebras): nice, but?
- topology does not see any smoothness (!)

ALGEBRA, TOPOLOGY, ANALYSIS, GEOMETRY

ALGEBRAIC APPROACH

- algebras (generators and relations): nice, but?
- depends on the choice of the (polynomial) basis (!)

TOPOLOGICAL APPROACH

- C* algebras (normed, complete algebras): nice, but?
- topology does not see any smoothness (!)

FUNCTIONAL ANALYSIS

- analysis (mostly) on operator algebras
- the core of (spectral) noncommutative approach
- unifies algebraic and topological approach

GEOMETRY AND SMOOTHNESS

Classical geometry is differential

- an orientable manifold M, smooth functions, $C^{\infty}(M)$,
- differential algebra $\Omega(M)$, metric $g^{\mu\nu}$, Laplace operator Δ ,
- spin^c structure(s), real spin structure, Dirac operator

GEOMETRY AND SMOOTHNESS

Classical geometry is differential

- an orientable manifold M, smooth functions, $C^{\infty}(M)$,
- differential algebra $\Omega(M)$, metric $g^{\mu\nu}$, Laplace operator Δ ,
- spin^c structure(s), real spin structure, Dirac operator
- All definitions use (sometimes in a hidden way)
 - differentiation (derivatives)
 - differential operators and their properties

GEOMETRY AND SMOOTHNESS

Classical geometry is differential

- an orientable manifold M, smooth functions, $C^{\infty}(M)$,
- differential algebra $\Omega(M)$, metric $g^{\mu\nu}$, Laplace operator Δ ,
- spin^c structure(s), real spin structure, Dirac operator
- All definitions use (sometimes in a hidden way)
 - differentiation (derivatives)
 - differential operators and their properties

Differential operators - as operators on a Hilbert space

- came with the dawn of quantum mechanics
- the core of noncommutative (spectral) approach

The significance of (differential) operators

Most of classical geometry can be encoded in terms of bounded and unbounded operators acting on a separable Hilbert space.

The significance of (differential) operators

Most of classical geometry can be encoded in terms of bounded and unbounded operators acting on a separable Hilbert space.

The significance of (differential) operators

Most of classical geometry can be encoded in terms of bounded and unbounded operators acting on a separable Hilbert space.

How do we reconstruct geometry ?

• differential calculus: da = [D, a] and FODC $\Omega^1(M)$

The significance of (differential) operators

Most of classical geometry can be encoded in terms of bounded and unbounded operators acting on a separable Hilbert space.

- differential calculus: da = [D, a] and FODC $\Omega^1(M)$
- 2 metric: $d(x, y) = \sup_{||[D, f]|| \le 1} |f(x) f(y)|$

The significance of (differential) operators

Most of classical geometry can be encoded in terms of bounded and unbounded operators acting on a separable Hilbert space.

- differential calculus: da = [D, a] and FODC $\Omega^1(M)$
- 2 metric: $d(x, y) = \sup_{||[D, f]|| \le 1} |f(x) f(y)|$
- additional connection (if spinors twisted by a vector bundle)

The significance of (differential) operators

Most of classical geometry can be encoded in terms of bounded and unbounded operators acting on a separable Hilbert space.

- differential calculus: da = [D, a] and FODC $\Omega^1(M)$
- 2 metric: $d(x, y) = \sup_{||[D, f]|| \le 1} |f(x) f(y)|$
- additional connection (if spinors twisted by a vector bundle)
- dimension (growth of eigeinvalues: $N_D(\Lambda) \sim \Lambda^d$),

The significance of (differential) operators

Most of classical geometry can be encoded in terms of bounded and unbounded operators acting on a separable Hilbert space.

- differential calculus: da = [D, a] and FODC $\Omega^1(M)$
- 2 metric: $d(x, y) = \sup_{||[D, f]|| \le 1} |f(x) f(y)|$
- additional connection (if spinors twisted by a vector bundle)
- dimension (growth of eigeinvalues: $N_D(\Lambda) \sim \Lambda^d$),
- integral (exotic traces, Wodzicki residue, NC residue)

The significance of (differential) operators

Most of classical geometry can be encoded in terms of bounded and unbounded operators acting on a separable Hilbert space.

How do we reconstruct geometry ?

- differential calculus: da = [D, a] and FODC $\Omega^1(M)$
- 2 metric: $d(x, y) = \sup_{||[D, f]|| \le 1} |f(x) f(y)|$
- additional connection (if spinors twisted by a vector bundle)
- dimension (growth of eigeinvalues: $N_D(\Lambda) \sim \Lambda^d$),
- integral (exotic traces, Wodzicki residue, NC residue)
- scalar of curvature, metric tensor, Einstein tensor via spectral computations

Spectral Metric and Einstein Functionals,

L.Dabrowski, A.Sitarz, P.Zalecki,

Advances in Mathematics, Volume 427, 2023, 109128

Connes' spectral triple approach

Algebra \mathcal{A} , its faithful representation π on a Hilbert space \mathcal{H} , a selfadjoint, unbounded operator D, satisfying several conditions:

● $\forall a \in \mathscr{A} [D, \pi(a)] \in B(\mathscr{H}), D^{-1}$ has compact resolvant

Connes' spectral triple approach

Algebra \mathcal{A} , its faithful representation π on a Hilbert space \mathcal{H} , a selfadjoint, unbounded operator D, satisfying several conditions:

- $\forall a \in \mathscr{A} [D, \pi(a)] \in B(\mathscr{H}), D^{-1}$ has compact resolvant
- 2 even ST: $\exists \gamma \in \mathcal{A}' : \gamma^2 = 1, \gamma = \gamma^{\dagger}, \gamma D + D\gamma = 0$,

Connes' spectral triple approach

Algebra \mathcal{A} , its faithful representation π on a Hilbert space \mathcal{H} , a selfadjoint, unbounded operator D, satisfying several conditions:

- $\forall a \in \mathscr{A} [D, \pi(a)] \in B(\mathscr{H}), D^{-1}$ has compact resolvant
- 2 even ST: $\exists \gamma \in \mathcal{A}' : \gamma^2 = 1, \gamma = \gamma^{\dagger}, \gamma D + D\gamma = 0$,
- Improve the structure like reality condition, Hochschild cycle etc.

Connes' spectral triple approach

Algebra \mathcal{A} , its faithful representation π on a Hilbert space \mathcal{H} , a selfadjoint, unbounded operator D, satisfying several conditions:

- $\forall a \in \mathcal{A} \ [D, \pi(a)] \in B(\mathcal{H}), \ D^{-1}$ has compact resolvant
- 2 even ST: $\exists \gamma \in \mathscr{A}' : \gamma^2 = 1, \gamma = \gamma^{\dagger}, \gamma D + D\gamma = 0$,
- Improve the structure like reality condition, Hochschild cycle etc.
- assure that D is a first order differential operator

Connes' spectral triple approach

Algebra \mathcal{A} , its faithful representation π on a Hilbert space \mathcal{H} , a selfadjoint, unbounded operator D, satisfying several conditions:

- $\forall a \in \mathcal{A} \ [D, \pi(a)] \in B(\mathcal{H}), \ D^{-1}$ has compact resolvant
- 2 even ST: $\exists \gamma \in \mathcal{A}' : \gamma^2 = 1, \gamma = \gamma^{\dagger}, \gamma D + D\gamma = 0$,
- Improve the structure like reality condition, Hochschild cycle etc.
- assure that D is a first order differential operator
 - ...+ a lot of conditions assuring smoothness

Theorem [Connes]

6

 $\mathcal{A} = C^{\infty}(M)$, *M* spin Riemannian compact manifold, $\mathcal{H} = L^2(S)$, (sections of spinor bundle) and *D* the Dirac operator on *M* then $(\mathcal{A}, \mathcal{H}, D)$ is a spectral triple (with a real structure).

Accomplishments and failures

The Standard Model

A finite spectral triple describes the Standard Model based on an algebra $\mathbb{C} \oplus \mathbb{H} \oplus M_3(\mathbb{C})$. A **nonproduct** geometry removes fermion doubling and explains CP-violation in geometrical terms

Accomplishments and failures

The Standard Model

A finite spectral triple describes the Standard Model based on an algebra $\mathbb{C} \oplus \mathbb{H} \oplus M_3(\mathbb{C})$. A **nonproduct** geometry removes fermion doubling and explains CP-violation in geometrical terms

Accomplishments and failures

The Standard Model

A finite spectral triple describes the Standard Model based on an algebra $\mathbb{C} \oplus \mathbb{H} \oplus M_3(\mathbb{C})$. A **nonproduct** geometry removes fermion doubling and explains CP-violation in geometrical terms A. Bochniak, A. Sitarz, A spectral geometry for the Standard Model without the fermion doubling Phys. Rev. D 101, 075038

Quantum spaces

The spectral triple approach allows to study geometry of quantum spheres (including Podles sphere and $SU_q(2)$.)

But..

The spectral approach is **limited** to Euclidean metrics. A version of a spectral triple formalism for indefinite metric is possible (using the Krein space formalism) - but there is no generic spectral approach (noncommutative residue).

Instead: a model of N + 1 NC geometries? The **classical** simplest N + 1 geometry.

$$ds^2 = \eta dt^2 + \gamma_{ij} dx^i dx^j$$

where η determines the signature of the metric, $\eta = \pm 1$. The extrinsic curvature reduces to:

$$K_{ij}=-rac{1}{2}rac{d\gamma_{ij}(t)}{dt}, \qquad rac{d\gamma^{ij}(t)}{dt}=2\gamma^{im}\gamma^{jk}K_{mk}$$

Ricci tensor

$$R_{ik} = r_{ik} + \frac{1}{\eta} \dot{K}_{ik} + \frac{2}{\eta} \gamma^{pm} K_{mk} K_{ip} - \frac{1}{\eta} K K_{ik},$$

and

$$R_{00} = \partial_t (\gamma^{mi} K_{mi}) - \gamma^{pm} \gamma^{rt} K_{mr} K_{pt}.$$

A model of N + 1 NC geometries.

The curvature of the **classical** simplest N + 1 geometry.

$$R = r - \frac{1}{\eta} \left(K^2 + K_{ij} K^{ij} - 2\dot{K} \right)$$

FRLW geometries

Assuming $\gamma_{ij}(x, t) = a(t)\zeta_{ij}(x)$ we obtain:

$$R_{ik} = r_{ik} + \frac{1}{\eta} \left(-\frac{1}{2} \ddot{a} + \frac{2 - N}{4} \frac{\dot{a}^2}{a} \right) \zeta_{ik},$$

$$R_{00} = N \left(\frac{d}{dt} \left(-\frac{1}{2} \frac{\dot{a}}{a} \right) - \frac{1}{4} \frac{\dot{a}^2}{a^2} \right),$$

$$R = \frac{1}{a} r - \frac{1}{\eta} \left(\frac{N^2 + N}{4} \left(\frac{\dot{a}^2}{a^2} \right) + N \frac{d}{dt} \left(\frac{\dot{a}}{a} \right) \right)$$

290

Can the curvature be recovered spectrally? The question: If we have an *N*-dimensional Euclidean space and a family of Laplace operators $\Delta(t)$ that are given by the metrics $\gamma_{ij}(t)$, can we compute the scalar of curvature using the spectral properties of $\Delta(t)$? Can the curvature be recovered spectrally? The question: If we have an *N*-dimensional Euclidean space and a family of Laplace operators $\Delta(t)$ that are given by the metrics $\gamma_{ij}(t)$, can we compute the scalar of curvature using the spectral properties of $\Delta(t)$?

The 3 + 1 case.

We start with a family $\Delta_3(x, t)$ of 3-dimensional Laplace-type operators set by the metric $g_{ij}(x)$:

$$\Delta_3(x,t) = -\frac{1}{\sqrt{g(t)}} \partial_j \big(\sqrt{g(t)} g^{jk}(t) \partial_k \big).$$

and we extend it to a 4-dimensional operator acting on $M_3 \times \mathbb{R}$:

$$\Delta_4(x,t) = -\partial_t^2 + c(t)\partial_t + \Delta_3(t)$$

where

$$c(t) = -rac{1}{\sqrt{g}}rac{d\sqrt{g}}{dt}.$$

Can the curvature be recovered spectrally? The question: If we have an *N*-dimensional Euclidean space and a family of Laplace operators $\Delta(t)$ that are given by the metrics $\gamma_{ij}(t)$, can we compute the scalar of curvature using the spectral properties of $\Delta(t)$?

The 3 + 1 case.

We start with a family $\Delta_3(x, t)$ of 3-dimensional Laplace-type operators set by the metric $g_{ij}(x)$:

$$\Delta_3(x,t) = -\frac{1}{\sqrt{g(t)}} \partial_j \big(\sqrt{g(t)} g^{jk}(t) \partial_k \big).$$

and we extend it to a 4-dimensional operator acting on $M_3 \times \mathbb{R}$:

$$\Delta_4(x,t) = -\partial_t^2 + c(t)\partial_t + \Delta_3(t)$$

where

$$c(t) = -rac{1}{\sqrt{g}}rac{d\sqrt{g}}{dt}.$$

Curvature for 3 + 1 geometry.

The scalar of curvature.

We compute the scalar of curvature using purely spectral methods:

 $R \sim Wres(\Delta_4^{-1}),$

where the Wodzicki residue depends solely on the spectral properties of the operator Δ .

How to compute it?

The Wodzicki residue is easily computable using the calculus of pseudodifferential operators, if a Ψ DO T has an expansion in homogeneous symbols:

$$T = T_{p}(\xi, x) + T_{p-1}(\xi, x) + T_{p-2}(\xi, x) + \cdots$$

then

Wres
$$(T) = \int_M \int_{|\xi|=1} T_{-n}(\xi, x).$$

Curvature for 3 + 1 geometry.

The scalar of curvature.

So using the symbol of homogeneity -4 of $\Delta(t)^{-1}$ we obtain:

$$Wres(f(x,t)\Delta_{4}^{-1}(t)) = \int dt \int_{M} \sqrt{g(t)} f(x,t) \bigg[r(x,t) + \bigg(-\frac{\pi^{2}}{6} (2K_{ij}K^{ij} + K^{2}) - \frac{\pi^{2}}{2}K^{2} + \pi^{2}\dot{K} \bigg) \bigg].$$

Curvature for 3 + 1 geometry.

The scalar of curvature.

So using the symbol of homogeneity -4 of $\Delta(t)^{-1}$ we obtain:

$$\begin{aligned} \mathsf{Wres}\big(f(x,t)\Delta_4^{-1}(t)\big) &= \int dt \int_M \sqrt{g(t)} f(x,t) \Big[r(x,t) + \\ &+ \Big(-\frac{\pi^2}{6} (2K_{ij} K^{ij} + K^2) - \frac{\pi^2}{2} K^2 + \pi^2 \dot{K} \Big) \Big]. \end{aligned}$$

Can it be rewritten?

Next, can we rewrite it using only $\Delta_3(t)$? The 3-dimensional scalar of curvature is

Wres
$$(f(x,t)\Delta_3^{-\frac{1}{2}}(t)) \sim \int dt \int_M \sqrt{g(t)} f(x,t) r(x,t)$$

No go theorem

There exist no functional depending on

and Wres
$$(\dot{\Delta}_3(t)^2 \Delta_3^{-\frac{7}{2}}(t))$$

Wres $(\ddot{\Delta}_3(t) \Delta_3^{-\frac{5}{2}}(t))$

that recovers the 4-dimensional Eistein-Hilbert functional

No go theorem

There exist no functional depending on

Wres
$$(\dot{\Delta}_3(t)^2 \Delta_3^{-\frac{7}{2}}(t))$$

and Wres $(\ddot{\Delta}_3(t) \Delta_3^{-\frac{5}{2}}(t))$

that recovers the 4-dimensional Eistein-Hilbert functional

Covariant derivative

We introduce a covariant derivative (acting on operators):

$$\nabla_t = \partial_t + \boldsymbol{c},$$

where *c* is an operator (!) and require that the volume functional is covariantly constant:

Wres
$$\left(f(x,t)(\nabla_t)\Delta_3(t)^{-\frac{3}{2}}\right) = 0$$

and

Solution

There exist a functional depending on

$$\begin{aligned} \mathsf{Wres}\bigg(\left(\nabla_t \Delta_3(t)\right)^2 \Delta_3^{-\frac{7}{2}}(t) \bigg) \\ \mathsf{Wres}\bigg(\left(\nabla_t^2 \Delta_3(t)\right) \Delta_3^{-\frac{5}{2}}(t) \bigg) \end{aligned}$$

that recovers the 4-dimensional Eistein-Hilbert functional

and

Solution

There exist a functional depending on

$$\begin{aligned} \mathsf{Wres}\bigg(\big(\nabla_t \Delta_3(t)\big)^2 \Delta_3^{-\frac{7}{2}}(t)\bigg) \\ \mathsf{Wres}\bigg(\big(\nabla_t^2 \Delta_3(t)\big) \Delta_3^{-\frac{5}{2}}(t)\bigg) \end{aligned}$$

that recovers the 4-dimensional Eistein-Hilbert functional

But...

- no proof that such covariant derivative always exists
- assumptions on covariantly constant volume (?)

• Examples (apart from the classical ones).

- Examples (apart from the classical ones).
- The spectral triple picture (so D(t), $\dot{D}(t)$, $\ddot{D}(t)$)

- Examples (apart from the classical ones).
- The spectral triple picture (so D(t), $\dot{D}(t)$, $\ddot{D}(t)$)
- Torsion: see Spectral Torsion
 Spectral Torsion L.Dabrowski, A.Sitarz, P. Zalecki
 Commun. Math. Phys. 405, 130 (2024).

- Examples (apart from the classical ones).
- The spectral triple picture (so D(t), $\dot{D}(t)$, $\ddot{D}(t)$)
- Torsion: see Spectral Torsion
 Spectral Torsion L.Dabrowski, A.Sitarz, P. Zalecki
 Commun. Math. Phys. 405, 130 (2024).
- Almost noncommutative geometries ?

- Examples (apart from the classical ones).
- The spectral triple picture (so D(t), $\dot{D}(t)$, $\ddot{D}(t)$)
- Torsion: see Spectral Torsion
 Spectral Torsion L.Dabrowski, A.Sitarz, P. Zalecki
 Commun. Math. Phys. 405, 130 (2024).
- Almost noncommutative geometries ?
- Evolution of fuzzy spaces ?

THANK YOU !