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ALGEBRA, TOPOLOGY, ANALYSIS, GEOMETRY

ALGEBRAIC APPROACH
algebras (generators and relations): nice, but?
depends on the choice of the (polynomial) basis (!)

TOPOLOGICAL APPROACH
C* algebras (normed, complete algebras): nice, but?
topology does not see any smoothness (!)

FUNCTIONAL ANALYSIS
analysis (mostly) on operator algebras
the core of (spectral) noncommutative approach
unifies algebraic and topological approach
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GEOMETRY AND SMOOTHNESS
Classical geometry is differential

an orientable manifold M, smooth functions, C∞(M),
differential algebra Ω(M), metric gµν , Laplace operator ∆,
spinc structure(s), real spin structure, Dirac operator

All definitions use (sometimes in a hidden way)
differentiation (derivatives)
differential operators and their properties

Differential operators - as operators on a Hilbert space
came with the dawn of quantum mechanics
the core of noncommutative (spectral) approach
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Geometry and the Hilbert spaces.
The significance of (differential) operators

Most of classical geometry can be encoded in terms of bounded
and unbounded operators acting on a separable Hilbert space.

How do we reconstruct geometry ?

1 differential calculus: da = [D,a] and FODC Ω1(M)

2 metric: d(x , y) = sup||[D,f ]||≤1 |f (x)− f (y)|
3 additional connection (if spinors twisted by a vector bundle)
4 dimension (growth of eigeinvalues: ND(Λ) ∼ Λd ),
5 integral (exotic traces, Wodzicki residue, NC residue)
6 scalar of curvature, metric tensor, Einstein tensor - via

spectral computations
Spectral Metric and Einstein Functionals,
L.Dabrowski, A.Sitarz, P.Zalecki,
Advances in Mathematics, Volume 427, 2023, 109128



Geometry and the Hilbert spaces.
The significance of (differential) operators

Most of classical geometry can be encoded in terms of bounded
and unbounded operators acting on a separable Hilbert space.

How do we reconstruct geometry ?

1 differential calculus: da = [D,a] and FODC Ω1(M)

2 metric: d(x , y) = sup||[D,f ]||≤1 |f (x)− f (y)|
3 additional connection (if spinors twisted by a vector bundle)
4 dimension (growth of eigeinvalues: ND(Λ) ∼ Λd ),
5 integral (exotic traces, Wodzicki residue, NC residue)
6 scalar of curvature, metric tensor, Einstein tensor - via

spectral computations
Spectral Metric and Einstein Functionals,
L.Dabrowski, A.Sitarz, P.Zalecki,
Advances in Mathematics, Volume 427, 2023, 109128



Geometry and the Hilbert spaces.
The significance of (differential) operators

Most of classical geometry can be encoded in terms of bounded
and unbounded operators acting on a separable Hilbert space.

How do we reconstruct geometry ?

1 differential calculus: da = [D,a] and FODC Ω1(M)

2 metric: d(x , y) = sup||[D,f ]||≤1 |f (x)− f (y)|
3 additional connection (if spinors twisted by a vector bundle)
4 dimension (growth of eigeinvalues: ND(Λ) ∼ Λd ),
5 integral (exotic traces, Wodzicki residue, NC residue)
6 scalar of curvature, metric tensor, Einstein tensor - via

spectral computations
Spectral Metric and Einstein Functionals,
L.Dabrowski, A.Sitarz, P.Zalecki,
Advances in Mathematics, Volume 427, 2023, 109128



Geometry and the Hilbert spaces.
The significance of (differential) operators

Most of classical geometry can be encoded in terms of bounded
and unbounded operators acting on a separable Hilbert space.

How do we reconstruct geometry ?

1 differential calculus: da = [D,a] and FODC Ω1(M)

2 metric: d(x , y) = sup||[D,f ]||≤1 |f (x)− f (y)|

3 additional connection (if spinors twisted by a vector bundle)
4 dimension (growth of eigeinvalues: ND(Λ) ∼ Λd ),
5 integral (exotic traces, Wodzicki residue, NC residue)
6 scalar of curvature, metric tensor, Einstein tensor - via

spectral computations
Spectral Metric and Einstein Functionals,
L.Dabrowski, A.Sitarz, P.Zalecki,
Advances in Mathematics, Volume 427, 2023, 109128



Geometry and the Hilbert spaces.
The significance of (differential) operators

Most of classical geometry can be encoded in terms of bounded
and unbounded operators acting on a separable Hilbert space.

How do we reconstruct geometry ?

1 differential calculus: da = [D,a] and FODC Ω1(M)

2 metric: d(x , y) = sup||[D,f ]||≤1 |f (x)− f (y)|
3 additional connection (if spinors twisted by a vector bundle)

4 dimension (growth of eigeinvalues: ND(Λ) ∼ Λd ),
5 integral (exotic traces, Wodzicki residue, NC residue)
6 scalar of curvature, metric tensor, Einstein tensor - via

spectral computations
Spectral Metric and Einstein Functionals,
L.Dabrowski, A.Sitarz, P.Zalecki,
Advances in Mathematics, Volume 427, 2023, 109128



Geometry and the Hilbert spaces.
The significance of (differential) operators

Most of classical geometry can be encoded in terms of bounded
and unbounded operators acting on a separable Hilbert space.

How do we reconstruct geometry ?

1 differential calculus: da = [D,a] and FODC Ω1(M)

2 metric: d(x , y) = sup||[D,f ]||≤1 |f (x)− f (y)|
3 additional connection (if spinors twisted by a vector bundle)
4 dimension (growth of eigeinvalues: ND(Λ) ∼ Λd ),

5 integral (exotic traces, Wodzicki residue, NC residue)
6 scalar of curvature, metric tensor, Einstein tensor - via

spectral computations
Spectral Metric and Einstein Functionals,
L.Dabrowski, A.Sitarz, P.Zalecki,
Advances in Mathematics, Volume 427, 2023, 109128



Geometry and the Hilbert spaces.
The significance of (differential) operators

Most of classical geometry can be encoded in terms of bounded
and unbounded operators acting on a separable Hilbert space.

How do we reconstruct geometry ?

1 differential calculus: da = [D,a] and FODC Ω1(M)

2 metric: d(x , y) = sup||[D,f ]||≤1 |f (x)− f (y)|
3 additional connection (if spinors twisted by a vector bundle)
4 dimension (growth of eigeinvalues: ND(Λ) ∼ Λd ),
5 integral (exotic traces, Wodzicki residue, NC residue)

6 scalar of curvature, metric tensor, Einstein tensor - via
spectral computations
Spectral Metric and Einstein Functionals,
L.Dabrowski, A.Sitarz, P.Zalecki,
Advances in Mathematics, Volume 427, 2023, 109128



Geometry and the Hilbert spaces.
The significance of (differential) operators

Most of classical geometry can be encoded in terms of bounded
and unbounded operators acting on a separable Hilbert space.

How do we reconstruct geometry ?

1 differential calculus: da = [D,a] and FODC Ω1(M)

2 metric: d(x , y) = sup||[D,f ]||≤1 |f (x)− f (y)|
3 additional connection (if spinors twisted by a vector bundle)
4 dimension (growth of eigeinvalues: ND(Λ) ∼ Λd ),
5 integral (exotic traces, Wodzicki residue, NC residue)
6 scalar of curvature, metric tensor, Einstein tensor - via

spectral computations
Spectral Metric and Einstein Functionals,
L.Dabrowski, A.Sitarz, P.Zalecki,
Advances in Mathematics, Volume 427, 2023, 109128



GEOMETRY ENCODED AS OPERATORS

Connes’ spectral triple approach

Algebra A, its faithful representation π on a Hilbert space H, a
selfadjoint, unbounded operator D, satisfying several
conditions:

1 ∀a ∈ A [D, π(a)] ∈ B(H), D−1 has compact resolvant

2 even ST: ∃γ ∈ A′ : γ2 = 1, γ = γ†, γD + Dγ = 0,
3 more structure like reality condition, Hochschild cycle etc.
4 assure that D is a first order differential operator
5 ...+ a lot of conditions assuring smoothness

Theorem [Connes]

A=C∞(M), M spin Riemannian compact manifold, H=L2(S),
(sections of spinor bundle) and D the Dirac operator on M then
(A,H,D) is a spectral triple (with a real structure).
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Accomplishments and failures
The Standard Model
A finite spectral triple describes the Standard Model based on
an algebra C⊕H⊕M3(C). A nonproduct geometry removes
fermion doubling and explains CP-violation in geometrical terms

A. Bochniak, A. Sitarz, A spectral geometry for the Standard Model
without the fermion doubling Phys. Rev. D 101, 075038

Quantum spaces

The spectral triple approach allows to study geometry of
quantum spheres (including Podles sphere and SUq(2).)

But..
The spectral approach is limited to Euclidean metrics. A
version of a spectral triple formalism for indefinite metric is
possible (using the Krein space formalism) - but there is no
generic spectral approach (noncommutative residue).
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Instead: a model of N + 1 NC geometries?
The classical simplest N + 1 geometry.

ds2 = ηdt2 + γijdx idx j ,

where η determines the signature of the metric, η = ±1.
The extrinsic curvature reduces to:

Kij = −1
2

dγij(t)
dt

,
dγ ij(t)

dt
= 2γ imγ jkKmk

Ricci tensor

Rik = rik +
1
η

K̇ik +
2
η
γpmKmkKip −

1
η

KKik ,

and
R00 = ∂t (γ

miKmi)− γpmγrtKmr Kpt .



A model of N + 1 NC geometries.
The curvature of the classical simplest N + 1 geometry.

R = r − 1
η

(
K 2 + KijK ij − 2K̇

)

FRLW geometries

Assuming γij(x , t) = a(t)ζij(x) we obtain:

Rik = rik +
1
η

(
−1

2
ä +

2− N
4

ȧ2

a

)
ζik ,

R00 = N
(

d
dt

(
−1

2
ȧ
a

)
− 1

4
ȧ2

a2

)
,

R =
1
a

r − 1
η

(
N2 + N

4

(
ȧ2

a2

)
+ N

d
dt

(
ȧ
a

))
.

,



Can the curvature be recovered spectrally?
The question: If we have an N-dimensional Euclidean space
and a family of Laplace operators ∆(t) that are given by the
metrics γij(t), can we compute the scalar of curvature using the
spectral properties of ∆(t) ?

The 3 + 1 case.

We start with a family ∆3(x , t) of 3-dimensional Laplace-type
operators set by the metric gij(x):

∆3(x , t) = − 1√
g(t)

∂j
(√

g(t)g jk (t)∂k
)
.

and we extend it to a 4-dimensional operator acting on M3 × R:

∆4(x , t) = −∂2
t + c(t)∂t + ∆3(t),

where
c(t) = − 1

√
g

d
√

g
dt

.
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Curvature for 3 + 1 geometry.
The scalar of curvature.
We compute the scalar of curvature using purely spectral
methods:

R ∼Wres
(
∆−1

4

)
,

where the Wodzicki residue depends solely on the spectral
properties of the operator ∆.

How to compute it?

The Wodzicki residue is easily computable using the calculus of
pseudodifferential operators, if a ΨDO T has an expansion in
homogeneous symbols:

T = Tp(ξ, x) + Tp−1(ξ, x) + Tp−2(ξ, x) + · · ·

then
Wres(T ) =

∫
M

∫
|ξ|=1

T−n(ξ, x).



Curvature for 3 + 1 geometry.

The scalar of curvature.
So using the symbol of homogeneity −4 of ∆(t)−1 we obtain:

Wres
(
f (x , t)∆−1

4 (t)
)

=

∫
dt
∫

M

√
g(t)f (x , t)

[
r(x , t)+

+

(
−π

2

6
(2KijK ij + K 2)− π2

2
K 2 + π2K̇

)]
.

Can it be rewritten?
Next, can we rewrite it using only ∆3(t) ?
The 3-dimensional scalar of curvature is

Wres
(
f (x , t)∆

− 1
2

3 (t)
)
∼
∫

dt
∫

M

√
g(t)f (x , t)r(x , t)
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Evolution of 3 + 1 geometry.
No go theorem

There exist no functional depending on

Wres
(
∆̇3(t)2∆

− 7
2

3 (t)
)

and Wres
(
∆̈3(t)∆

− 5
2

3 (t)
)

that recovers the 4-dimensional Eistein-Hilbert functional

Covariant derivative
We introduce a covariant derivative (acting on operators):

∇t = ∂t + c,

where c is an operator (!) and require that the volume
functional is covariantly constant:

Wres
(

f (x , t)(∇t )∆3(t)−
3
2

)
= 0
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Evolution of 3 + 1 geometry.

Solution
There exist a functional depending on
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that recovers the 4-dimensional Eistein-Hilbert functional

But...

no proof that such covariant derivative always exists
assumptions on covariantly constant volume (?)
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Conclusions & outlook

Examples (apart from the classical ones).

The spectral triple picture (so D(t), Ḋ(t), D̈(t))
Torsion: see Spectral Torsion
Spectral Torsion L.Dabrowski, A.Sitarz, P. Zalecki
Commun. Math. Phys. 405, 130 (2024).

Almost noncommutative geometries ?
Evolution of fuzzy spaces ?

THANK YOU !



Conclusions & outlook

Examples (apart from the classical ones).
The spectral triple picture (so D(t), Ḋ(t), D̈(t))
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