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@ C* algebras (normed, complete algebras): nice, but?

@ topology does not see any smoothness (!)
FUNCTIONAL ANALYSIS

@ analysis (mostly) on operator algebras

@ the core of (spectral) noncommutative approach

@ unifies algebraic and topological approach
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Classical geometry is differential
@ an orientable manifold M, smooth functions, C>(M),
e differential algebra Q(M), metric g"¥, Laplace operator A,
@ spin® structure(s), real spin structure, Dirac operator
All definitions use (sometimes in a hidden way)
@ differentiation (derivatives)
o differential operators and their properties
Differential operators - as operators on a Hilbert space
@ came with the dawn of quantum mechanics
@ the core of noncommutative (spectral) approach
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Geometry and the Hilbert spaces.

Most of classical geometry can be encoded in terms of bounded
and unbounded operators acting on a separable Hilbert space.

@ differential calculus: da = [D, a and FODC Q'(M)

@ metric: d(x,y) = supjp <1 [F(X) — f(¥)]

© additional connection (if spinors twisted by a vector bundle)
@ dimension (growth of eigeinvalues: Np(A) ~ A9),

© integral (exotic traces, Wodzicki residue, NC residue)

@ scalar of curvature, metric tensor, Einstein tensor - via
spectral computations
Spectral Metric and Einstein Functionals,
L.Dabrowski, A.Sitarz, P.Zalecki,
Advances in Mathematics, Volume 427, 2023, 109128
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GEOMETRY ENCODED AS OPERATORS

Algebra ¢, its faithful representation = on a Hilbert space %, a
selfadjoint, unbounded operator D, satisfying several
conditions:

@ vac d [D,n(a)] € B(*), D~! has compact resolvant

@ evenST:Iyed :¥2=1,y=+1 7D+ Dy =0,

© more structure like reality condition, Hochschild cycle etc.
© assure that D is a first order differential operator

Q ...+ a lot of conditions assuring smoothness

gl = C>(M), M spin Riemannian compact manifold, % = L?(S),
(sections of spinor bundle) and D the Dirac operator on M then
(dA,%, D) is a spectral triple (with a real structure).
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Accomplishments and failures

A finite spectral triple describes the Standard Model based on
an algebra C @ H & M3(C). A nonproduct geometry removes
fermion doubling and explains CP-violation in geometrical terms
A. Bochniak, A. Sitarz, A spectral geometry for the Standard Model
without the fermion doubling Phys. Rev. D 101, 075038

The spectral triple approach allows to study geometry of
quantum spheres (including Podles sphere and SUg(2).)

The spectral approach is limited to Euclidean metrics. A
version of a spectral triple formalism for indefinite metric is
possible (using the Krein space formalism) - but there is no
generic spectral approach (honcommutative residue).



Instead: a model of N + 1 NC geometries?

ds? = ndt® + ~jax'dx/,

where 7 determines the signature of the metric, n = £1.
The extrinsic curvature reduces to:

Al dy!(t)
R ot

Ky = = 29" K

oo 1
Rik = rix + EKik gl E'Ymekaip 5 5KKik,

and '
Roo = at(’YmIKmi) i 'Ypm'Yrthert-



A model of N + 1 NC geometries.

R:r—;(KerK,-,-K""—ZK)

Assuming v;(x, t) = a(t)¢;i(x) we obtain:

' n 2 4 a
d 1a 1&°
ROO_N<dt<_2a> _4a2)’
1 1 (N2 +N[& d
faar- o R
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Curvature for 3 + 1 geometry.

We compute the scalar of curvature using purely spectral
methods:
R~ Wres(A, ),

where the Wodzicki residue depends solely on the spectral
properties of the operator A.

The Wodzicki residue is easily computable using the calculus of
pseudodifferential operators, if a WDO T has an expansion in
homogeneous symbols:

T= Tp(&ax) I Tp,1(£,X) & T,D*Z(g’x) S

Wres(T) = /M /I£ | Te)

then



Curvature for 3 + 1 geometry.
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Wres (f(x, 1) A, /dt/ Va(Df(x, 1) [

+<—6(2K,-,-K’7 e ?K2 4 wzkﬂ :



Curvature for 3 + 1 geometry.

So using the symbol of homogeneity —4 of A(t)~' we obtain:

Wres (f(x, )A; (1)) = / it /M IO (x. 1 [r(x )+

;2 ,_ 2 y
i (—6(2K,-,-K’/ hC)— KR 7r2K>:| :

Next, can we rewrite it using only Ag(t) ?
The 3-dimensional scalar of curvature is

Wres (f(x, )A; 2(1)) /dt/ IO (x, (%, 1)
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We introduce a covariant derivative (acting on operators):
Vi=0t+c,

where c is an operator (!) and require that the volume
functional is covariantly constant:
)=o

Nlw

Wres(f(x, H(Vi)As(t)™
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Evolution of 3 + 1 geometry.

There exist a functional depending on
R I
Wres((VtA3(t)) AR (t))
£5
and Wres ((V?Ag(z‘))A3 2 (t))

that recovers the 4-dimensional Eistein-Hilbert functional

@ no proof that such covariant derivative always exists
@ assumptions on covariantly constant volume (?)
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@ The spectral triple picture (so D(t), D(t), D(t))

@ Torsion: see Spectral Torsion
Spectral Torsion L.Dabrowski, A.Sitarz, P. Zalecki

Commun. Math. Phys. 405, 130 (2024).

@ Almost noncommutative geometries ?
@ Evolution of fuzzy spaces ?

THANK YOU !



