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IKKT Matrix Model

1996, Matrix Regularization of type IIB superstring theory in
Schild gauge (Ishibashi-Kawai-Kitazawa-Tsuchiya ’97)

S =
1

g2
tr
([

X a,X b
][
X c ,X d

]
ηacηbd +ΨΓa

[
X b,Ψ

]
ηab

)
(1)

a = 0, 1, . . . , 9, X a N × N = End(H) hermitian (H = CN).

X a as quantized embedding coordinates of a brane.

Classical Equations of motion

□XX
a = −1

4

[
Ψ, ΓaΨ

]
, Γa[T

a,Ψ] = 0, □X =
[
X a,

[
X b, ·

]]
ηab (2)

Maximal SUSY
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Properties

Describes quantum dynamics of non-commutative spaces,
matrix integral

Z =

∫
dXdΨeiS (3)

Manifest SO(1, 9) invariance.

Gauge U(N)
X a 7→ UX aU−1 (4)

Exhibits holographic properties

We are interested in low energy modes on the brane. No
target space R1,9 physics, no holography.
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Quantized Embedded Branes

Almost commutative configurations: quasi-coherent states
|x⟩ ∈ H

Define embedding coordinates in target space

xa = ⟨x |X a |x⟩ ∈ R1,9 (5)

defining symplectic brane M.

Associate classical functions to matrices via quantization map

Q : C(M) → End(H) (6)

ϕ(x) 7→ Φ =

∫
Ωϕ(x) |x⟩⟨x | (7)
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Quantized Embedded Branes

Commutator ∼ Poisson Bracket

−i
[
X a,X b

]
= Θab ∼ {xa, xb} = θab (8)

symplectic form.

Look for such quantized embedded spaces solving IKKT
equations of motion.
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Low Energy Physics

Low energy excitations (subsector of
End(H) ⊃ Loc(H) ∼ CIR(M)) are confined on the brane

Find non-trivial backgrounds T
a ∈ End(H), and study the

physics of fluctuations

T a = T
a
+Aa (9)

U(N): SU(N) gauge sector and noncommutative U(1),
geometry.
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Low Energy Physics

Tree-level action for low energy SU(N) fluctuations

S = − 1

g2
tr

∫
ΩγacγbdFabFcd + · · · (10)

using [X a, ·] = iθab∂b, F field strength of Aµ = θ−1
µν A

ν , γ
”open string metric”

γab = θabθcdηbd (11)
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Geometry

Geometric interpretation of matrix d.o.f. T a, Fab =
[
T a,T b

]
?

Defining
E aµ = {T a, xµ} (12)

Typical kinetic action [T a, ϕ]2,

S ∼ −
∫

ΩE µ
a E aν∂µϕ∂νϕ = −

∫
d2nx

√
GGµν∂µϕ∂νϕ (13)

Ω = ρMd2nx , G effective metric on the brane,

Gµν = ρ−2γµν , γµν = E µ
a E aν , ρM = ρ−2

√
G (14)

E frame for γ. T µ
ab = {Fab, x

µ} torsion of γ in
Weitzenbock connection.
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Geometry

Gauge transformations of the background

δΛT = {Λ,T} =⇒ δΛE = LξE (15)

with ξ = {Λ, ·}. They generate diffeos! Same for Gµν .

Tree-level not Einstein: fluctuations δE ∼ ∂A

S ∼ tr [T ,T ]2 ∼
∫
(∂A)2 ∼

∫
(δE )2 (16)

Linearized Einstein governs derivatives of the frame

SEH ∼
∫
(∂δE )2 (17)

We find (extended) Einstein at one-loop.
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One-Loop Effective Action

We compute

Z =

∫
dXdΨeiS = ei(S0+Γ1−loop) = eiΓeff (18)

Γ1−loop = i
2 tr

(
log

(
□− iε− Σ

(V )
ab

[
Fab, ·

])
− 1

2 log
(
□− iε− Σ

(Ψ)
ab

[
Fab, ·

])
− 2 log(□− iε)

)
=− i

2

∫ ∞

0

dα
α tr e−iα□

[
eiαΣ

(V )
ab δFab − 1

2e
iαΣ

(Ψ)
ab δFab − 2

]
=− i

2

∫ ∞

0

dα

α
tr e−iα□Q10

δF = [F, ·], α Schwinger parameter, Q10 character of
SO(1, 9).
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One-Loop Effective Action

We want to study 4d physics, background M4 ×K

T a = (T µ̇,T I ) (19)

With Hilbert space HM ×HK, low energy C(M)× C(K).

Fluctuations A ∈ End(HM)⊗ End(HK)

Decompose 10d representations

(V ) = (4) + (6), (Ψ) = ((2−)⊕ (4−))⊕ ((2+)⊕ (4+)) (20)

We expand the 4d characters to obtain

Q10 = X6 + α2δFµ̇ν̇δFµ̇ν̇
(
−2 + 1

4

∑
± tr(4±) e

iαΣ±
IJ δF

IJ
)
+ O(α4F4

µ̇ν̇)

≈ X6 + α2δFµ̇ν̇δFµ̇ν̇G6

We also showed that generically α expansion is justified.
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One-Loop Effective Action

Two SO(6) characters: X6 effective potential for K, G6

determines Newton constant.

Evaluate spacetime modes trace End(HM) with basis of
string modes |x⟩ ⟨y |. Short string modes |x⟩ ⟨x + k| ∼
localized wave packets ψk,x .

trEnd(HM) δF
µ̇ν̇δFµ̇ν̇e

iα□4

≈
∫

d4x
√
G

∫
d4k

(2π)4
√
G
Tµ̇ν̇αTµ̇ν̇

βkαkβe
−iαρ2Gµνkµkν

≈
∫

d4x
√
G

1

2(4π)2
1

ρ4α3
γαβT

µ̇ν̇αTµ̇ν̇
β (21)

R = −1
2T

µ
ναT

ν
µ βG

αβ − 1
2 T̃µT̃νG

µν + 2ρ−2Gµν∂µρ∂νρ− 2∇µ(ρ−1∂µρ)
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One-Loop Effective Action

α integral and End(HK) trace: expand

G6[α] ≈ −1

2
α2δFIJδFIJ (22)

Approximate trace with K ∼ flat ball of radius mK,

δFIJ ≈ ∆2
K ∼ m2

Kd
− 2

dimK . Using K string modes |x⟩ ⟨y |,

□6||x⟩⟨y | ≈ ((x − y)2 + 2∆2
K) (23)

with ∆K NC scale of K.

Find GN as a function of ρ, dK,mK.
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Cosmological Quantum Spacetime

Apply above to a specific interesting background: M3,1
J , fuzzy

hyperboloid. (Sperling, Steinacker 2018)

Quantized Coadjoint orbit of SO(4, 1)

In terms of SO(4, 2) generators MAB , A,B = 0, 1, . . . , 5. Built
from irreps labelled by spin J. Here J ≫ 1.

Background T µ̇ = 1
RM

µ̇4, coordinate matrices Xµ = ℓpM
µ5.

Semi-classical geometry (coherent states) for J > 0 ∼ 6d
symplectic space,

H4×̃S2
J (24)

S2
J harmonics define a truncated tower of higher spin modes

over spacetime.

Semi-classical geometry looks FLRW-like. ρ2 ≈ sinh3 τ .
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Relevant Scales

ℓp fundamental length scale of coordinates.

R ≈ ℓpJ
2 , radius of hyperboloid.

IR curvature scale LH = R cosh τ (τ cosmological conformal
time)

NC scale LNC =
√
Jℓp

√
cosh τ .

∆J ∼ average of higher spin masses: see caveats.

KK scale mK

K NC scale ∆K ≈ d
− 1

dimK

K mK.
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One-Loop

One-loop effective action (YM sector in (Steinacker, Tran 2024)), now
also trace over higher spin harmonics: adds dependence on J
and NC scale of S2

J , ∆J to GN : for dimK = 4 (we will see
why), with suitable approximations

GN ∼ ρ2

J2d
3
2
K∆

2
K

(25)

Significance and dynamics of HS yet to be fully understood.

We find a mechanism for stabilizing mK as follows: the
effective action contains the following contributions to
potential for single brane K

V = V0 + V 1−loop
K + VS2

J
+ VS2−K + Vgrav (26)

≈ V0 + VS2−K + VS2
J

(27)

17 of 24



One-Loop

With the approximations made above, we can estimate

S0 = − 1

g2
trFIJF

IJ ≈ − J

ℓ4pg
2

∫
d4x

√
G

ρ4
trK FIJF

IJ (28)

≈ − J

ℓ4pg
2

∫
d4x

√
G

ρ4
∆4

KdK =: −
∫

d4x
√
GV0 (29)

V0 > 0, ∝ ∆4
K.

VS2
J
and VS2−K give a decreasing dependence on ∆K for

dimK = 2, 4, thus a minimum for the effective potential
altogether. dimK = 2 seems pathological, therefore focus on
dimK = 4. Find minimum, m⋆

K and GN(m
⋆)

m⋆
K(ℓp, J, g , ρ,∆J) (30)
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Potential for mK

For suitable parameter ranges*
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Caveats

I made it too simple, exhibited nice behaviors, but some things to
fix.

Background T µ̇ solves massive IKKT: we are finding
deformations of this background that solve IKKT.

That’s good, because solution above is problematic (we
expect general results to hold):

∆2
J < 0, problems with stability.

m⋆
K depends strongly on time (and does not exist at very late

times!)

Consistent ranges of validity for parameters?

Most of these problems seem to be fixable with deformed
backgrounds, with added complications to be studied.
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Minimum
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Minimum
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Conclusions

IKKT as quantum theory of spacetime.

Emergent (Extended) Einstein-Hilbert action from 1-loop with
fuzzy extra dimensions.

Cosmological Background: Mechanism for stabilization of the
background at 1-loop.

This background is problematic: work to do to solve problems.
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Thank you for the attention
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