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Reminders: ΛCDM cosmology
▶ Modern cosmology based on a maximally symmetric spacetime (FLRW)

✓ Homogeneous: all regions of space look alike, no preferred positions
✓ Isotropic: no preferred directions
✓ Perfect-fluid assumptions

▶ The isotropy assumption is valid only on very large scales, i.e. on scales bigger
than galaxy clusters

▶ Recent cosmological observations have shown that the universe is currently
undergoing accelerated expansion

▶ Not conclusively known what caused the current accelerated expansion, the
prevailing argument being that dark energy caused it, often considered to be
sourced by Λ

▶ Some serious problems (tensions)
✓ Cosmological Constant Problem 1(vacuum catastrophe): measured energy density of

the vacuum over 120 orders of magnitude less than the theoretical prediction
• Worst prediction in the history of physics (and of science in general)
• Casts doubt on dark energy being a cosmological constant

✓ Cosmic Coincidence Problem 2: dark matter and dark energy densities have the same
order of magnitude at the present moment of cosmic history, while differing with many
orders of magnitude in the past and the predicted future

• The initial conditions of dark matter and dark energy should be fine-tuned to about 95 orders of
magnitude to produce a universe where the two densities nearly coincide today, approximately
14 billion years later3

1Weinberg, S. Rev. Mod. Phys, 61 (1), 1 (1989)
2Velten, H. E. et al., Eur. Phys. J. C, 74 (11), 1 (2014)
3Zlatev, I., Wang, L., & Steinhardt, P. J. , Physi. Rev. Lett., 82(5), 896 (1999).
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Tensions
▶ Latest tensions vis-à-vis precise theoretical predictions and observational

measurements:
✓ The Hubble Tension: H0 CMB vs local measurements, more than 5σ discrepancy

• Planck2018, ΛCDM model
H0 = 67.27 ± 0.60 km/s/Mpc

• Estimate using SNIa measurements (2016)

H0 = 73.24 ± 1.74 km/s/Mpc
• Parallax measurements of Milky Way Cepheids (2018)

H0 = 73.48 ± 1.66 km/s/Mpc

✓ The S8 discrepancy : the 3σ level difference between measurements made from the
CMB against weak lensing measurements and redshift surveys of the parameter S8,
which quantifies the amplitude of late-time matter fluctuations and structure growth

S8 = σ8

√
Ωm/0.3

where σ8 measures the amplitude of the linear power spectrum on the 8h−1Mpc scale
✓ ΩK , zero or not zero? ΛCDM assumes flat universe, but Planck temperature and

polarisation power spectra give an above 3σ deviation:

ΩK ≈ −0.044+0.018
−0.015

▶ Several alternatives proposed, but to mention just a few:
✓ Modified/extended theories of gravity
✓ Interacting vacuum
✓ Evolving fundamental constants
✓ Inhomogeneous/anisotropic models
✓ Interacting dark matter and dark energy → non-gravitational interactions
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Background thermodynamics
▶ The standard ΛCDM cosmology is a solution of the Einstein field equations

(EFEs) derived from the action

S =
c4

16πG

∫
d4x

√
−g [R + 2 (Lm − Λ)]

where R, Lm and L are the Ricci scalar, the matter Lagrangian density and the
cosmological constant, respectively. The corresponding EFEs read 4:

Gµν + Λgµν =
8πG
c4 Tµν

with the first (geometric) term represented by the Einstein tensor, and the RHS
of the equation representing the total energy-momentum tensor (EMT) of matter
fluid forms.

▶ Both Gµν and Tµν are covariantly conserved quantities. The EMT for
perfect-fluid models is given by

Tµν = (ρ + p)uµuν + pgµν

where ρ and p are the energy density and isotropic pressure of matter,
respectively, often related by the barotropic equation of state (EoS) p = wρ for a
constant EoS parameter w . The normalised vector uα represents the four-velocity
of fundamental observers comoving with the fluid

4We will set c = 1 from here onwards
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▶ The divergence-free EMT leads to the fluid conservation equation

T µν
;µ = 0 =⇒ ρ̇ + 3

ȧ
a

(1 + w)ρ = 0

where a(t) is the cosmological scale factor whose evolution is given by the
Friedmann equation

ȧ2

a2 =
8πG

3
ρ +

Λ
3

−
k
a2

where k is the normalised spatial curvature parameter with values −1 , 0 , 1
depending on an open, flat or closed spatial geometry.

▶ In a multi-component fluid system, it is usually assumed that the energy density
of each perfect-fluid component is assumed to evolve independently of the other
fluids of the system:

ρ̇i + 3H(1 + w)ρi = 0

where here, we have introduced the Hubble parameter H ≡ ȧ
a and in this case the

total EMT is the algebraic sum of the EMTs of each fluid, so are the total energy
density and total pressure terms the algebraic sums of the individual components

▶ If we relax this assumption (of conservation) due to the presence of interactions
such as diffusion, the individual components do not obey the matter conservation
equation, but the total fluid still does.

▶ In diffusive fluids, the non-conservation equation for the ith component fluid
reads:

T µν
i ;µ = Nν

i (1)

where Nν
i corresponds to the current of diffusion term for that fluid
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Interactions
▶ Assuming that both radiation and baryonic matter are separately conserved,

conservation equations for interacting dark energy models:

ρ̇dm + 3Hρdm = Q
ρ̇de + 3Hρde(1 + ω) = −Q
ρ̇bm + 3Hρbm = 0
ρ̇r + 4Hρr = 0

(2)

▶ Q is an arbitrary coupling function whose sign determines how energy (or
momentum) is transferred between dark energy and dark matter. If Q > 0, then
the energy (or momentum) is transferred from dark energy to dark matter and
vice versa for Q < 0, such that:

Q =

> 0 Dark Energy → Dark Matter (iDEDM regime)
< 0 Dark Matter → Dark Energy (iDMDE regime)
= 0 No interaction

(3)

▶ No fundamental theory for the coupling equation Q, freely chosen; we will only
consider models where the coupling function Q is either proportional to the dark
matter or the dark energy density
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▶ Standard assumptions of background expansion, only the conservation equations
get modified:

H2(a) =
( ȧ

a

)2
=

8πG
3

(ρr + ρbm + ρdm + ρde) −
kc2

a2

q = Ωr +
1
2

(Ωbm + Ωdm) +
1
2

Ωde (1 + 3ω)

ωeff =
Ptot

ρtot
=

1
3 Ωr + ωdeΩde

Ωr + Ωbm + Ωdm + Ωde

▶ Interaction affects the effective equations of state of both dark matter ωeff
dm and

dark energy ωeff
de , relative to the uncoupled background equations (Q = 0) in:

ωeff
dm = −

Q
3Hρdm

ωeff
de = ωde +

Q
3Hρde

(4)

▶ Thus, the effects of an interaction may be understood to imply that if:

Q > 0 (iDEDM)
{

ωeff
dm < 0 Dark matter redshifts slower than a−3 (less DM in past)

ωeff
de > ωde Dark energy has less accelerating pressure

Q < 0 (iDMDE)
{

ωeff
dm > 0 Dark matter redshifts faster than a−3 (more DM in past)

ωeff
de < ωde Dark energy has more accelerating pressure

▶ Even if ωde = −1, when Q < 0 or Q > 0, then the dark energy may behave like
either uncoupled quintessence ωeff

de > −1 or uncoupled phantom ωeff
de < −1 dark

energy respectively
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▶ Consider the ratio r of ρdm to ρde for interacting dark energy models:

r =
ρdm
ρde

=
ρ(dm,0)a−3(1+ωeff

dm )

ρ(de,0)a
−3(1+ωeff

de )
= r0a−ζ ζIDE = 3

(
ωeff

dm − ωeff
de

)
(5)

with ζ indicating the magnitude of the coincidence problem
▶ The smaller the difference between ωeff

dm and ωeff
de the more the coincidence

problem will be alleviated while being solved if ζ = 0, which happens when
ωeff

dm = ωeff
de

▶ Achieved if dark matter redshifts slower ωeff
dm < ωdm and dark energy redshifts

faster ωeff
de > ωde, which coincides with the iDEDM (Q > 0) scenario

▶ The opposite holds for the iDMDE (Q < 0) scenario, with ζΛCDM = 3:

ζIDE = 3
(

ωeff
dm − ωeff

de
) {

Q > 0 (iDEDM): ζIDE < ζΛCDM alleviates coincidence
Q < 0 (iDMDE): ζIDE > ζΛCDM worsens coincidence

▶ ωeff
dm < 0 for iDEDM, DM redshifts slower, which leads to less DM in the past

and the radiation-matter equality happening later, which in turns causes
suppression in the matter power spectrum, alleviating the S8 discrepancy

▶ ωeff
de > ωde, such that DE redshifts faster, causing more DE in the past. Less DM

and more DE in the past have the consequence that both the cosmic jerk and the
matter-dark energy equality happen earlier in cosmic history

▶ From the Friedmann equation, we can see that this overall suppression of dark
matter density causes a lower value of the Hubble parameter at late times. This
lower value of H0 worsens the Hubble tension with regard to late time probes

▶ The universe should also be older
▶ The opposite holds for the iDMDE scenario
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Cosmological implications

Event/Parameter/Problem Q > 0 Q < 0

Energy flow DE → DM (iDEDM) DM → DE (iDMDE)

Effective equations of state ωeff
dm < ωdm ; ωeff

de > ωde ωeff
dm > ωdm ; ωeff

de < ωde

Coincidence problem Alleviates (ζIDE < ζΛCDM) Worsens (ζIDE > ζΛCDM)

Hubble tension Worsens Alleviates

S8 discrepancy Alleviates Worsens

Age of universe Older Younger

Radiation-matter equality Later (zIDE < zΛCDM) Earlier (zIDE > zΛCDM)

Cosmic jerk (q = 0) Earlier (zIDE > zΛCDM) Later (zIDE < zΛCDM)

Matter-dark energy equality Earlier (zIDE > zΛCDM) Later (zIDE < zΛCDM)
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Dynamical evolution
▶ Consider models which contain radiation Ωr, baryonic matter Ωbm, dark matter

Ωdm and dark energy Ωde
▶ Defining

Ωx =
8πG
3H2 ρx x ∈ (r, bm, dm, de)

Ω̇de = ΩdeH [2Ωr + Ωbm + Ωdm + Ωde (1 + 3ωde) − 1 − 3ωde] −
8πG
3H2 Q

Ω̇dm = ΩdmH [2Ωr + Ωbm + Ωdm + Ωde (1 + 3ωde) − 1] +
8πG
3H2 Q

Ω̇bm = ΩbmH [2Ωr + Ωbm + Ωdm + Ωde (1 + 3ωde) − 1]

Ω̇r = ΩrH [2Ωr + Ωbm + Ωdm + Ωde (1 + 3ωde) − 2]

(6)

▶ Interested in the parameter space of how dark matter and dark energy evolve with
regard to each other

dΩde
dΩdm

=
ΩdeH [2Ωr + Ωbm + Ωdm + Ωde (1 + 3ωde) − 1 − 3ωde] − 8πG

3H2 Q
ΩdmH [2Ωr + Ωbm + Ωdm + Ωde (1 + 3ωde) − 1] + 8πG

3H2 Q
(7)

▶ Obtain a set of trajectories or flow lines in the (Ωdm, Ωde)-plane, which have
stable attractor and unstable repeller points, in turn used to see if the ratio of
dark matter to dark energy becomes fixed in the past or present, thus potentially
addressing the model’s potential to solve the coincidence problem
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Two linear interaction models

▶ Two most commonly used interaction models:

Q1 = δHρde Q2 = δHρdm (8)

with δ a dimensionless coupling constant that determines the strength of the
interaction 5

▶ For these models, we assume that δ < −3ω so that the coupling strength |δ| is
not too strong 6

▶ This condition implies (δ < −3ω) → (δ + 3ω < 0)
▶ Requiring H > 0 ; ρdm > 0 ; ρde > 0 the sign of δ will determine the direction of

energy flow
▶ δ > 0 → Q > 0 corresponds to the iDEDM regime and δ < 0 → Q < 0 to the

iDMDE regime
▶ The greatest qualitative difference between the two coupling functions is that

Q1 ∝ ρde and Q2 ∝ ρdm, which implies that the effect of the coupling will be
either most prominent during early dark matter domination, or later dark energy
domination respectively

5Denoted by ξ in Eleonora’s talk, in Giaré et al arxiv: 2404.02110, etc
6J. Vliviita, E. Majerotto, and R. Maartens, JCAP, 07 020 (2008)
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Interactions
▶ The model Q1 = δHρde is one of the most commonly used interaction functions
▶ All energy densities remain positive throughout the past universe history, even in

the iDMDE (δ < 0) regime, unlike Q2 which results in ρde < 0 in the iDMDE
regime’s past evolution
✓ In the iDMDE (δ < 0) regime, these models will always suffer from negative dark

matter energy densities (ρdm < 0) during future expansion
• During future expansion, the dark matter density will decrease, and energy will be transferred

away from DM to DE until the DM density eventually reaches zero density
• No mechanism to stop this energy transfer (since energy transfer is only proportional to dark

energy density), the energy transfer will still continue, inevitably leading to negative dark matter
densities (ρdm < 0) in the future

▶ Exact conditions needed to ensure positive energy densities throughout the past
and future expansion

▶ For Q1, negligible radiation, putting dm and bm together, we have:

dΩde
dΩm

=
Ωde [Ωm + Ωde (1 + 3ωde) − 1 − 3ωde−δ]

Ωm [Ωm + Ωde (1 + 3ωde) − 1] +δΩde
(9)

▶ Express evolution of matter and dark energy with a phase portrait in the (Ωm,
Ωde)-plane

▶ Equilibrium points

(Ωm, Ωde)− = (1, 0) (Ωm, Ωde)+ =
(

−
δ

3ω
, 1+

δ

3ω

)
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▶ Each trajectory starts at the unstable repellor point(1, 0) and diverges, and
converges again at the attractor stable point

(
− δ

3ω
, 1 + δ

3ω

)

Phase portraits for Ωdm and Ωde (Q = δHρde)

▶ Same repeller point as ΛCDM but attractor point shifted by the dark coupling,
showing effect of coupling is more dominant during dark energy dominance for
Q ∝ ρde
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Coincidence?

▶ The ratio of the coordinates of the equilibrium points indicates which value r
tends to in the past r− or the future r+

▶ The ΛCDM model has r− → ∞ in the past, whilst approaching r+ → 0 in the
future

▶ IDE models that can find a constant non-zero or non-infinite value for either r−
or r+ should solve the coincidence problem in either the past or the future,
respectively

r− =
Ω(m,−)

Ω(de,−)
=

1
0

→ ∞ r+ =
Ω(dm,+)

Ω(de,−)
≈

Ω(m,+)

Ω(de,+)
=

− δ
3ω

1 + δ
3ω

→ −
δ

δ + 3ω

▶ Model not solving the coincidence problem in the past as r− but will stabilising r
in the future r+, thereby solving the coincidence for future expansion

▶ Positive δ > 0 (iDEDM) solves the coincidence problem, but δ < 0 (iDMDE)
causes negative energy densities

▶ Ωdm,+ ≈ Ωm,+ = − δ
3ω

, alongside (ω < 0) =⇒ δ < 0 (iDMDE) leads to a
negative energy attractor solution for Ωdm
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Analytic solutions
▶ For Q1, solving the conservation equations yields expressions for ρdm and ρde:

ρdm =
(

ρ(dm,0)+ρ(de,0)
δ

δ + 3ω

[
1 − a−(δ+3ω)

])
a−3

ρde = ρ(de,0)a−(δ+3ω+3)

▶ Corresponding density parameters

Ωdm =
H2

0
H2

(
Ω(dm,0)+Ω(de,0)

δ

δ + 3ω

[
1 − (1 + z)(δ+3ω)

])
(1 + z)3

Ωde =
H2

0
H2 Ω(de,0)(1 + z)(δ+3ω+3)

▶ The effective equation of states for this model can be obtained by substituting
the coupling equation Q = δHρde into (4). The dark matter effective equation of
state is then:

ωeff
dm = −

Q
3Hρde

= −
δHρde
3Hρdm

= −
δ

3
ρde
ρdm

= −
δ

3
1
r

(10)

▶ Similarly, for dark energy, we have the effective equation of state:

ωeff
de = ω+

Q
3Hρdm

= ω+
δHρde
3Hρde

= ω+
δ

3
(11)

▶ Notice that ωeff
dm is dynamical with a dependence on r , while, in contrast ωeff

de is
constant
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▶ For this model, ρde is always positive for all values of δ, while ρdm has multiple
terms which could become negative

▶ Four scenarios where the energy density may possibly cross zero and become
negative, for δ < 0 and δ > 0 scenarios for either the past or the future:

a−(δ+3ω) = 1 + r0

(
δ + 3ω

δ

)
δ + 3ω < 0 (12)

δ < 0 ⇒
{

Past a < 1 → 0 < lhs < 1 rhs > 1 (A)
Future a > 1 → lhs > 1 rhs > 1 (B)

δ > 0 ⇒
{

Past a < 1 → 0 < lhs < 1 rhs < 1 (C)
Future a > 1 → lhs > 1 rhs < 1 (D)
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Implications

▶ ρdm will always remain positive for scenario’s (A) (past expansion with δ < 0)
and (D) (future expansion with δ > 0)

▶ In scenario (B) the dark energy density will always become negative in the future
as shown in the attractor point of previous phase portrait

1 + r0

(
δ + 3ω

δ

)
< 0 → δ < −

3ω(
1 + 1

r0

) (13)

▶ Scenario (C) (Past expansion with δ > 0 will always have positive energy densities
▶ Since both (C) and (D) will always have positive energy densities, the positive

coupling δ > 0 may be seen as physical
▶ Since the condition (13) holds, it implies that the condition δ < −3ω must

necessarily hold as well. Taking the conditions (δ > 0) ; (δ < −3ω) and(
δ < − 3ω

(1+1/r0)

)
together, a general condition is obtained to ensure positive

energy densities for this model:

0 < δ < −
3ω(

1 + 1
r0

) (14)
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▶ For the coupling Q1 = δHρde, only IDE models where energy flows from dark
energy to dark matter iDEDM (δ > 0) should be considered seriously as couplings
where energy flows from dark matter to dark energy iDMDE (δ < 0) will always
lead to either negative energies in the past or the future

Conditions ρdm (pst) ρdm (fut) ρde (pst) ρde (fut) physical?

0 < δ < − 3ω(
1+ 1

r0

) + + + +
√

δ > 0, δ > − 3ω(
1+ 1

r0

) − + + + X

δ < 0 + - + + X

Conditions for positive energy densities throughout cosmic evolution (Q1 = δHρde)
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Revisiting coincidence
▶ Let’s now try to resolve the CCP using analytic expressions, starting with the

ratio:

r(z) =
ρdm(z)
ρde(z)

=
(

r0 +
δ

δ + 3ω

)
(1 + z)−(δ+3ω) −

δ

δ + 3ω
(15)

▶ The r scales with the scale factor (ignoring the constant terms), such that:

r ∝ a(δ+3ω) → ζQ1 = ζQ = −3ω − δ (16)

▶ For the ΛCDM model ζΛCDM = 3, thus:

ζQ = −3ω−δ →
{

if δ > 0 (iDEDM) → ζQ < ζ alleviates coincidence problem
if δ < 0 (iDMDE) → ζQ > ζ worsens coincidence problem

▶ The effect becomes more extreme in both the distant past and the distant future:

lim
(1+z)→∞

r− → ∞, ; lim
(1+z)→0

r+ =→ −
δ

δ + 3ω
(17)

▶ In the distant future, r has the proportionality:

lim
(1+z)→0

r+ ∝ a0 → ζ(Q,+) = 0 (18)

▶ Since r is constant and ζ(Q,+) = 0, this model solves the coincidence problem for
future expansion in the δ > 0 (iDEDM) regime
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▶ δ < 0 (iDMDE) leads to a negative constant r+ due to ρdm which becomes
negative, which is unphysical

▶ Thus, for (1 + z) → 0 in the future, we have:

lim
(1+z)→0

ζQ = 0
{

if δ > 0 → r− = +constant solves coincidence problem
if δ < 0 → r− = −constant negative energy densities (unphysical).

▶ Recalling that

ωeff
dm = −

δ

3
1
r

= −
δ

3
1(

r0 + δ
δ+3ω

)
(1 + z)−(δ+3ω) − δ

δ+3ω

(19)

we see that in the distant past, r− → ∞, while in the distant future
r+ → − δ

δ+3ω
, as was also shown in the phase portraits

▶ Noting that ωeff
de = ω + δ

3 from (11), we can see how the dynamical effective
equation of state ωeff

dm behaves in both the distant past and future:

ωeff
dm = −

δ

3
1
r

{
Distant past (r = r−) : ωeff

dm = − δ
3

1
∞ = 0 = ωdm

Distant future (r = r+) : ωeff
dm = − δ

3

(
δ

δ+3ω

)
= ω + δ

3 = ωeff
de

(20)

▶ DM and DE redshift and dilute at the same rate in the future, effectively solving
the CCP by keeping the ratio of dark matter to dark energy constant

▶ In the distant past, ωeff
dm = ωdm =⇒ effect of the coupling on dark matter will

thus become negligible for past expansion, effectively mimicking the behaviour of
uncoupled dark matter
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Coincidence problem (Q1 = δHρde), δ > 0 (iDEDM): r differs with many orders of magnitude in
the past but converges to a constant value in the future r → r+ 20 / 37



▶ For δ > 0 (iDEDM), dark matter receives energy from dark energy, causing ρdm
to redshift slower ωeff

dm < ωdm (smaller slope), while ρde redshifts faster (greater
slope), alleviating the coincidence problem in the past

▶ In the future the slope at which ρdm and ρde redshift becomes the same,
coinciding with ωeff

dm = ωeff
de and the coincidence problem being solved, while ρdm

dilutes similar to the ΛCDM model in the past where ωeff
dm = ωdm

Energy densities ρ vs redshift - (Q1 = δHρde)
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▶ If δ > 0, ρde decreases over time; while if δ < 0, ρde increases over time
▶ =⇒ DE effectively behaves like either quintessence or phantom dark energy,

respectively, with an equation of state ωeff
de = ω + δ

3
▶ Since this continues indefinitely, it may cause a big rip singularity in the future

Density parameters vs redshift - (Q = δHρde)

▶ Note that for δ > 0 the matter-radiation equality happens later and the
matter-dark energy equality earlier in cosmic history, with the opposite holding
for δ < 0
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Epochs of equality

▶ Analytical expressions giving the exact redshift where the radiation-matter
z(r=dm+bm) and matter dark energy z(dm+bm=de) equalities occur:

z(r=dm+bm) ≈
(

Ω(bm,0) + Ω(dm,0)+Ω(de,0)
δ

δ+3ω

Ω(r,0)

)
− 1 (21)

z(dm+bm=de) =

 Ω(bm,0)+Ω(dm,0)
Ω(de,0)

+ δ
δ+3ω(

1+ δ
δ+3ω

)
 1

δ+3ω

− 1 (22)

δ > 0 (iDEDM)
{

Rad-matt eq: zIDE < zΛCDM happens later than ΛCDM
Matt-DEy eq: zIDE > zΛCDM happens earlier than ΛCDM

δ < 0 (iDMDE)
{

Rad-matt eq: zIDE > zΛCDM happens earlier than ΛCDM
Matt-DE eq: zIDE < zΛCDM happens later than ΛCDM
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Evolution of effective equation of state ωeff with redshift (Q1 = δHρde)
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Evolution of deceleration parameter q with redshift (1 + z) (Q1 = δHρde)
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▶ Past expansion history for the coupled models is almost identical to that of the
ΛCDM model, with initial deceleration followed by acceleration from the cosmic
jerk onwards

▶ Model experiences complete radiation-domination
(Ωr, Ωdm+bm, Ωde) ≈ (1, 0, 0) → q = 1 ; ωeff = 1/3, followed by complete
matter-domination (Ωr, Ωdm+bm, Ωde) ≈ (0, 1, 0) → q = 1/2 ; ωeff = 0

▶ No complete dark energy domination: we have
(Ωr, Ωdm+bm, Ωde) ≈

(
0, − δ

3ω
, 1 + δ

3ω

)
, with deceleration parameter during

dark energy domination q+ = 1
2

(
1 + 3ωeff

de

)
▶ This cosmic jerk occurs at the transition redshift zt, for which an analytical

expression can be derived by setting q = 0 in eq. (4), giving:

zt =

−

Ω(bm,0)+Ω(dm,0)
Ω(de,0)

+ δ
δ+3ω

1 + 3ω+ δ
δ+3ω

 1
δ+3ω

− 1 (23)

▶ We can see that:

Cosmic jerk (zt)
{

δ > 0 (iDEDM): zIDE > zΛCDM happens earlier than ΛCDM
δ < 0 (iDMDE): zIDE < zΛCDM happens later than ΛCDM
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Age of the universe
▶ The interaction Q will affect the age of the universe since both the deceleration

parameter and the total effective equation of state deviate from ΛCDM
expansion, in turn affecting the evolution of H

▶ H/Hδ=0 < 1 for δ > 0 (iDEDM) throughout most of the expansion history,
indicating a slower expansion rate

Relative Hubble parameter (H/Hδ=0) vs redshift (Q1 = δHρde)
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▶ Due to δ > 0 (iDEDM) having a slower expansion rate, more time is needed for
the universe to evolve from a singularity (a = 0) to its current size (a = 1),
causing an older age for the universe
✓ The opposite of this holds for δ < 0 (iDEDM)

Evolution of scale factor with time (Q1 = δHρde)
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Cosmic events comparison: Q1 = δHρde

Event: δ = 0 z t0 (Gyr) ρr ρm ρde (J/m3)
Big bang singularity ∞ 13.80 ∞ ∞ ∞

Radiation-matter equality 3499 13.80 10.9 10.9 5.5e-10
Cosmic jerk 0.63 6.12 5.2e-13 1.2e-9 5.5e-10

Matter-dark energy equality 0.30 3.50 2.1e-13 1.1e-9 5.5e-10
Event: δ = 0.25 z t0 (Gyr) ρr ρm ρde (J/m3)

Big bang singularity ∞ 14.44 ∞ ∞ ∞
Radiation-matter equality 2807 14.44 4.5 4.5 4.0e-9

Cosmic jerk 0.82 7.23 8.0e-13 1.3e-9 6.4e-10
Matter-dark energy equality 0.39 4.35 2.7e-13 6.0e-10 6.0e-10

Event: δ = −0.25 z t0 (Gyr) ρr ρm ρde (J/m3)
Big bang singularity ∞ 13.34 ∞ ∞ ∞

Radiation-matter equality 4084 13.34 20.3 20.3 6.6e-11
Cosmic jerk 0.52 5.29 7.8e-13 1.3e-9 6.4e-10

Matter-dark energy equality 0.24 2.93 1.7e-13 5.3e-10 5.3e-10
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Instabilities

▶ The coupling between the dark sectors will influence the evolution of dark matter
and dark energy perturbations 7 8

▶ Introduce so-called doom factor: combination of parameters used to avoid
instabilities

d =
Q

3Hρde(1 + ω)
(24)

▶ May induce non-adiabatic instabilities in the evolution of the dark energy
perturbations

▶ Sign of d will determine if there is an early time instability. It was shown that if
the doom factor is positive and large d > 1; the dark energy perturbations will
become dominated by the terms which are dependent on the coupling function Q,
leading to a runaway; unstable growth regime

▶ For model should be free of non-adiabatic instabilities on large scales, d < 0
▶ For Q = δHρde, we have

d =
Q

3Hρde(1 + ω)
=

δHρde
3Hρde(1 + ω)

=
δ

3(1 + ω)
(25)

7M.B. Gavela, D. Hernandez, L. Lopez Honorez, et al., JCAP, 07 034 (2009)
8J. Vliviita, E. Majerotto, and R. Maartens, JCAP, 07 020 (2008)
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▶ For this interaction model:

d < 0
{

δ < 0 ω > −1 (Quintessence regime)
δ > 0 ω < −1 (Phantom regime)

→ No instabilities expected

d > 0
{

δ > 0 ω > −1 (Quintessence regime)
δ < 0 ω < −1 (Phantom regime)

→ Instabilities if d> 1

δ ω Dark energy d Stable ρdm > 0 ρde > 0 Viable

+ < −1 Phantom -
√ √ √ √

+ > −1 Quintessence + X
√ √

X

- < −1 Phantom + X X
√

X

- > −1 Quintessence -
√

X
√

X

Stability and positive energy criteria (Q = δHρde)

▶ Note that the only scenario that is free from both negative energy densities and
instabilities is phantom dark energy ω < −1 in the δ > 0 (iDEDM) regime

▶ These models will thus violate many of the energy conditions of general relativity
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Future singularities

▶ Since ωeff
+ = ωeff

dm = ωeff
de = ω + δ

3 in the future, the value of δ will determine if
the universe model will experience a late time big rip singularity 9

▶ For a big rip to occur, we need ρde → ∞ in a finite time
▶ Occurs for this model if ρde increases with scale factor as the universe expands,

which only happens if the effective equation of state ωeff
de = ω + δ

3 < −1:

ρde = ρ(de,0)a−3(1+ω+ δ
3 ), −3

(
1 + ω +

δ

3

)
> 0 if ωeff

de = ω +
δ

3
< −1

(26)

▶ If this condition is obeyed, the time of the rip trip can be given by

trip ≈ −
2

3H0(1 + ω+ δ
3 )

√(
1− δ

δ+3ω

) (
1 − Ω(dm+bm,0)

) (27)

which reduces back to the uncoupled case 10 if δ = 0

9S. Pan, J. de Haro, W. Yang, and J. Amors, Phys. Rev. D, 101 12 2470-0029 (2020)
10R.R. Caldwell, M. Kamionkowski, and N. N. Weinberg, PRL, 91 (7) (2003)
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Evolution of energy density and the big rip for phantom (ω = −1.15) IDE models - (Q1 = δHρde)
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Evolution of factor and the big rip for phantom (ω = −1.15) IDE models - (Q1 = δHρde)
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Similarly for Q2 = δHρdm
▶ Analytic solutions of densities

ρdm = ρ(dm,0)a(δ−3),

ρde =
[

ρ(de,0)+ρ(dm,0)
δ

δ + 3ω

(
1 − aδ+3ω

)]
a−3(1+ω)

▶ Effective eos parameters

ωeff
dm = −

δ

3
ωeff

de = ωde+
δ

3
r

▶ Positive energy densities
0 < δ < −

3ω

(1 + r0)

Conditions ρdm (pst) ρdm (fut) ρde (pst) ρde (fut) physical

0 < δ < − 3ω
(1+r0) + + + +

√

δ > 0 ; δ > − 3ω
(1+r0) + + + − X

δ < 0 + + − + X

Conditions for positive energy densities throughout cosmic evolution (Q2 = δHρdm)
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δ > 0 (iDEDM)
{

Past expansion: ωeff
dm = ωeff

de (ζQ = 0) solves coincidence problem
Future expansion: ωeff

dm < ωdm (ζQ < ζ) alleviates coincidence problem

δ < 0 (iDMDE)
{

Past expansion: ωeff
dm = ωeff

de (ρde < 0) negative energy densities
Future expansion: ωeff

dm > ωdm (ζQ > ζ) worsens coincidence problem

δ ω Dark energy d a priori stable ρdm > 0 ρde > 0 Viable

+ < −1 Phantom -
√ √ √ √

+ > −1 Quintessence + X
√ √

X

- < −1 Phantom + X
√

X X

- > −1 Quintessence -
√ √

X X

Stability and positive energy criteria (Q1 = δHρdm)
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Summary
▶ Clarified cosmological consequences of IDE models for any generic interaction Q
▶ Two case studies of linear dark energy couplings, Q1 = δHρde and Q2 = δHρdm
▶ Positive energy conditions 0 < δ < −3ω/(1 + 1

r0
) and 0 < δ < −3ω/ (1 + r0)

▶ The δ < 0 (iDMDE) regime will always lead to ρdm < 0 in the future for
Q = δHρde and ρde < 0 in the past for Q = δHρdm =⇒ δ < 0 (iDMDE)
regime should not be taken seriously as a potential dark energy candidate for
these models

▶ The δ > 0 (iDEDM) regime:
✓ The model Q = δHρde could solve the coincidence problem in the future whilst

alleviating the problem for the past
✓ The model Q = δHρdm can solve the coincidence problem in the past and alleviate the

problem for the future
✓ Later radiation-matter equality for both models, earlier matter-dark energy equality and

cosmic jerk; older age of the universe; opposite holds for δ < 0 (iDMDE)
✓ The only viable regime for both these models, which avoid both negative energy

densities and gravitational instabilities, is phantom dark energy ω < −1 in the δ > 0
(iDEDM) regime

✓ This has the consequence that model Q2 = δHρdm will always end with a future big rip
singularity, while Q1 = δHρde may avoid this fate

✓ The model Q = δHρde will only experience a big rip future singularity if the condition
ωeff

de = ω + δ
3 < −1

✓ This big rip may be avoided if the conditions 3(ω + 1) < δ < −3ω
(

1 + 1
r0

)
if

ωde < −1
▶ Emphasis on importance of choosing the correct parameter space (iDEDM regime,

with phantom dark energy) to avoid both negative energies and instabilities
▶ Future outlook: nonlinear IDE models more realistic? Observational constraints!
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