Exploring the Flavor Symmetry Landscape

Alfredo Glioti

Institut de Physique Théorique

Corfu Summer Institute

30/08/2024

Based on **2402.09503**, AG, Riccardo Rattazzi, Lorenzo Ricci, Luca Vecchi

New physics searches

Indirect probes

Precision measurements can indirectly probe scales much higher than the energies of colliders

Our workflow

What are the hypotheses that allow for physics at TeV?

This can only be answered with a concrete model Many BSM flavor models studied these last decades

Our choice: **Composite Higgs + Partial Compositeness**

Given the current (and near future) indirect bound, **what can be discovered by LHC / FCC**?

Composite Higgs Review

Partial compositeness

The **Yukawas** come from the interactions between composite and elementary sector

Two possibilities

SILH Lagrangian

Putting together these hypotheses, one obtains a general effective Lagrangian

Bosonic Constraints

Before discussing flavor, main constraints from the bosonic sector

Flavor Anarchy

Anarchic partial compositeness: structureless O(1) flavor and CP violating coefficients

Can explain flavor hierarchies dynamically, but suffers from strong bounds…

Maximal Flavor Symmetry

Another possibility is assuming the maximal flavor symmetry structure in the strong sector that reproduces the Standard Model (focus on the quark sector)

$$
\mathcal{L}_{\text{mix}} = \underbrace{\lambda_{q_u}^{ia} \overline{q}_{L}^{i} \mathcal{O}_{q_u}^{a}}_{\text{max}} + \lambda_{q_d}^{ia} \overline{q}_{L}^{i} \mathcal{O}_{q_d}^{a} + \lambda_{u}^{ia} \overline{u}_{R}^{i} \mathcal{O}_{u}^{a} + \lambda_{d}^{ia} \overline{d}_{R}^{i} \mathcal{O}_{d}^{a},
$$

For some models we need two different partners for the left quarks

Two sets of mixings: **Universal** = real and proportional to Identity, **Non-universal** = contain flavor- and CP- breaking

$$
\overbrace{\qquad \qquad } \qquad \qquad }
$$

$$
\qquad \qquad \overbrace{\qquad \qquad } \qquad \qquad }
$$

$$
\qquad \qquad \overbrace{\qquad \qquad } \qquad \qquad }
$$

$$
\qquad \qquad \overbrace{\qquad \qquad } \qquad \qquad }
$$

$$
\qquad \qquad \overbrace{\qquad \qquad } \qquad \qquad }
$$

$$
\qquad \qquad \overbrace{\qquad \qquad } \qquad \qquad }
$$

$$
\qquad \qquad \overbrace{\qquad \qquad } \qquad \qquad }
$$

$$
\qquad \qquad \overbrace{\qquad \qquad } \qquad \qquad }
$$

$$
\qquad \qquad \overbrace{\qquad \qquad } \qquad \qquad }
$$

$$
\qquad \qquad \overbrace{\qquad \qquad } \qquad \qquad }
$$

$$
\qquad \qquad \overbrace{\qquad \qquad } \qquad \qquad }
$$

$$
\qquad \qquad \overbrace{\qquad \qquad } \qquad \qquad }
$$

$$
\qquad \qquad \overbrace{\qquad \qquad } \qquad \qquad }
$$

$$
\qquad \qquad \overbrace{\qquad \qquad } \qquad \qquad }
$$

$$
\qquad \qquad \overbrace{\qquad \qquad } \qquad \qquad }
$$

$$
\qquad \qquad \overbrace{\qquad \qquad } \qquad \qquad }
$$

$$
\qquad \qquad \overbrace{\qquad \qquad } \qquad \qquad }
$$

$$
\qquad \qquad \overbrace{\qquad \qquad } \qquad \qquad }
$$

$$
\qquad \qquad \overbrace{\qquad \qquad } \qquad \qquad }
$$

$$
\qquad \qquad \overbrace{\qquad \qquad }
$$

$$
\qquad \qquad \overbrace
$$

Maximal Flavor Symmetry \rightarrow Minimal Flavor Violation

Right-Universality MFV

$$
\left(\begin{array}{c} \mathcal{L}_{\rm mix} = \lambda^{ia}_{q_u} \overline{q}^i_L \mathcal{O}^a_{q_u} + \lambda^{ia}_{q_d} \overline{q}^i_L \mathcal{O}^a_{q_d} + \lambda^{ia}_u \overline{u}^i_R \mathcal{O}^a_u + \lambda^{ia}_d \overline{d}^i_R \mathcal{O}^a_d, \\ \hline \\ \propto Y_{\psi} \end{array} \right) \times \mathcal{I}
$$

 $\mathcal{G}_{\text{strong}} = U(3)_U \times U(3)_D \longrightarrow \mathcal{G}_F \equiv U(3)_q \times U(3)_{U+u} \times U(3)_{D+d}$

$$
\text{RU}: \begin{cases} \lambda_{q_u} \sim \frac{1}{\varepsilon_u} \begin{pmatrix} y_u & 0 & 0 \\ 0 & y_c & 0 \\ 0 & 0 & y_t \end{pmatrix}, & \lambda_{q_d} \sim \frac{1}{\varepsilon_d} V_{\text{CKM}} \begin{pmatrix} y_d & 0 & 0 \\ 0 & y_s & 0 \\ 0 & 0 & y_b \end{pmatrix}, \\ \lambda_u \sim g_* \begin{pmatrix} \varepsilon_u & 0 & 0 \\ 0 & \varepsilon_u & 0 \\ 0 & 0 & \varepsilon_u \end{pmatrix}, & \lambda_d \sim g_* \begin{pmatrix} \varepsilon_d & 0 & 0 \\ 0 & \varepsilon_d & 0 \\ 0 & 0 & \varepsilon_d \end{pmatrix}. \end{cases}
$$

$$
\text{With } \frac{y_t}{g_*} \lesssim \varepsilon_u \lesssim 1 \qquad \frac{y_b}{g_*} \lesssim \varepsilon_d \lesssim 1 \qquad \qquad \varepsilon \sim 1 \implies \frac{\text{The "elementary"}}{\text{quarks are actually composite}}
$$

Left-Universality MFV

Alternatively, we could have Left-Universality

$$
\mathcal{L}_{\text{mix}} = \lambda_q^{ia} \overline{q}_L^i \mathcal{O}_q^a + \lambda_u^{ia} \overline{u}_R^i \mathcal{O}_u^a + \lambda_d^{ia} \overline{d}_R^i \mathcal{O}_d^a \,,
$$

 $\mathcal{G}_{\text{strong}} = U(3)_Q \longrightarrow \mathcal{G}_F = U(3)_{Q+q} \times U(3)_u \times U(3)_d$

$$
\text{LU}: \begin{cases} \lambda_q \sim \begin{pmatrix} \varepsilon_q & 0 & 0 \\ 0 & \varepsilon_q & 0 \\ 0 & 0 & \varepsilon_q \end{pmatrix} g_*, \\ \lambda_u \sim \frac{1}{\varepsilon_q} \begin{pmatrix} y_u & 0 & 0 \\ 0 & y_c & 0 \\ 0 & 0 & y_t \end{pmatrix}, \\ \lambda_d \sim \frac{1}{\varepsilon_q} \begin{pmatrix} y_d & 0 & 0 \\ 0 & y_s & 0 \\ 0 & 0 & y_b \end{pmatrix} V_{\text{CKM}}^\dagger \end{cases}
$$

In this case there is a single ε parameter

$$
\frac{y_t}{g_*} \lesssim \varepsilon_q \lesssim 1.
$$

Still MFV, but a completely different phenomenology than the right-handed counterpart

MFV Recap

20

 $|LU$

16

18

The flavor problem

How close to the TeV can Composite Higgs models be?

What's in the middle between these two possibilities?

- Smaller global symmetry group
	- Adding LR global symmetry
		- Dipoles at one loop

Partial-up Right Universality

$$
\mathcal{L}_{\rm mix} = \lambda_{q_u}^{ia} \overline{q}_L^i \mathcal{O}_{q_u}^a + \lambda_{q_d}^{ia} \overline{q}_L^i \mathcal{O}_{q_d}^a + \lambda_u^{ia} \overline{u}_R^i \mathcal{O}_u^a + \lambda_d^{ia} \overline{d}_R^i \mathcal{O}_d^a,
$$

$$
\mathcal{G}_{\text{strong}} = U(2)_U \times U(1)_U \times U(3)_D \longrightarrow \mathcal{G}_F = U(3)_q \times U(2)_{U+u} \times U(1)_{U+u} \times U(3)_{D+du}
$$

 $\sim V_{\rm CKM}$

$$
\text{puRU}: \begin{cases} \lambda_{q_u} \sim \frac{1}{\varepsilon_u} \begin{pmatrix} y_u & 0 \\ 0 & y_c \end{pmatrix} \oplus \frac{1}{\varepsilon_{u_3}} \begin{pmatrix} 0 \\ 0 \\ y_t \end{pmatrix}, & \lambda_{q_d} \sim U_d \frac{1}{\varepsilon_d} \begin{pmatrix} y_d & 0 & 0 \\ 0 & y_s & 0 \\ 0 & 0 & y_b \end{pmatrix}, \\ \lambda_u \sim g_* \begin{pmatrix} \varepsilon_u & 0 \\ 0 & \varepsilon_u \\ 0 & 0 \end{pmatrix} \oplus g_* \begin{pmatrix} 0 \\ 0 \\ 0 \\ \varepsilon_{u_3} \end{pmatrix}, & \lambda_d \sim g_* \begin{pmatrix} \varepsilon_d & 0 & 0 \\ 0 & \varepsilon_d & 0 \\ 0 & 0 & \varepsilon_d \end{pmatrix}. \end{cases}
$$

$$
\left| \begin{array}{ll} \frac{y_c}{g_*} \lesssim \varepsilon_u \lesssim 1 \,, & \frac{y_t}{g_*} \lesssim \varepsilon_{u_3} \lesssim 1 \,, & \frac{y_b}{g_*} \lesssim \varepsilon_d \lesssim 1 \,, & |a| \sim 1, & |b| \sim 1 \end{array} \right|
$$

$$
Y_u \sim \lambda_{q_u} \lambda_u^{\dagger} / g_*, \ Y_d \sim \lambda_{q_d} \lambda_d^{\dagger} / g_*
$$

1st, 2nd generations are separated from the 3rd in the up-sector

…but two real and two new complex parameters appear

Partial Universality

The future

The future

Summary

- **Flavor** is one of the biggest hurdles for models that address the **hierarchy problem**
- **Concrete UV hypotheses** are necessary to have a complete picture of the phenomenology. Hypotheses translate to **selection rules** and **correlations between observables**
- **TeV scale new physics** is still possible, especially in the **puRU** scenario, and will be tested/excluded in the next decade(s)
- Other models seem to live farther from the TeV and the next decades of experiment will tell us their fate
- In particular **MFV is NOT the best choice** in the case of a Strongly interacting Higgs
- In general, **flavor observables** are the ones that gives the **stronger indirect tests** on possible new physics models

BACKUP

CP violation

There is another flavor-independent bound, seemingly missed by the literature

If the strong sector dynamics violates CP we generate a neutron EDM from

This bound is independent on the BSM flavor structure. **Physics at TeV requires that the composite dynamics is CP invariant**

Maximal Flavor Symmetry

The extreme symmetric scenario is when all flavor breaking is contained in the SM Yukawas

Usually referred as **Minimal Flavor Violation**

$$
\mathcal{L}_{\text{mix}} = \lambda_{q_u}^{ia} \overline{q}_L^i \mathcal{O}_{q_u}^a + \lambda_{q_d}^{ia} \overline{q}_L^i \mathcal{O}_{q_d}^a + \lambda_u^{ia} \overline{u}_R^i \mathcal{O}_u^a + \lambda_d^{ia} \overline{d}_R^i \mathcal{O}_d^a,
$$

A total of 5 different possibilities

Right-Universality MFV

Most important constraints come from 4-fermion operators

Right-Universality MFV

But they can be suppressed by "PLR protection"

Accidental symmetry that happens in some embedding of $SO(5) \rightarrow O(4)$

$$
\boxed{[\mathcal{O}_{qD}^{(1)}]^{ij} \equiv \bar{q}_L^i \gamma^\mu q_L^j \ \partial^\nu B_{\nu\mu}} \quad \longrightarrow \quad m_* \gtrsim \frac{1.2 \div 3.5}{g_* \varepsilon_u} \text{ TeV}
$$

Left-Universality MFV

In this model there are **no flavor-violating 4 fermion operators** at tree-level

Digit	$b \rightarrow s \gamma$ $m_* \geq (5.2 \div 8.7) g_* \varepsilon_q^2 \text{ TeV}$	$b \rightarrow s \gamma$ $m_* \geq (5.2 \div 8.7) g_* \varepsilon_q^2 \text{ TeV}$	$[\mathcal{O}_{dB}]^{ij} = (\bar{q}_L^i \sigma^{\mu\nu} d_R^j) H B_{\mu\nu}$	$b \rightarrow s \gamma$ $m_* \geq (5.2 \div 8.7) g_* \varepsilon_q^2 \text{ TeV}$	$[\mathcal{O}_{dB}]^{ij} = (\bar{q}_L^i \sigma^{\mu\nu} d_R^j) H B_{\mu\nu}$	$b \rightarrow s \gamma$ $m_* \geq 0.45 \div 0.68$ TeV
New bound: W coupling modification $m_* \geq 9.3 g_* \varepsilon_q \text{ TeV}$	$m_* \geq 7.5 \text{ TeV}$					

Partial-up Right Universality

Partial-up Right Universality

Luckily the structure is such neutron EDMs are not generated at tree-level

For example, for the up dipole

 $[\mathcal{O}_{u\gamma}]^{ij} = (\bar{q}_L^i \sigma^{\mu\nu} u_R^j) \widetilde{H} F_{\mu\nu}$

$$
\mathcal{C}_{u\gamma} \propto \lambda_{q_u}^{(2)} [\lambda_u^{(2)}]^\dagger + r_\gamma \lambda_{q_u}^{(1)} [\lambda_u^{(1)}]^\dagger = \begin{pmatrix} y_u & 0 & 0 \\ 0 & y_c & 0 \\ a y_c & b y_c & r_\gamma y_t \end{pmatrix}
$$

All the phases can be rotated to the down-sector

$$
u_R^1 \to u_R^1 e^{-i \text{arg}[a]}, \quad u_R^2 \to u_R^2 e^{-i \text{arg}[b]}
$$

$$
q_L^1 \to q_L^1 e^{-i \text{arg}[a]}, \quad q_L^2 \to q_L^2 e^{-i \text{arg}[b]}
$$

The only physical imaginary parts involve both up and down structures → EDMs arise at **loop level**

H

Partial Right Universality

Extending the U(2) also to the down-sector

New parameters a, b, a', b' still O(1)

Partial Left-Universality

Or similarly for the Left-Universality model

$$
\text{pLU}: \quad\n\begin{cases}\n\lambda_q \sim\n\begin{pmatrix}\n\varepsilon_q & 0 \\
0 & \varepsilon_q \\
0 & 0\n\end{pmatrix} g_* \oplus\n\begin{pmatrix}\n0 \\
0 \\
\varepsilon_{q_3}\n\end{pmatrix} g_* \\
\lambda_u \sim\n\frac{1}{\varepsilon_q}\n\begin{pmatrix}\ny_u & 0 \\
0 & y_c \\
a^*y_c & b^*y_c\n\end{pmatrix} \oplus\n\frac{1}{\varepsilon_{q_3}}\n\begin{pmatrix}\n0 \\
0 \\
y_t\n\end{pmatrix} \\
\lambda_d \sim\n\frac{1}{\varepsilon_q}\n\begin{pmatrix}\ny_d & 0 \\
0 & y_s \\
a'^*y_s & b'^*y_s\n\end{pmatrix}\n\widetilde{O}_d \oplus\n\frac{1}{\varepsilon_{q_3}}\n\begin{pmatrix}\n0 \\
0 \\
y_b\n\end{pmatrix} \\
\mathbf{O}(\lambda)\text{ mat}.\n\end{cases}
$$

$$
Y_u = \lambda_q \lambda_u^{\dagger} / g_*, \, Y_d = \lambda_q \lambda_d^{\dagger} / g_*
$$

With

$$
\boxed{\begin{array}{l} \frac{y_c}{g_*} \lesssim \varepsilon_q \lesssim 1\,,\qquad \frac{y_t}{g_*} \lesssim \varepsilon_{q_3} \lesssim 1 \end{array}}
$$

a, b, b' are $O(1)$, but a' must be O(λ) to reproduce the CKM, but no constraint on their phases

Partial Right/Left Universality

For both models nEDMs appear at loop level and give lower bound for the various ε

But new observables become important

 $b \rightarrow s \nu$ at tree-level $[\mathcal{O}_{dB}]^{ij} = (\bar{q}_L^i \sigma^{\mu\nu} d_R^j) H B_{\mu\nu}$

pLU: $m_* \gtrsim (4.9 \div 7.5) \,\text{TeV}$ pRU: $m_* \gtrsim (4.5 \div 5.2) \,\text{TeV}$ But in all known holographic models, such operators arise at loop level

