# **Exploring the Flavor Symmetry**Landscape

#### **Alfredo Glioti**

Institut de Physique Théorique



Corfu Summer Institute 30/08/2024

Based on **2402.09503**, AG, Riccardo Rattazzi, Lorenzo Ricci, Luca Vecchi

### New physics searches



Several things still missing from the SM: gravity, dark matter, baryogenesis, ....

Also no explanation for the SM structure and parameters

(e.g. flavor hierarchy, weak scale...)

#### The SM is an EFT

$$\mathcal{L} = \mathcal{L}^{d \le 4} + \frac{1}{\Lambda} \mathcal{L}^{d=5} + \frac{1}{\Lambda^2} \mathcal{L}^{d=6} + \dots$$

Standard Model

Possible deviations due to new **heavy** states

The **big question**: what is  $\Lambda$ ?

#### $\Lambda$ = High scale

- All the SM "accidents" are natural
- But the weak scale becomes unnatural

#### $\Lambda$ = TeV scale

- Weak scale can be natural
- Needs a "clever" flavor structure to be consistent with precision tests

### **Indirect probes**

Precision measurements can indirectly probe scales much higher than the energies of colliders



However,  $\Lambda$  is **NOT** the scale at which we will find new particles

The connection between  $\Lambda$  and the mass can only be done through a concrete model of the UV physics

#### Our workflow

UV Hypotheses Consequences Available parameter space

What are the hypotheses that allow for physics at TeV?

This can only be answered with a concrete model Many BSM flavor models studied these last decades

Our choice: Composite Higgs + Partial Compositeness

Given the current (and near future) indirect bound, what can be discovered by LHC / FCC?

#### **Composite Higgs Review**



SO(5) → SO(4) spontaneously broken
Higgs is the lightest resonance, possibly a
Nambu-Goldstone boson

Contain Yukawas + flavor and CP violation

#### Partial compositeness

The **Yukawas** come from the interactions between composite and elementary sector

#### Two possibilities

**Bilinear** (Technicolor-like)



$$\mathcal{L} \supset c\,\mathcal{O}_H^2 + y^{ij}\,\bar{\psi}_L^i\psi_R^j\mathcal{O}_H$$
 Marginal

**Irrelevant** 

Disfavored by CFT theorems

All Yukawa couplings become RG suppressed

**Linear mixing** (Partial compositeness)



$${\cal L} \supset \lambda^{ij} \, ar{\psi}^i {\cal O}_\psi$$

No bounds on anomalous dimension of O

$$\dim[\mathcal{O}_{\psi}] = 5/2 + \gamma_{\psi}$$

$$\lambda(m_*) pprox \lambda(\Lambda_{
m UV}) \left(rac{m_*}{\Lambda_{
m UV}}
ight)^{\gamma_\psi}$$

Can generate both small and large yukawas dynamically

#### **SILH Lagrangian**

Putting together these hypotheses, one obtains a general effective Lagrangian

$$\mathcal{L}_{\text{EFT}} = \mathcal{L}_{\text{SM'}} + \frac{m_*^4}{g_*^2} \widehat{\mathcal{L}}_{\text{EFT}} \left( \frac{g_* H}{m_*}, \frac{D_{\mu}}{m_*}, \frac{\lambda_{\psi}^{ia} \overline{\psi}^i}{m_*^{3/2}}, \frac{g_*^2}{16\pi^2}, \frac{g^2}{16\pi^2}, \frac{[\lambda_{\psi}^*]^{ia} \lambda_{\psi}^{ib}}{16\pi^2} \right),$$





 $arepsilon_{\psi} \equiv \lambda_{\psi}/g_{*}$  Fermion compositeness

#### **Bosonic Constraints**

Before discussing flavor, main constraints from the bosonic sector



#### Less relevant

T parameter 
$$\mathcal{O}_T = \frac{1}{2} \left( H^\dagger \overleftrightarrow{D}_\mu H \right) \left( H^\dagger \overleftrightarrow{D}^\mu H \right)$$
 Suppressed by custodial

$$H \to \gamma \gamma$$
 
$$\mathcal{O}_{\gamma} = H^{\dagger} H B_{\mu\nu} B^{\mu\nu}$$
 Suppressed by NGB symmetry

#### Flavor Anarchy

Anarchic partial compositeness: structureless O(1) flavor and CP violating coefficients Can explain flavor hierarchies dynamically, but suffers from strong bounds...

**Electron EDM** 

$$m_* \gtrsim 2200 \frac{g_*}{4\pi} \, \mathrm{TeV}$$

$$\mu \rightarrow e \gamma$$

$$\mu \rightarrow e \gamma$$
 $m_* \gtrsim 250 \frac{g_*}{4\pi} \text{ TeV}$ 

Leptons

$$\Delta F = 2 \& b \rightarrow s \gamma$$

$$m_* \gtrsim 20 - 30 \,\mathrm{TeV}$$

D meson CP asymm

$$m_* \gtrsim 120 \frac{g_*}{4\pi} \, \mathrm{TeV}$$

#### **Neutron EDM**

$$m_* \gtrsim 40 - 60 \frac{g_*}{4\pi} \,\text{TeV}$$

Quarks

Even forgetting leptons, this leads to a large Higgs mass tuning  $\frac{g_*^2 v^2}{m_*^2} \sim 10^{-3}$ 

Are there better scenarios?

### **Maximal Flavor Symmetry**

Another possibility is assuming the maximal flavor symmetry structure in the strong sector that reproduces the Standard Model (focus on the quark sector)

$$\mathcal{L}_{\text{mix}} = \lambda_{q_u}^{ia} \overline{q}_L^i \mathcal{O}_{q_u}^a + \lambda_{q_d}^{ia} \overline{q}_L^i \mathcal{O}_{q_d}^a + \lambda_u^{ia} \overline{u}_R^i \mathcal{O}_u^a + \lambda_d^{ia} \overline{d}_R^i \mathcal{O}_d^a,$$

For some models we need two different partners for the left quarks

Two sets of mixings: **Universal** = real and proportional to Identity, **Non-universal** = contain flavor- and CP- breaking



Maximal Flavor Symmetry →
Minimal Flavor Violation

### **Right-Universality MFV**

$$\mathcal{L}_{\text{mix}} = \underbrace{\lambda_{q_u}^{ia} \overline{q}_L^i \mathcal{O}_{q_u}^a + \lambda_{q_d}^{ia} \overline{q}_L^i \mathcal{O}_{q_d}^a + \lambda_u^{ia} \overline{u}_R^i \mathcal{O}_u^a + \lambda_d^{ia} \overline{d}_R^i \mathcal{O}_d^a,}_{\propto \mathbf{1}}$$

$$\mathcal{G}_{\text{strong}} = U(3)_U \times U(3)_D \longrightarrow \mathcal{G}_F \equiv U(3)_q \times U(3)_{U+u} \times U(3)_{D+d}$$

RU: 
$$\begin{cases} \lambda_{q_{u}} \sim \frac{1}{\varepsilon_{u}} \begin{pmatrix} y_{u} & 0 & 0 \\ 0 & y_{c} & 0 \\ 0 & 0 & y_{t} \end{pmatrix}, & \lambda_{q_{d}} \sim \frac{1}{\varepsilon_{d}} V_{\text{CKM}} \begin{pmatrix} y_{d} & 0 & 0 \\ 0 & y_{s} & 0 \\ 0 & 0 & y_{b} \end{pmatrix}, \\ \lambda_{u} \sim g_{*} \begin{pmatrix} \varepsilon_{u} & 0 & 0 \\ 0 & \varepsilon_{u} & 0 \\ 0 & 0 & \varepsilon_{u} \end{pmatrix}, & \lambda_{d} \sim g_{*} \begin{pmatrix} \varepsilon_{d} & 0 & 0 \\ 0 & \varepsilon_{d} & 0 \\ 0 & 0 & \varepsilon_{d} \end{pmatrix}. \end{cases}$$

With 
$$\frac{y_t}{g_*} \lesssim arepsilon_u \lesssim 1$$
  $\frac{y_b}{g_*} \lesssim arepsilon_d \lesssim 1$ 

 $\epsilon \sim 1 \implies {
m The \ "elementary"} \ {
m quarks \ are \ actually \ composite}$ 

### **Left-Universality MFV**

#### Alternatively, we could have Left-Universality

$$\mathcal{L}_{\text{mix}} = \lambda_q^{ia} \overline{q}_L^i \mathcal{O}_q^a + \lambda_u^{ia} \overline{u}_R^i \mathcal{O}_u^a + \lambda_d^{ia} \overline{d}_R^i \mathcal{O}_d^a ,$$

$$\mathcal{G}_{\text{strong}} = U(3)_Q \longrightarrow \mathcal{G}_F = U(3)_{Q+q} \times U(3)_u \times U(3)_d$$

$$LU: \begin{cases} \lambda_{q} \sim \begin{pmatrix} \varepsilon_{q} & 0 & 0 \\ 0 & \varepsilon_{q} & 0 \\ 0 & 0 & \varepsilon_{q} \end{pmatrix} g_{*}, \\ \lambda_{u} \sim \frac{1}{\varepsilon_{q}} \begin{pmatrix} y_{u} & 0 & 0 \\ 0 & y_{c} & 0 \\ 0 & 0 & y_{t} \end{pmatrix}, \\ \lambda_{d} \sim \frac{1}{\varepsilon_{q}} \begin{pmatrix} y_{d} & 0 & 0 \\ 0 & y_{s} & 0 \\ 0 & 0 & y_{b} \end{pmatrix} V_{\text{CKM}}^{\dagger}$$

In this case there is a single  $\epsilon$  parameter

$$\frac{y_t}{g_*} \lesssim \varepsilon_q \lesssim 1.$$

Still MFV, but a completely different phenomenology than the right-handed counterpart

### **MFV** Recap





### The flavor problem

#### Anarchy

Flavor explanation

Large tuning

Add more hypotheses

Add flavor symmetries

#### **Structured Models**

No flavor explanation
Smaller tuning

How close to the TeV can Composite Higgs models be?

What's in the middle between these two possibilities?

- Smaller global symmetry group
  - Adding LR global symmetry
    - Dipoles at one loop

### Partial-up Right Universality

$$\mathcal{L}_{\text{mix}} = \lambda_{q_u}^{ia} \overline{q}_L^i \mathcal{O}_{q_u}^a + \lambda_{q_d}^{ia} \overline{q}_L^i \mathcal{O}_{q_d}^a + \lambda_u^{ia} \overline{u}_R^i \mathcal{O}_u^a + \lambda_d^{ia} \overline{d}_R^i \mathcal{O}_d^a,$$

$$\mathcal{G}_{\text{strong}} = U(2)_U \times U(1)_U \times U(3)_D \longrightarrow \mathcal{G}_F = U(3)_q \times U(2)_{U+u} \times U(1)_{U+u} \times U(3)_{D+d}$$

$$\text{puRU}: \begin{cases} \lambda_{q_u} \sim \frac{1}{\varepsilon_u} \begin{pmatrix} y_u & 0 \\ 0 & y_c \\ ay_c & by_c \end{pmatrix} \oplus \frac{1}{\varepsilon_{u_3}} \begin{pmatrix} 0 \\ 0 \\ y_t \end{pmatrix}, & \lambda_{q_d} \sim U_d \frac{1}{\varepsilon_d} \begin{pmatrix} y_d & 0 & 0 \\ 0 & y_s & 0 \\ 0 & 0 & y_b \end{pmatrix}, & Y_u \sim \lambda_{q_u} \lambda_u^\dagger / g_*, Y_d \sim \lambda_{q_d} \lambda_d^\dagger / g_* \\ \lambda_u \sim g_* \begin{pmatrix} \varepsilon_u & 0 \\ 0 & \varepsilon_u \\ 0 & 0 \end{pmatrix} \oplus g_* \begin{pmatrix} 0 \\ 0 \\ \varepsilon_{u_3} \end{pmatrix}, & \lambda_d \sim g_* \begin{pmatrix} \varepsilon_d & 0 & 0 \\ 0 & \varepsilon_d & 0 \\ 0 & 0 & \varepsilon_d \end{pmatrix}. & \mathbf{1^{st}, 2^{nd} generations are separated} \\ \text{from the 3}^{rd} \text{ in the up-sector} \end{cases}$$

$$\frac{y_c}{g_*} \lesssim \varepsilon_u \lesssim 1$$
,  $\frac{y_t}{g_*} \lesssim \varepsilon_{u_3} \lesssim 1$ ,  $\frac{y_b}{g_*} \lesssim \varepsilon_d \lesssim 1$ ,  $|a| \sim 1$ ,  $|b| \sim 1$ 

$$Y_u \sim \lambda_{q_u} \lambda_u^{\dagger}/g_*, \ Y_d \sim \lambda_{q_d} \lambda_d^{\dagger}/g_*$$

from the 3<sup>rd</sup> in the up-sector

...but two real and two new complex parameters appear

### **Partial Universality**

Sweet spot 5-10% tuning



| Label        | Observable                        |
|--------------|-----------------------------------|
| A            | pp 	o jj                          |
| В            | $\Delta F = 2 \left( B_d \right)$ |
| $\mathbf{C}$ | $B_s \to \mu^+ \mu^-$             |
| D            | nEDM                              |
| ${f E}$      | $B^0 \to K^{*0} e^+ e^- (C_7')$   |
| $\mathbf{F}$ | $B \to X_s \gamma \ (C_7)$        |
| $\mathbf{G}$ | W-coupling                        |
|              |                                   |





30/8/2024

Alfredo Glioti (IPhT)

# The future





#### The future



#### Summary

- Flavor is one of the biggest hurdles for models that address the hierarchy problem
- **Concrete UV hypotheses** are necessary to have a complete picture of the phenomenology. Hypotheses translate to **selection rules** and **correlations between observables**
- **TeV scale new physics** is still possible, especially in the **puRU** scenario, and will be tested/excluded in the next decade(s)
- Other models seem to live farther from the TeV and the next decades of experiment will tell us their fate
- In particular **MFV** is **NOT** the best choice in the case of a Strongly interacting Higgs
- In general, flavor observables are the ones that gives the stronger indirect tests on possible new physics models

### **BACKUP**

#### **CP** violation

There is another flavor-independent bound, seemingly missed by the literature

If the strong sector dynamics violates CP we generate a neutron EDM from



$$\mathcal{L}_{\text{EFT}} \supset c_* \frac{g_s^3(m_*)}{g_*^2 m_*^2} \frac{1}{3!} f^{abc} G^a_{\mu\rho} G^b_{\nu} G^c_{\alpha\beta} \epsilon^{\mu\nu\alpha\beta}$$

$$\frac{d_n}{e} \approx c(1 \text{ GeV}) \frac{g_s^3(m_*)}{g_*^2 m_*^2} \frac{\Lambda_{\text{QCD}}}{4\pi}$$
  $\longrightarrow$   $m_* \gtrsim 110/g_* \text{ TeV}$ 

This bound is independent on the BSM flavor structure.

Physics at TeV requires that the composite dynamics is CP invariant

### **Maximal Flavor Symmetry**

The extreme symmetric scenario is when all flavor breaking is contained in the SM Yukawas

Usually referred as **Minimal Flavor Violation** 

$$\mathcal{L}_{\text{mix}} = \lambda_{q_u}^{ia} \overline{q}_L^i \mathcal{O}_{q_u}^a + \lambda_{q_d}^{ia} \overline{q}_L^i \mathcal{O}_{q_d}^a + \lambda_u^{ia} \overline{u}_R^i \mathcal{O}_u^a + \lambda_d^{ia} \overline{d}_R^i \mathcal{O}_d^a,$$

#### A total of 5 different possibilities

| <br>Name              | $\mathcal{G}_{	ext{strong}}$ | Universal $\lambda_{\psi}$                                   | $\mathcal{G}_F$                              | Non-universal $\lambda_{\psi}$                                     |              |
|-----------------------|------------------------------|--------------------------------------------------------------|----------------------------------------------|--------------------------------------------------------------------|--------------|
| Right Univ.           | $U(3)_U \times U(3)_D$       | $\lambda_u \propto {f 1}, \lambda_d \propto {f 1}$           | $U(3)_q \times U(3)_{U+u} \times U(3)_{D+d}$ | $\lambda_{q_u} \propto Y_u, \lambda_{q_d} \propto Y_d$             |              |
| Left Univ. $(Q_uQ_d)$ | $U(3)_U \times U(3)_D$       | $\lambda_{q_u} \propto {f 1}, \lambda_{q_d} \propto {f 1}$   | $U(3)_{q+U+D} \times U(3)_u \times U(3)_d$   | $\lambda_u \propto Y_u^{\dagger}, \lambda_d \propto Y_d^{\dagger}$ | We focused   |
|                       |                              |                                                              |                                              |                                                                    |              |
| Mixed Univ. $(Q_dU)$  | $U(3)_U \times U(3)_D$       | $\lambda_u \propto {f 1}, \lambda_{q_d} \propto {f 1}$       | $U(3)_{q+D} \times U(3)_{U+u} \times U(3)_d$ | $\lambda_{q_u} \propto Y_u, \lambda_d \propto Y_d^{\dagger}$       | on these two |
| Left Univ. $(Q)$      | $U(3)_{U+D}$                 | $\mid \lambda_{q_u} \propto 1, \lambda_{q_d} \propto 1 \mid$ | $U(3)_{q+U+D} \times U(3)_u \times U(3)_d$   | $\lambda_u \propto Y_u^{\dagger}, \lambda_d \propto Y_d^{\dagger}$ |              |

### **Right-Universality MFV**

Most important constraints come from 4-fermion operators



### **Right-Universality MFV**

#### Also Z coupling corrections



$$\Delta$$
F =1 (Bs  $\rightarrow \mu\mu$ )
$$\left(H^{\dagger}i\overleftrightarrow{D}_{\mu}H\right)\bar{\psi}^{i}\gamma^{\mu}\psi^{j}$$

$$m_{*}\gtrsim\frac{6.5\div8.3}{\varepsilon_{u}}\,\mathrm{TeV}$$

But they can be suppressed by "PLR protection"

Accidental symmetry that happens in some embedding of  $SO(5) \rightarrow O(4)$ 

$$[\mathcal{O}_{qD}^{(1)}]^{ij} \equiv \bar{q}_L^i \gamma^\mu q_L^j \ \partial^\nu B_{\nu\mu} \quad \longrightarrow \quad m_* \gtrsim \frac{1.2 \div 3.5}{g_* \varepsilon_u} \,\text{TeV}$$

### **Left-Universality MFV**

In this model there are **no flavor-violating 4 fermion operators** at tree-level

Dijet 
$$(\bar{f}_L \gamma^\mu f_L)^2, \quad f = u, d$$
  $m_* \gtrsim (5.2 \div 8.7) \, g_* \varepsilon_q^2 \, \mathrm{TeV}$ 

New bound: W coupling modification (CKM univarity test)

$$\frac{g}{\sqrt{2}}(1+\delta g_W)\bar{u}V_{\rm CKM}\gamma^{\mu}P_LdW_{\mu}^+$$
$$m_* \gtrsim 9.3\,g_*\varepsilon_q\,{\rm TeV}$$







### Partial-up Right Universality

#### Main constraints

#### Dijets

$$m_* \gtrsim (4.8 \div 7.8) g_* \varepsilon_u^2 \text{ TeV}$$
  
 $m_* \gtrsim (3.0 \div 3.6) g_* \varepsilon_d^2 \text{ TeV}$ 

$$\Delta$$
F =2 (Bd)  $m_* \gtrsim rac{6.6}{g_* arepsilon_{u_3}^2} {
m TeV}$ 

$$m_* \gtrsim \frac{6.5 \div 8.3}{\varepsilon_{u_3}} \, \mathrm{TeV}$$

 $\Delta F = 1 (B \rightarrow \mu\mu) (if no PLR)$ 

Tension is reduced!

With PLR

$$m_* \gtrsim 2.4 \text{ TeV}$$

Without PLR

$$m_* \gtrsim \frac{6.5 \div 8.3}{\varepsilon_{u_3}} \,\mathrm{TeV} > 6.5 \div 8.3 \,\mathrm{TeV}$$

### Partial-up Right Universality

Luckily the structure is such neutron EDMs are not generated at tree-level

For example, for the up dipole

$$[\mathcal{O}_{u\gamma}]^{ij} = (\bar{q}_L^i \sigma^{\mu\nu} u_R^j) \widetilde{H} F_{\mu\nu}$$

$$C_{u\gamma} \propto \lambda_{q_u}^{(2)} [\lambda_u^{(2)}]^{\dagger} + r_{\gamma} \lambda_{q_u}^{(1)} [\lambda_u^{(1)}]^{\dagger} = \begin{pmatrix} y_u & 0 & 0\\ 0 & y_c & 0\\ ay_c & by_c & r_{\gamma} y_t \end{pmatrix}$$

All the phases can be rotated to the down-sector

$$u_R^1 \to u_R^1 e^{-i\arg[a]}, \quad u_R^2 \to u_R^2 e^{-i\arg[b]}$$
  
 $q_L^1 \to q_L^1 e^{-i\arg[a]}, \quad q_L^2 \to q_L^2 e^{-i\arg[b]}$ 

The only physical imaginary parts involve both up and down structures → EDMs arise at **loop level** 



### Partial Right Universality

#### Extending the U(2) also to the down-sector

$$pRU: \begin{cases} \lambda_{q_{u}} \sim \frac{1}{\varepsilon_{u}} \begin{pmatrix} y_{u} & 0 \\ 0 & y_{c} \\ ay_{c} & by_{c} \end{pmatrix} \oplus \frac{1}{\varepsilon_{u_{3}}} \begin{pmatrix} 0 \\ 0 \\ y_{t} \end{pmatrix}, & \lambda_{q_{d}} \sim \widetilde{U}_{d} \frac{1}{\varepsilon_{d}} \begin{pmatrix} y_{d} & 0 \\ 0 & y_{s} \\ a'y_{s} & b'y_{s} \end{pmatrix} \oplus \widetilde{U}_{d} \frac{1}{\varepsilon_{d_{3}}} \begin{pmatrix} 0 \\ 0 \\ y_{b} \end{pmatrix} \\ \lambda_{u} \sim g_{*} \begin{pmatrix} \varepsilon_{u} & 0 \\ 0 & \varepsilon_{u} \\ 0 & 0 \end{pmatrix} \oplus g_{*} \begin{pmatrix} 0 \\ 0 \\ \varepsilon_{u_{3}} \end{pmatrix}, & \lambda_{d} \sim g_{*} \begin{pmatrix} \varepsilon_{d} & 0 \\ 0 & \varepsilon_{d} \\ 0 & 0 \end{pmatrix} \oplus g_{*} \begin{pmatrix} 0 \\ 0 \\ \varepsilon_{d_{3}} \end{pmatrix}.$$

New parameters 
$$rac{y_s}{g_*}\lesssim arepsilon_d\lesssim 1, \quad rac{y_b}{g_*}\lesssim arepsilon_{d_3}\lesssim 1$$

$$Y_u \sim \lambda_{q_u} \lambda_u^\dagger/g_*, \ Y_d \sim \lambda_{q_d} \lambda_d^\dagger/g_*$$
 a, b, a', b' still O(1)

### **Partial Left-Universality**

Or similarly for the Left-Universality model

$$\text{pLU}: \begin{cases} \lambda_q \sim \begin{pmatrix} \varepsilon_q & 0 \\ 0 & \varepsilon_q \\ 0 & 0 \end{pmatrix} g_* \oplus \begin{pmatrix} 0 \\ 0 \\ \varepsilon_{q_3} \end{pmatrix} g_* \\ \lambda_u \sim \frac{1}{\varepsilon_q} \begin{pmatrix} y_u & 0 \\ 0 & y_c \\ a^* y_c & b^* y_c \end{pmatrix} \oplus \frac{1}{\varepsilon_{q_3}} \begin{pmatrix} 0 \\ 0 \\ y_t \end{pmatrix} \\ \lambda_d \sim \frac{1}{\varepsilon_q} \begin{pmatrix} y_d & 0 \\ 0 & y_s \\ a'^* y_s & b'^* y_s \end{pmatrix} \widetilde{O}_d \oplus \frac{1}{\varepsilon_{q_3}} \begin{pmatrix} 0 \\ 0 \\ y_b \end{pmatrix} \\ O(\lambda) \text{ matrix} \end{cases}$$

$$Y_u = \lambda_q \lambda_u^{\dagger} / g_*, \ Y_d = \lambda_q \lambda_d^{\dagger} / g_*$$

With

$$\frac{y_c}{g_*} \lesssim \varepsilon_q \lesssim 1, \qquad \frac{y_t}{g_*} \lesssim \varepsilon_{q_3} \lesssim 1$$

a, b, b' are O(1), but a' must be  $O(\lambda)$  to reproduce the CKM, but no constraint on their phases

# Partial Right/Left Universality

For both models nEDMs appear at loop level and give lower bound for the various  $\epsilon$ 

But new observables become important

b 
$$\rightarrow$$
 s  $\gamma$  at tree-level

$$[\mathcal{O}_{dB}]^{ij} = (\bar{q}_L^i \sigma^{\mu\nu} d_R^j) H B_{\mu\nu}$$

pRU: 
$$m_* \gtrsim (4.5 \div 5.2) \, \mathrm{TeV}$$
pLU:  $m_* \gtrsim (4.9 \div 7.5) \, \mathrm{TeV}$ 

pLU: 
$$m_* \gtrsim (4.9 \div 7.5) \text{ TeV}$$

But in all known holographic models, such operators arise at loop level

$$\rightarrow$$
 There could be a further suppression factor  $\frac{g_*^2}{16\pi^2}$