Quantum Gravity, Strings and the Swampland Corfu Summer School and Workshops on Elementary Particle Physics and Gravity

Candidate de Sitter Vacua

based on ArXiv:2406.13751 with Liam McAllister, Jakob Moritz, and Richard Nally

Andreas Schachner

September 8, 2024

IMPORTANT CAVEAT:

These vacua are solutions in a particular leading-order EFT that I will define. Whether these solutions lift to full string theory remains open.

Upshot

First concrete candidates of de Sitter vacua as envisioned by Kachru, Kallosh, Linde and Trivedi (KKLT) 20 years ago.

The setup

Type IIB orientifold compactifications

<u>Setup</u>: Type IIB on CY orientifolds X/\mathcal{F} for a holomorphic and isometric involution $\mathcal{F}: X \to X$. **Notation:** complex structure moduli z^a , $a = 1, ..., h^{2,1}_{-}(X)$, Kähler moduli T_A , $A = 1, ..., h^{1,1}_{+}(X)$ and axiodilaton τ We will mainly be interested in the **F-term scalar potential** for these fields

$$V_F = \mathrm{e}^{K} \left(K^{I\bar{J}} D_I W D_{\bar{J}} \overline{W} - 3 W^2 \right) ,$$

The superpotential W is given by [GVW <u>hep-th/9906070</u>, Witten <u>hep-th/9604030</u>]

$$W(z,\tau,T) = W_{\text{flux}}(z,\tau) + W_{\text{np}}(z,\tau,T) \quad , \qquad W_{\text{flux}}(z,\tau) = \sqrt{\frac{2}{\pi}} \int_{X} (F_3 - \tau H_3) \wedge \Omega(z) \quad , \qquad W_{\text{np}}(z,\tau,T) = \sum_{D} A_D(z,\tau) \, \mathrm{e}^{-\frac{2\pi}{c_D}T_D}$$

The 3-form fluxes have to obey the **D3-tadpole cancellation condition**

$$Q_{\text{flux}} + 2(N_{D3} - N_{\overline{D3}}) = Q_O$$
, $Q_{\text{flux}} = \int_X H_3 \wedge F_3$

where Q_0 receives contributions from localised sources like O3/O7-planes or D7-branes.

See also talk by G. Leontaris

$$D_I W = \partial_I W + (\partial_I K) W$$
, $K_{I\bar{J}} = \partial_I \partial_{\bar{J}} K$

The setup

<u>Setup</u>: Type IIB on CY orientifolds X/\mathcal{F} for a holomorphic and isometric involution $\mathcal{F}: X \to X$. **Notation:** complex structure moduli z^a , $a = 1, ..., h^{2,1}_{-}(X)$, Kähler moduli T_A , $A = 1, ..., h^{1,1}_{+}(X)$ and axiodilaton τ We will mainly be interested in the **F-term scalar potential** for these fields

$$V_F = \mathrm{e}^{K} \left(K^{I\bar{J}} D_I W D_{\bar{J}} \overline{W} - 3 W^2 \right) ,$$

The superpotential W is given by [GVW hep-th/9906070, Witten hep-th/9604030]

$$W(z,\tau,T) = W_{\text{flux}}(z,\tau) + W_{\text{np}}(z,\tau,T) \quad , \qquad W_{\text{flux}}(z,\tau) = \sqrt{\frac{2}{\pi}} \int_{X} (F_3 - \tau H_3) \wedge \Omega(z) \quad , \qquad W_{\text{np}}(z,\tau,T) = \sum_{D} A_D(z,\tau) \, \mathrm{e}^{-\frac{2\pi}{c_D}T_D}$$

The 3-form fluxes have to obey the **D3-tadpole cancellation condition**

$$Q_{\text{flux}} + 2(N_{D3} - N_{\overline{D3}}) = Q_O$$
, $Q_{\text{flux}} = \int_X H_3 \wedge F_3$

where Q_0 receives contributions from localised sources like O3/O7-planes or D7-branes.

Type IIB orientifold compactifications

See also talk by G. Leontaris

$$D_I W = \partial_I W + (\partial_I K) W$$
, $K_{I\bar{J}} = \partial_I \partial_{\bar{J}} K$

The setup

<u>Setup</u>: Type IIB on CY orientifolds X/\mathcal{F} for a holomorphic and isometric involution $\mathcal{F}: X \to X$. **Notation:** complex structure moduli z^a , $a = 1, ..., h^{2,1}_{-}(X)$, Kähler moduli T_A , $A = 1, ..., h^{1,1}_{+}(X)$ and axiodilaton τ We will mainly be interested in the **F-term scalar potential** for these fields

$$V_F = \mathrm{e}^{K} \left(K^{I\bar{J}} D_I W D_{\bar{J}} \overline{W} - 3 W^2 \right) ,$$

The superpotential W is given by [GVW hep-th/9906070, Witten hep-th/9604030]

$$W(z,\tau,T) = W_{\text{flux}}(z,\tau) + W_{\text{np}}(z,\tau,T) \quad , \qquad W_{\text{flux}}(z,\tau) = \sqrt{\frac{2}{\pi}} \int_{X} (F_3 - \tau H_3) \wedge \Omega(z) \quad , \qquad W_{\text{np}}(z,\tau,T) = \sum_{D} A_D(z,\tau) \, \mathrm{e}^{-\frac{2\pi}{c_D}T_D}$$

The 3-form fluxes have to obey the **D3-tadpole cancellation condition**

$$Q_{\text{flux}} + 2(N_{D3} - N_{\overline{D3}}) = Q_O$$
, $Q_{\text{flux}} = \int_X H_3 \wedge F_3$

where Q_0 receives contributions from localised sources like O3/O7-planes or D7-branes.

Type IIB orientifold compactifications

See also talk by G. Leontaris

$$D_I W = \partial_I W + (\partial_I K) W$$
, $K_{I\bar{J}} = \partial_I \partial_{\bar{J}} K$

Recipe for KKLT vacua

- The KKLT scenario
- [Kachru, Kallosh, Linde, Trivedi <u>hep-th/0301240]</u>
- The KKLT scenario is a proposal to construct de Sitter vacua in string theory.

<u>CLAIM 1.</u>

Well-controlled SUSY AdS₄ exist in Type IIB flux compatifications with

- 1. $\langle W_{flux} \rangle \ll 1$, and
- 2. non-perturbative D-brane instantons.

Explicit examples in [Demirtas et al. 2107.09064]

CLAIM 2.

For such a SUSY AdS₄, provided one finds

- 3. warped deformed conifold [Klebanov, Strassler <u>hep-th/0007191</u>]
- 4. containing some anti-D3 branes [Kachru, Pearson, Verlinde hep-th/0112197]
- 5. in a suitable parameter regime

there are metastable dS₄ vacua.

We provide the first examples fulfilling conditions 1., 2., 3., 4., and 5.

Recipe for KKLT vacua

- The KKLT scenario
- [Kachru, Kallosh, Linde, Trivedi <u>hep-th/0301240]</u>
- The KKLT scenario is a proposal to construct de Sitter vacua in string theory.

CLAIM 1.

Well-controlled SUSY AdS₄ exist in Type IIB flux compatifications with

- 1. $\langle W_{flux} \rangle \ll 1$, and
- 2. non-perturbative D-brane instantons.

CLAIM 2.

For such a SUSY AdS₄, provided one finds

- 3. warped deformed conifold [Klebanov, Strassler hep-th/0007191]
- 4. containing some anti-D3 branes [Kachru, Pearson, Verlinde hep-th/0112197]
- 5. in a suitable parameter regime

there are metastable dS_4 vacua.

We provide the first examples fulfilling conditions 1., 2., 3., 4., and 5.

See also e.g.: [Moritz et al. <u>1809.06618]</u> [Bena et al. <u>1809.06861]</u> [Carta et al. <u>1902.01412]</u> [Dudas, S. Lüst <u>1912.09948]</u> [S. Lüst, Randall 2206.04708]

Recipe for KKLT vacua

Uplift to de Sitter vacua [Kachru, Kallosh, Linde, Trivedi <u>hep-th/0301240]</u>

$$e^{4A_{IR}} \approx e^{-8\pi K/3n_{cf}g_sM} \sim z_{cf}^{\frac{4}{3}}$$

where M, K are the fluxes threading the S^3 of the deformed conifold.

Control over the α' expansion at the tip of the throat, i.e., small curvature at the bottom of the throat requires $g_s M \gtrsim 1$.

To achieve **CLAIM 2**, an anti-D3 brane at the tip of the throat provides a positive source of energy which potentially uplifts the AdS minimum to a dS minimum provided Scalar potential O $\zeta \approx 114.037$ 11 We call vacua satisfying $\Xi \sim 1$ well-aligned which are the main targets of this talk! 11 The anti-D3-brane state at the bottom of the Klebanov-Strassler throat is metastable Volume provided M > 12.

$$V_{\rm KPV}^{\overline{D3}} = \frac{c}{\mathcal{V}_{E}^{4/3}}, \quad \Xi = \frac{V_{\rm KPV}^{\overline{D3}}}{V_F} = \frac{\zeta e^{K_{cs}/3}}{(g_s M)^2} \,\mathcal{V}_E^{2/3} - \frac{z_{cf}^{4/3}}{W_0^2} \sim 1 \quad ,$$

Klebanov-Strassler throats arise in CY compactifications through conifold singularities threaded by 3-form fluxes

[Klebanov, Strassler <u>hep-th/0007191]</u> [Giddings, Kachru, Polchinski <u>hep-th/0105097]</u>

See also e.g.: [Moritz et al. <u>1809.06618]</u> [Bena et al. <u>1809.06861]</u> [Carta et al. <u>1902.01412]</u> [Dudas, S. Lüst <u>1912.09948]</u> [S. Lüst, Randall 2206.04708]

Recipe for KKLT vacua

Uplift to de Sitter vacua [Kachru, Kallosh, Linde, Trivedi hep-th/0301240]

$$e^{4A_{IR}} \approx e^{-8\pi K/3n_{cf}g_sM} \sim z_{cf}^{\frac{4}{3}}$$

where M, K are the fluxes threading the S^3 of the deformed conifold.

Control over the α' expansion at the tip of the throat, i.e., small curvature at the bottom of the throat requires $g_s M \gtrsim 1$.

To achieve **CLAIM 2**, an anti-D3 brane at the tip of the throat provides a positive source of energy which potentially uplifts the AdS minimum to a dS minimum provided

$$V_{\rm KPV}^{\overline{D3}} = \frac{c}{\mathcal{V}_E^{4/3}}, \quad \Xi = \frac{V_{\rm KPV}^{\overline{D3}}}{V_F} = \frac{\zeta \, e^{K_{cs}/3}}{(g_s M)^2} \, \mathcal{V}_E^{2/3} - \frac{z_{cf}^{4/3}}{W_0^2} \sim 1 \quad ,$$

We call vacua satisfying $\Xi \sim 1$ well-aligned which are the main targets of this talk!

The anti-D3-brane state at the bottom of the Klebanov-Strassler throat is metastable provided M > 12. [Kachru, Pearson, Verlinde hep-th/0112197]

Klebanov-Strassler throats arise in CY compactifications through conifold singularities threaded by 3-form fluxes

[Klebanov, Strassler <u>hep-th/0007191]</u> [Giddings, Kachru, Polchinski hep-th/0105097]

 $\zeta \approx 114.037$

Recipe for KKLT vacua

Checklist for KKLT vacua

The point of this talk is to show you how to actually accomplish all this in explicit setups!

The working plan

• •

473,800,776 reflexive polytopes in 4D Kreuzer, Skarke (KS) [hep-th/0002240]

- Scan for Geometries and Orientifolds
- We will work with mirror pairs of CY_3 hypersurfaces X, X
 - in toric varieties V, \widetilde{V}
 - obtained from triangulations of 4D polytopes Δ°, Δ

Demirtas, Rios-Tascon, McAllister <u>2211.03823</u>

- We restrict to \mathbb{Z}_2 -involutions $x \to -x$ with O3/O7-planes for **trilayer** polytopes such that $h_{-}^{1,1} = h_{+}^{1,2} = 0$ [Moritz <u>2305.06363</u>].
- We cancel the D7-tadpole locally giving rise to $\mathfrak{so}(8)$ $\mathcal{N} = 1$ super Yang-Mills theory hosted on four-cycles with O7-planes.
- In these setups, the D3-tadpole is $Q_0 = h^{1,1} + h^{2,1} + 2$.

• •

473,800,776 reflexive polytopes in 4D Kreuzer, Skarke (KS) [hep-th/0002240]

- Scan for Geometries and Orientifolds
- We will work with mirror pairs of CY_3 hypersurfaces X, X
 - in toric varieties V, \widetilde{V}
 - obtained from triangulations of 4D polytopes Δ°, Δ

Demirtas, Rios-Tascon, McAllister <u>2211.03823</u>

- We restrict to \mathbb{Z}_2 -involutions $x \to -x$ with O3/O7-planes for **trilayer** polytopes such that $h_{-}^{1,1} = h_{+}^{1,2} = 0$ [Moritz <u>2305.06363</u>].
- We cancel the D7-tadpole locally giving rise to $\mathfrak{so}(8)$ $\mathcal{N} = 1$ super Yang-Mills theory hosted on four-cycles with O7-planes.
- In these setups, the D3-tadpole is $Q_O = h^{1,1} + h^{2,1} + 2$.

The Kähler moduli sector

From previous slides, we recall

$$V = V_F + V_{\rm up} , \qquad V_F = e^K \left(K^{I\bar{J}} D_I W D_{\bar{J}} \overline{W} - 3 W^2 \right) ,$$

We work in the leading-order EFT where the Kähler potential and Kähler coordinates are given by

$$K_{\text{l.o.}} \approx K_{\text{tree}} + K_{(\alpha')^3} + K_{\text{WSI}}$$
, $T_A^{\text{l.o.}} \approx T_A^{\text{tree}} + \delta T_A^{(\alpha')^2} + \delta T_A^{(\alpha')^2}$

Here the tree level α' and worldsheet instanton (WSI) corrections amount to

$$K_{\text{l.o.}} = -2\log\left[\frac{1}{6}\kappa_{ABC}t^{A}t^{B}t^{C} - \frac{\zeta(3)\chi(X)}{4(2\pi)^{3}} + \frac{1}{2(2\pi)^{3}}\sum_{\mathbf{q}\in\mathcal{M}(X)}\mathcal{N}_{\mathbf{q}}\left(\text{Li}_{3}\left((-1)^{\gamma\cdot\mathbf{q}}e^{-2\pi\mathbf{q}\cdot\mathbf{t}}\right) + 2\pi\mathbf{q}\cdot\mathbf{t}\text{Li}_{2}\left((-1)^{\gamma\cdot\mathbf{q}}e^{-2\pi\mathbf{q}\cdot\mathbf{t}}\right)\right)\right],$$

$$T_{A}^{\text{l.o.}} = \frac{1}{2}\kappa_{ABC}t^{B}t^{C} - \frac{\chi(D_{A})}{24} + \frac{1}{(2\pi)^{2}}\sum_{\mathbf{q}\in\mathcal{M}(X)}q_{i}\mathcal{N}_{\mathbf{q}}\text{Li}_{2}\left((-1)^{\gamma\cdot\mathbf{q}}e^{-2\pi\mathbf{q}\cdot\mathbf{t}}\right) + i\int_{X}C_{4}\wedge\omega_{A}.$$
See in particular:
Becker et al. hep-th/0204

 $V_{\rm up} = V_{\rm KPV}^{\overline{\rm D3}}$, $W(z, \tau, T) = W_{\rm flux}(z, \tau) + W_{\rm np}(z, \tau, T)$

 $T_A^{\rm WSI}$

[Robles-Llana et al. <u>hep-th/0612027</u>, <u>0707.0838</u>] [Cecotti et al. Int.J.Mod.Phys.A 4 (1989) 2475]

The Kähler moduli sector

From previous slides, we recall

$$V = V_F + V_{up}$$
, $V_F = e^K (K^{I\bar{J}} D_I W D_{\bar{J}} \overline{W} - 3 W^2)$,

We work in the leading-order EFT where the Kähler potential and Kähler coordinates are given by

$$K_{\text{l.o.}} \approx K_{\text{tree}} + K_{(\alpha')^3} + K_{\text{WSI}}$$
, $T_A^{\text{l.o.}} \approx T_A^{\text{tree}} + \delta T_A^{(\alpha')^2} + \delta T_A^{(\alpha')^2}$

Here the tree level α' and worldsheet instanton (WSI) corrections amount to

$$K_{\text{l.o.}} = -2\log\left[\frac{1}{6}\kappa_{ABC}t^{A}t^{B}t^{C} - \frac{\zeta(3)\chi(X)}{4(2\pi)^{3}} + \frac{1}{2(2\pi)^{3}}\sum_{\mathbf{q}\in\mathcal{M}(X)}\mathcal{N}_{\mathbf{q}}\left(\text{Li}_{3}\left((-1)^{\gamma\cdot\mathbf{q}}e^{-2\pi\mathbf{q}\cdot\mathbf{t}}\right) + 2\pi\mathbf{q}\cdot\mathbf{t}\text{Li}_{2}\left((-1)^{\gamma\cdot\mathbf{q}}e^{-2\pi\mathbf{q}\cdot\mathbf{t}}\right)\right)\right],$$

$$T_{A}^{\text{l.o.}} = \frac{1}{2}\kappa_{ABC}t^{B}t^{C} - \frac{\chi(D_{A})}{24} + \frac{1}{(2\pi)^{2}}\sum_{\mathbf{q}\in\mathcal{M}(X)}q_{i}\mathcal{N}_{\mathbf{q}}\text{Li}_{2}\left((-1)^{\gamma\cdot\mathbf{q}}e^{-2\pi\mathbf{q}\cdot\mathbf{t}}\right) + i\int_{X}C_{4}\wedge\omega_{A}.$$
See in particular:
[Becker et al, hep-th/0204]

 $V_{\rm up} = V_{\rm KPV}^{\overline{\rm D3}}$, $W(z, \tau, T) = W_{\rm flux}(z, \tau) + W_{\rm np}(z, \tau, T)$

 $T_A^{\rm WSI}$

<u>4254]</u> [Robles-Llana et al. <u>hep-th/0612027</u>, <u>0707.0838</u>] [Cecotti et al. Int.J.Mod.Phys.A 4 (1989) 2475] [Grimm <u>0705.3253]</u>

The Kähler moduli sector

From previous slides, we recall

$$V = V_F + V_{up}$$
, $V_F = e^K (K^{I\bar{J}} D_I W D_{\bar{J}} \overline{W} - 3 W^2)$,

We work in the leading-order EFT where the Kähler potential and Kähler coordinates are given by

Here th

$$K_{\text{l.o.}} = -2\log\left[\frac{1}{6}\kappa_{ABC}t^{A}t^{B}t^{C} - \frac{\zeta(3)\chi(X)}{4(2\pi)^{3}} + \frac{1}{2(2\pi)^{3}}\sum_{\mathbf{q}\in\mathscr{M}(X)}\mathscr{N}_{\mathbf{q}}\left(\text{Li}_{3}\left((-1)^{\gamma\cdot\mathbf{q}}e^{-2\pi\mathbf{q}\cdot\mathbf{t}}\right) + T_{A}^{1\cdot\cdot\cdot\cdot}\right)\right]$$

$$T_{A}^{\text{l.o.}} = \frac{1}{2}\kappa_{ABC}t^{B}t^{C} - \frac{\chi(D_{A})}{24} + \frac{1}{(2\pi)^{2}}\sum_{\mathbf{q}\in\mathscr{M}(X)}q_{i}\mathscr{N}_{\mathbf{q}}\operatorname{Li}_{2}\left((-1)^{\gamma\cdot\mathbf{q}}e^{-2\pi\mathbf{q}\cdot\mathbf{t}}\right) + i\int_{X}C_{4}\wedge\omega_{A}.$$

$$V_{\rm up} = V_{\rm KPV}^{\overline{\rm D3}} , \qquad W(z,\tau,T) = W_{\rm flux}(z,\tau) + W_{\rm np}(z,\tau,T)$$

See in particular: [Becker et al. <u>hep-th/0204254</u>] [Robles-Llana et al. <u>hep-th/0612027</u>, <u>0707.0838</u>] [Cecotti et al. Int.J.Mod.Phys.A 4 (1989) 2475] [Grimm <u>0705.3253]</u>

The Kähler moduli sector

From previous slides, we recall

$$V = V_F + V_{up}$$
, $V_F = e^K (K^{I\bar{J}} D_I W D_{\bar{J}} \overline{W} - 3 W^2)$,

We work in the leading-order EFT where the Kähler potential and Kähler coordinates are given by

Here t

$$K_{\text{Lo.}} \approx K_{\text{tree}} + K_{(\alpha')^3} + K_{\text{WSI}} , \qquad T_A^{\text{Lo.}} \approx T_A^{\text{tree}} + \delta T_A^{(\alpha')^2} + \delta T_A^{\text{WSI}}$$
he tree level α' and worldsheet instanton (WSI) corrections amount to
$$K_{\text{Lo.}} = -2 \log \left[\frac{1}{6} \kappa_{ABC} t^A t^B t^C - \frac{\zeta(3)\chi(X)}{4(2\pi)^3} + \frac{1}{2(2\pi)^3} \sum_{\mathbf{q} \in \mathscr{M}(X)} \mathscr{N}_{\mathbf{q}} \left(\text{Li}_3 \left((-1)^{\gamma \cdot \mathbf{q}} e^{-2\pi \mathbf{q} \cdot \mathbf{t}} \right) + 2\pi \mathbf{q} \cdot \mathbf{t} \text{Li}_2 \left((-1)^{\gamma \cdot \mathbf{q}} e^{-2\pi \mathbf{q} \cdot \mathbf{t}} \right) \right) \right],$$

$$T_A^{\text{Lo.}} = \frac{1}{2} \kappa_{ABC} t^B t^C - \frac{\chi(D_A)}{24} + \frac{1}{(2\pi)^2} \sum_{\mathbf{q} \in \mathscr{M}(X)} q_i \mathscr{N}_{\mathbf{q}} \text{Li}_2 \left((-1)^{\gamma \cdot \mathbf{q}} e^{-2\pi \mathbf{q} \cdot \mathbf{t}} \right) + i \int_X C_4 \wedge \omega_A.$$
See in particular:
[Becker et al. hep-th/0204254]

For the moment, we ignore

- string loop corrections, especially $\mathcal{N} = 1$ corrections
- α' corrections to the KPV potential for the anti-D3 brane as derived in [Junghans <u>2201.03572</u>] [Hebecker, 3xSchreyer, 2xVenken <u>2208.02826</u>, <u>2212.07437</u>, <u>2402.13311</u>]

•

$$V_{\rm up} = V_{\rm KPV}^{\overline{\rm D3}} , \qquad W(z,\tau,T) = W_{\rm flux}(z,\tau) + W_{\rm np}(z,\tau,T)$$

[Robles-Llana et al. <u>hep-th/0612027</u>, <u>0707.0838</u>] [Cecotti et al. Int.J.Mod.Phys.A 4 (1989) 2475] [Grimm <u>0705.3253]</u>

The flux superpotential

The flux superpotential is given in terms of the **period vector** Π and the **pre-potential** F = F(z) as

$$W_{\text{flux}}(\tau, z^a) = \sqrt{\frac{2}{\pi}} \int_X (F_3 - \tau H_3) \wedge \Omega(z) = \sqrt{\frac{2}{\pi}} \overrightarrow{\Pi}^\top \cdot \Sigma \cdot (\overrightarrow{f} - \tau \overrightarrow{h}) \quad , \qquad \overrightarrow{\Pi} = \left(2F - z^a F_a, F_a, 1, z^a\right) \quad , \quad F_a = \partial_a F_a + \frac{1}{2} \nabla_a F_a + \frac{1}{2}$$

We compute F(z) explicitly at Large Complex Structure (LCS) using mirror symmetry following [Hosono et al. <u>hep-th/9406055</u>]

$$F_{\text{poly}}(z) = -\frac{1}{3!} \widetilde{\kappa}_{abc} z^a z^b z^c + \frac{1}{2} \widetilde{a}_{ab} z^a z^b + \frac{1}{24} \widetilde{c}_a z^a + \frac{\zeta(3)\chi(\widetilde{X})}{2(2\pi i)^3}, \quad F_{\text{inst}}(z) = -\frac{1}{(2\pi i)^3} \sum_{\widetilde{\mathbf{q}} \in \mathscr{M}(\widetilde{X})} \mathscr{N}_{\widetilde{\mathbf{q}}} \operatorname{Li}_3\left(e^{2\pi i \, \widetilde{\mathbf{q}} \cdot \mathbf{z}}\right)$$

in terms of quantities $\tilde{\kappa}_{abc}, \tilde{a}_{ab}, \tilde{c}_{a}$ defined on the mirror CY \widetilde{X} , see e.g. [Demirtas et al. 2303.00757]. It is known how to construct conifolds by shrinking a set of curves in X to zero volume [Demirtas et al. 2009.03312] [Álvarez-García et al. 2009.03325]. We write $z^{a} = (z_{cf}, z^{\alpha})$, $\alpha = h^{2,1}(X) - 1$, and expand the periods order by order in the conifold modulus z_{cf} $W_{\text{flux}}(z^{a},\tau) = W_{\text{poly}}(z^{a},\tau) + W_{\text{inst}}(z^{a},\tau) + z_{\text{cf}} W^{(1)}(z^{a},z_{\text{cf}},\tau) + \mathcal{O}(z_{\text{zf}}^{2}).$

The flux superpotential

The flux superpotential is given in terms of the **period vector** Π and the **pre-potential** F = F(z) as

$$W_{\text{flux}}(\tau, z^a) = \sqrt{\frac{2}{\pi}} \int_X (F_3 - \tau H_3) \wedge \Omega(z) = \sqrt{\frac{2}{\pi}} \overrightarrow{\Pi}^\top \cdot \Sigma \cdot (\overrightarrow{f} - \tau \overrightarrow{h}) \quad , \qquad \overrightarrow{\Pi} = \left(2F - z^a F_a, F_a, 1, z^a\right) \quad , \quad F_a = \partial_a F_a + \frac{1}{2} \nabla_a F_a + \frac{1}{2}$$

We compute F(z) explicitly at Large Complex Structure (LCS) using mirror symmetry following [Hosono et al. <u>hep-th/9406055</u>]

$$F_{\text{poly}}(z) = -\frac{1}{3!} \widetilde{\kappa}_{abc} z^a z^b z^c + \frac{1}{2} \widetilde{a}_{ab} z^a z^b + \frac{1}{24} \widetilde{c}_a z^a + \frac{\zeta(3)\chi(\widetilde{X})}{2(2\pi i)^3}, \quad F_{\text{inst}}(z) = -\frac{1}{(2\pi i)^3} \sum_{\widetilde{\mathbf{q}} \in \mathscr{M}(\widetilde{X})} \mathscr{N}_{\widetilde{\mathbf{q}}} \operatorname{Li}_3\left(e^{2\pi i \, \widetilde{\mathbf{q}} \cdot \mathbf{z}}\right)$$

in terms of quantities $\tilde{\kappa}_{abc}, \tilde{a}_{ab}, \tilde{c}_{a}$ defined on the mirror CY \widetilde{X} , see e.g. [Demirtas et al. 2303.00757]. It is known how to construct conifolds by shrinking a set of curves in \widetilde{X} to zero volume [Demirtas et al. 2009.03312] [Álvarez-García et al. 2009.03325]. We write $z^{\alpha} = (z_{cf}, z^{\alpha})$, $\alpha = h^{2,1}(X) - 1$, and expand the periods order by order in the conifold modulus z_{cf} $W_{\text{flux}}(z^{a},\tau) = W_{\text{poly}}(z^{a},\tau) + W_{\text{inst}}(z^{a},\tau) + z_{\text{cf}} W^{(1)}(z^{a},z_{\text{cf}},\tau) + \mathcal{O}(z_{\text{zf}}^{2}).$

The non-perturbative superpotential

The non-perturbative superpotential from D-branes wrapping rigid divisors D reads [Witten hep-th/9610234]

$$W_{\rm np}(z, \tau, T) = \sum_{D} A_{D}(z, \tau) e^{-\frac{2\pi}{c_{D}}T_{D}}$$

We check that the only contributing divisors are pure rigid implying [Witten hep-th/9610234, Demirtas et al. 2107.09064]

$$A_D(z,\tau) = A_D = \text{const}$$

For the normalisation of the A_D we choose

$$A_D = \sqrt{\frac{2}{\pi}} \frac{n_D}{(4\pi)^2}.$$

The constant n_D is

- related to an integral over worldsheet modes [Alexandrov et al. 2204.02981], and
- expected to be an order-one number [Kim <u>2301.03602</u>].

- $c_D = \begin{cases} 1 & \text{Euclidean D3-branes,} \\ 6 & \text{gaugino condensation on 7-branes.} \end{cases}$

Computing n_D has so far been out of reach. In our vacua, we take $n_D = 1$ and then check a posteriori that our vacua persist for $10^{-3} \le n_D \le 10^4$.

The non-perturbative superpotential

The non-perturbative superpotential from D-branes wrapping rigid divisors D reads [Witten hep-th/9610234]

$$W_{\rm np}(z,\tau,T) = \sum_{D} A_{D}(z,\tau) e^{-\frac{2\pi}{c_{D}}T_{D}}$$

We check that the only contributing divisors are pure rigid implying [Witten hep-th/9610234, Demirtas et al. 2107.09064]

$$A_D(z,\tau) = A_D = \text{const}$$

For the normalisation of the A_D we choose

$$A_D = \sqrt{\frac{2}{\pi}} \frac{n_D}{(4\pi)^2}.$$

The constant n_D is

- related to an integral over worldsheet modes [Alexandrov et al. 2204.02981], and
- expected to be an order-one number due to mirror symmetry.

- $c_D = \begin{cases} 1 & \text{Euclidean D3-branes,} \\ 6 & \text{gaugino condensation on 7-branes.} \end{cases}$

Computing n_D has so far been out of reach.

In our vacua, we take $n_D = 1$ and then check a posteriori that our vacua persist for $10^{-3} \le n_D \le 10^4$.

See also [Kim <u>2107.09779</u>, <u>2301.03602</u>] [Jefferson, Kim <u>2211.00210</u>]

The working plan

Numerical minimisation in string compactifications

We want to find critical points of the potential

$$V_F(z,\tau,T) = \frac{V_{\text{Flux}}(z,\tau)}{\mathcal{V}^2} + V_{\text{rest}}(z,\tau,T)$$

but this is hard...

the landscape.

Bousso et al.: <u>hep-th/0004134</u> Susskind: hep-th/0302219

Challenges

A. Need to solve coupled system of equations in $\mathcal{O}(100)$ scalar fields

 $z^{a}, a = 1, \dots, h^{1,2}_{-}$, $T_{\alpha}, \alpha = 1, \dots, h^{1,1}_{+}$

- B. Not any solution suffices \Rightarrow constrained optimisation problem:
 - 1. $z^a, T_a \in \mathcal{M}$ take values in **field** or **moduli space** \mathcal{M}
 - 2. truncation on spectrum and contributions justified?
 - 3. perturbative control guaranteed? E.g. couplings small?
- C. $\rho_{vac} > 0$ requires SUSY breaking by adding anti-D3 brane. **Control?**

"Classical" and dimensionally reduced.

Including GVs up to degree 10.

Recent progress in finding flux vacua

Including GVs up to degree 10.

Demirtas, Kim, McAllister, Moritz: <u>1912.10047</u>

For special flux choices $\vec{M}, \vec{K} \in \mathbb{Z}^{h^{2,1}}$, the polynomial flux superpotential W_{poly} and the F-terms vanish along $z^a = p^a \tau$ where $p^a = (N^{-1})^{ab} K_b, \quad N_{ab} = \widetilde{\kappa}_{abc} M^c$

The remaining superpotential terms are computable in terms of GV invariants on \widetilde{X}

$$W_{\text{inst}} = \frac{-1}{(2\pi)^2} \sum_{\tilde{\mathbf{q}} \in \mathcal{M}(\tilde{\mathbf{q}})} \frac{1}{\tilde{\mathbf{q}} \in \mathcal{M}(\tilde{\mathbf{q}})}$$

A minimum for the light degree of freedom τ arises frequently through the racetrack mechanism so that For related work, see also $W_0 = \langle W_{\rm flu} \rangle$ [Honma, Otsuka 2103.03003] [Marchesano et al. 2105.09326] In practice, we obtain the **true minimum** by numerically solving F-term conditions. [Broeckel et al. <u>2108.04266</u>] [Basitian et al. 2108.11962] [Carta et al. 2112.13863] [Blumenhagen et al. 2206.08400] [Cicoli et al. <u>2209.02720</u>]

In the presence of conifolds [Demirtas et al. <u>2009.03312</u>] [Álvarez-García et al. <u>2009.03325]</u>

Perturbatively Flat Vacua (PFVs)

$$\mathcal{N}_{\tilde{\mathbf{q}}}(M^{a}\tilde{\mathbf{q}}_{a})\operatorname{Li}_{2}\left(\mathrm{e}^{2\pi i\,\tilde{\mathbf{q}}_{a}p^{a}\tau}\right)$$

$$_{\rm ix}\rangle = \langle W_{\rm inst}\rangle \ll 1$$

Kähler moduli stabilisation in explicit setups

Demirtas, Kim, McAllister, Moritz, Rios-Tascon: 2107.09064

To solve the F-terms for the Kähler moduli,

$$D_A W = \partial_A W + K_A W = 0 ,$$

we use an algorithm described in [Demirtas et al. 2107.09064]

- 1. Pick arbitrary triangulation of Δ° and choose arbitrary point t_0^A in the Kähler cone
- 2. Find **initial guess** as classical F-term minimum

$$T_A^0 = \frac{1}{2} \kappa_{ABC} t_0^B t_0^C \to T_A^* \approx \frac{c_A}{2\pi} \log(W_0^{-1})$$

2. Obtain true F-term minimum including corrections by using e.g. Newton's method

$$T^*_A \rightarrow \langle T_A \rangle$$

In the absence of conifolds, this was achieved explicitly in [Demirtas et al. 2107.09064, 2107.09065]. We have new solutions with KS throats and only even fluxes [McAllister, Moritz, Nally, AS: 2406.13751].

We restrict to configurations with $Q_{\text{flux}} = Q_0 + 2$ for which the tadpole is cancelled exactly by adding a single anti-D3 brane at the tip of the throat.

This makes the previous AdS geometry an **unphysical AdS precursor**!

Practically, it is however important because it makes it easier to locate the true uplifted minimum!

The vacuum is obtained by solving

$$\partial_A V = \partial_A (V_F + V_{up}) = 0$$
, $V_{up} \sim \frac{e^{-8\pi K/3n_{cf}g_s M}}{\mathcal{V}^{4/3}}$

for the Kähler moduli **and** complex structure moduli. We follow the same strategy as before:

- 1. Use triangulation and Kähler parameters for the AdS precursor as initial guess
- 2. Obtain uplifted non-SUSY (A)dS vacuum (if it exists) by using Newton's method

$$\langle T_A \rangle_{\mathrm{AdS}} \rightarrow \langle T_A \rangle$$

- De Sitter vacuum containing anti-D3 branes
 - McAllister, Moritz, Nally, AS: <u>2406.13751</u>

Extended Kähler cone

We restrict to configurations with $Q_{\text{flux}} = Q_0 + 2$ for which the tadpole is cancelled exactly by adding a single anti-D3 brane at the tip of the throat.

This makes the previous AdS geometry an **unphysical AdS precursor**!

Practically, it is however important because it makes it easier to locate the true uplifted minimum!

The vacuum is obtained by solving

$$\partial_A V = \partial_A (V_F + V_{up}) = 0$$
, $V_{up} \sim \frac{e^{-8\pi K/3n_{cf}g_s M}}{\mathcal{V}^{4/3}}$

for the Kähler moduli **and** complex structure moduli. We follow the same strategy as before:

- 1. Use triangulation and Kähler parameters for the AdS precursor as initial guess
- 2. Obtain **uplifted non-SUSY (A)dS vacuum** (if it exists) by using Newton's method

$$\langle T_A \rangle_{\mathrm{AdS}} \rightarrow \langle T_A \rangle$$

- De Sitter vacuum containing anti-D3 branes
 - McAllister, Moritz, Nally, **AS**: <u>2406.13751</u>

Extended Kähler cone

CY3 from 4D reflexive polytopes with $3 \le h^{2,1} \le 8$ [Kreuzer, Skarke <u>hep-th/0002240]</u> orientifolds with $h_{+}^{1,2} = 0$ from \mathbb{Z}_2 -involutions $x \to -x$ [Moritz <u>2305.06363</u>]

conifold points from shrinking toric flop curves [Demirtas et al. <u>2009.03312</u>]

Let us put everything together ...

The working plan

Fluxes with $W_0 \ll 1$ [Demirtas et al. <u>1912.10047</u>, <u>2009.03312</u>]

(NON-)SUSY (A)dS VACUA

Kähler moduli stabilisation [Demirtas et al. <u>2107.09064]]</u>

Kklt_de_sitter_vacua Public	🖍 Pin	⊙ Unwatch 1			
្រំ main 👻 ំំំំំំ 1 Branch 🛇 0 Tags		Q Go to file	t	Add file 👻	<> Code -
AndreasSchachner 30 de Sitter vacua				c62f088 · now	🕑 7 Commits
Code	de Publishing				15 hours ago
🖿 data	Publishing	g data			15 hours ago
images	Publishing	g data			15 hours ago
notebooks	Publishing	g data			15 hours ago
DS_Store	Initial com	nmit			last week
🗋 .gitattributes	Initial com	ımit			last week
🗅 .gitignore	Update .g	itignore			last week
	Initial com	nmit			last week
README.md	30 de Sitt	er vacua			now
README Apache-2.0 license					∅ :Ξ

Candidate KKLT de Sitter vacua

This repository stores the data for the candidate de Sitter vacua obtained in ArXiv:2406.13751. It also contains Python scripts and notebooks to validate these solutions and reproduce figures from the paper

https://github.com/AndreasSchachner/kklt_de_sitter_vacua

en access

Our entire data is publicly available on GitHub!

On top of that, we provide

- independent python code to compute e.g. the vacuum energy or corrected volumes
- jupyter notebooks to validate our solutions in the approximations explained below
- a **tutorial notebook** to work with the data and to start new calculations by e.g. using **<u>CYTools</u>**
- plotting tools to reproduce some figures from our paper

Everyone can explore our solutions for themselves by using our repository!

Explicit examples of KKLT vacua

The scan for suitable candidates

McAllister, Moritz, Nally, AS: 2406.13751

Condition

 $3 \leq h^{2,1} \leq 8$

trilayer, Δ and Δ° favorab Hodge number cuts $\geq h^{1,1}$ rigid divisors conifold disjoint from O-plat conifold consistent with KKLT fluxes giving conifold PFV two-term racetrack M > 12; one anti-D3-bran

	Number of configurations
	202,073 polytopes
ole	3187 polytopes
	322 polytopes
	322 polytopes
nes	2669 conifolds
] point	416 conifolds
V	240,480,253 conifold PFVs
	141,594,222 racetrack PFVs
ne	33,371 anti-D3-brane PFVs

Explicit examples of KKLT vacua

McAllister, Moritz, Nally, AS: 2406.13751

Racetrack minima with anti-D3 branes

We obtained **33,371 anti-D3 PFVs** with $Q_{\text{flux}} = Q_O + 2$ of which 396 satisfy

 $0.1 \le \Xi \le 10$, $g_s < 0.4$, $W_0 < 0.1$.

Explicit examples of KKLT vacua

Racetrack minima with anti-D3 branes

McAllister, Moritz, Nally, AS: <u>2406.13751</u>

One de Sitter to rule them all

McAllister, Moritz, Nally, AS: 2406.13751

Here is an explicit example of a de Sitter candidate vacuum at $h^{1,1} = 150$ and $h^{2,1} = 8$

 $\vec{M} = (16, 10, -26, 8, 32, 30, 18, 28)^{\mathsf{T}}, \quad \vec{K} = (-6, 10, -26, 8, 32, 30, 18, 28)^{\mathsf{T}}$

giving rise to

 $g_s = 0.0657$ $W_0 = 0.0115$ $g_s M = 1.051$ $z_{cf} = 2.882 \times 10^{-8}$ $V_{dS} = +1.937 \times 10^{-19} M_{pl}^4$

$$(-1, 0, 1, -3, 2, 0, -1)^{\top}$$
, $\vec{p} = \frac{1}{40}(0, -8, 0, -2, 4, 5, 5)$

The vacuum is free of tachyons!

One de Sitter to rule them all

McAllister, Moritz, Nally, AS: 2406.13751

$$= \mathcal{N}_{n\mathbf{q}} \,\mathrm{e}^{-2\pi n\,\mathbf{q}\cdot\mathbf{t}}$$

Pfaffian prefactors:

Recall the for our results, we set $n_D = 1$ in

$$A_D = \sqrt{\frac{2}{\pi}} \frac{1}{(4\pi)^2} \times n_D$$

We checked that our vacua survive for

$$10^{-3} \le n_D \le 10^4$$

One five de Sitters to rule them all

McAllister, Moritz, Nally, AS: 2406.13751

ID	$h^{2,1}$	$h^{1,1}$	M	<i>K</i> ′	g_s	W_0	$g_s M$	$ z_{ m cf} $	V_0
1	8	150	16	$\frac{26}{5}$	0.0657	0.0115	1.051	2.822×10^{-8}	$+1.937 \times 10^{-19}$
2	8	150	16	$\frac{93}{19}$	0.0571	0.00490	0.913	7.934×10^{-9}	$+1.692 \times 10^{-20}$
3	8	150	18	$\frac{40}{11}$	0.0442	0.0222	0.796	8.730×10^{-8}	$+4.983 \times 10^{-19}$
4	5	93	20	$\frac{17}{5}$	0.0404	0.0539	0.808	1.965×10^{-6}	$+2.341 \times 10^{-15}$
5	5	93	16	$\frac{29}{10}$	0.0466	0.0304	0.746	8.703×10^{-7}	$+2.113 \times 10^{-15}$

One five 30 de Sitters to rule them all

McAllister, Moritz, Nally, AS: 2406.13751

One five 30 de Sitters to rule them all

McAllister, Moritz, Nally, AS: 2406.13751

				de Sitte anti-de	r Sitter
10 .0 ²	00	10	5	110	115
_		_			
calar	poten	tial			
calar	⁻ poten	tial		de Sitte anti-de	r Sitter
calar	⁻ poten	tial		de Sitte anti-de	r Sitter
calar	poten	tial		de Sitte anti-de	r Sitter
calar	- poten	tial		de Sitte anti-de	r Sitter
calar	poten	tial		de Sitte anti-de	r Sitter
calar	poten	tial		de Sitte anti-de	r Sitter
<u>calar</u>	poten	tial	 95	de Sitte anti-de	r Sitter

- ca.ur p				
			de Sitter anti-de S	r Sitter
		100	105	
0 10 ²	95	100	105	110
alar po	tentia	1		
			de Sitter anti-de S	itter
`	•••••			
100 0 ²	1	05	110	115
calar p	otentia	al		
			de Sitter anti-de S	litter
·	·			

1.0 ×10⁻¹⁸

0.8 -

0.6 -

0.4

0.2 -

Example 2: Scalar potential

50

 $\mathcal{V}_{F}/10^{3}$

anti-de Sitte
 de Sitter

.....

55

One five 30 de Sitters to rule them all

McAllister, Moritz, Nally, AS: 2406.13751

calar potentia	,		
		de Sitte anti-de	er Sitter
0 95 : 10 ²	100	105	110
	-	-	
alar potential		de Sitte anti-de	r Sitter
```			
100 10! 0 ²	5	110	115
	_	-	
alar potential		do Sitto	, <b>r</b>
		anti-de	Sitter
90	95		100

### One five 30 de Sitters to rule them all

### McAllister, Moritz, Nally, AS: 2406.13751





Example 4: Scalar potential 130 160





### One five 30 de Sitters to rule them all

### McAllister, Moritz, Nally, AS: 2406.13751





Example 4: Scalar potential 130 160





### Conclusions

### Main takeaway:

### **Open issues and future directions:**

- dS vacua are probably most vulnerable to corrections to the anti-D3 brane,
- meta-stability of the uplift in the regime  $g_s M \sim 1$  remains an important open problem!
- better understanding the structure of corrections (like string loop or warping corrections),
- perturbations of the throat (would require computing the CY-metric), and
- flux quantisation conditions for CY orientifolds (for toroidal orientifolds, some fluxes have to be even)

### In the future, some candidate vacua may survive as genuine de Sitter vacua of string theory.

- First explicit candidate de Sitter solutions along the lines anticipated by Kachru, Kallosh, Linde and Trivedi in '03.
- The control parameters in our solutions are currently the best we could do in 2024, but we barely scratched the surface of available compactifications in the KS database.

[Junghans 2201.03572] [Hebecker, Schreyer, Venken 2208.02826] [Schreyer, Venken 2212.07437] [Schreyer 2402.13311]

[Frey, Polchinski hep-th/0201029]











A landscape of supersymmetric AdS vacua

McAllister, Moritz, Nally, AS: <u>2406.13751</u>, work in progress

### We found new supersymmetric AdS vacua with **Klebanov-Strassler throats**...

ID	$(h^{2,1},h^{1,1})$	M	K'	$N_{\mathrm{D3}}$	$g_s$	$W_0$	$g_s M$	$ z_{ m cf} $	$-V_F$
a	(6, 160)	8	$\frac{1}{15}$	2	$3 \cdot 10^{-3}$	$1.0 \cdot 10^{-35}$	0.021	$6.0 \cdot 10^{-6}$	$2.5 \cdot 10^{-1}$
b	(7, 155)	8	2	0	0.18	$7.4 \cdot 10^{-18}$	1.46	$2.1 \cdot 10^{-3}$	$5.1 \cdot 10^{-5}$
с	(6, 160)	2	10	0	0.015	$1.6 \cdot 10^{-27}$	0.30	$2.4 \cdot 10^{-47}$	$5.8 \cdot 10^{-5}$
d	(6, 160)	2	$\frac{33}{2}$	11	0.27	$3.2 \cdot 10^{-25}$	0.55	$1.3 \cdot 10^{-42}$	$2.3 \cdot 10^{-1}$
е	(8, 150)	14	4	0	0.075	0.032	1.05	$9.1 \cdot 10^{-7}$	$1.8 \cdot 10^{-1}$



 $\begin{array}{c|c} & \Xi \\ \hline -90 & 10^{70} \\ \hline -50 & 10^{34} \\ \hline -72 & 0.06 \\ \hline -66 & 0.65 \\ \hline -17 & 3.38 \end{array}$ 

Can add brane-antibrane pair and achieve uplift to positive energy.

Interesting candidate for an explicit setting for the inflationary scenario of [KKLMMT: <u>hep-th/0308055</u>]





A landscape of supersymmetric AdS vacua

McAllister, Moritz, Nally, AS: <u>2406.13751</u>, work in progress

### We found new supersymmetric AdS vacua with **Klebanov-Strassler throats**...

ID	$(h^{2,1},h^{1,1})$	M	<i>K</i> ′	$N_{\mathrm{D3}}$	$g_s$	$W_0$	$g_s M$	$ z_{ m cf} $	$-V_F$
a	(6, 160)	8	$\frac{1}{15}$	2	$3 \cdot 10^{-3}$	$1.0 \cdot 10^{-35}$	0.021	$6.0 \cdot 10^{-6}$	$2.5 \cdot 10^{-1}$
b	(7, 155)	8	2	0	0.18	$7.4 \cdot 10^{-18}$	1.46	$2.1 \cdot 10^{-3}$	$5.1 \cdot 10^{-5}$
с	(6, 160)	2	10	0	0.015	$1.6 \cdot 10^{-27}$	0.30	$2.4 \cdot 10^{-47}$	$5.8 \cdot 10^{-5}$
d	(6, 160)	2	$\frac{33}{2}$	11	0.27	$3.2 \cdot 10^{-25}$	0.55	$1.3 \cdot 10^{-42}$	$2.3 \cdot 10^{-1}$
e	(8, 150)	14	4	0	0.075	0.032	1.05	$9.1 \cdot 10^{-7}$	$1.8 \cdot 10^{-1}$

... and in addition with **only even fluxes**.

ID	$(h^{2,1},h^{1,1})$	M	<i>K</i> ′	$N_{\mathrm{D3}}$	$g_s$	$W_0$	$g_s M$	$ z_{ m cf} $	$V_F$
f	(7, 155)	8	2	0	0.18	$9.7 \cdot 10^{-18}$	1.46	$2.1 \cdot 10^{-3}$	$-8.3 \cdot 10^{-1}$
g	(8, 150)	8	$\frac{54}{7}$	0	0.23	$2.3 \cdot 10^{-2}$	1.86	$3.1 \cdot 10^{-7}$	$-1.6 \cdot 10^{-1}$
h	(6, 160)	4	$\frac{7}{2}$	-2	0.056	$1.9 \cdot 10^{-11}$	0.23	$1.0 \cdot 10^{-22}$	$-2.2 \cdot 10^{-1}$

### **Requires two anti-D3 branes**











### Racetrack PFVs

McAllister, Moritz, Nally, AS: 2406.13751



We see that both  $M \gg 1$  and KS throats containing almost the entire D3-brane charge of the compactification occur in our ensemble, but **both are exponentially rare**.



Engineering conifolds

[Demirtas, Kim, McAllister, Moritz: 2009.03312]

### Conifold singularities in X arise when a set of $n_{cf}$ three-cycles shrinks to zero volume.

We write  $z^{a} = (z_{ef}, z^{\alpha})$ ,  $\alpha = h^{2,1}(X) - 1$ , and compute the superpotential systematically order by order in  $z_{ef}$ 

### A warped Euclidean D3-brane

In our constructions, there **always** exists a toric divisor  $D_{cf} = \{x_{cf} = 0\}$  that intersects the conifold. An Euclidean D3-brane on  $D_{cf}$  will pass through a highly warped region of the KS throat exponentially suppressing the contribution to  $W_{np}$ , see e.g. [Baumann et al. <u>hep-th/0607050</u>]. Below, we therefore remove  $D_{\rm cf}$  from the list of contributing divisors to  $W_{\rm np}$ .

See also [Álvarez-García, Blumenhagen, Brinkmann, Schlechter: 2009.03325]

In an LCS patch, they correspond to facets  $\mathscr{K}_{cf}$  of the (complexified) Kähler cone  $\mathscr{K}(\widetilde{X})$  where set of curves  $\mathscr{C}_{cf}$  shrinks.

 $W_{\text{flux}}(z^{a}, \tau) = W_{\text{poly}}(z^{a}, \tau) + W_{\text{inst}}(z^{a}, \tau) + z_{\text{cf}} W^{(1)}(z^{a}, z_{\text{cf}}, \tau) + \mathcal{O}(z_{\text{cf}}^{2}).$ 









